ESI Talk #41

Page 1

The Virtual Prototyping Magazine issue 41 | winter 2012

special report

Reaching for the skies

Audi saves cost and development time using virtual airbag prototyping

Acquisition of IC.IDO, the leading European vendor of immersive Virtual Reality Solutions



contents

editorial

Originally, Virtual Engineering was developed to address technical issues in industries where physical testing was not feasible (due to safety, cost or size limitations for instance). It first aimed to deliver answers to critical challenges such as vulnerability in the defense sector, or safety issues for nuclear power plants.

04 special report

• Reaching for the skies • 3 questions to ESI’s Electromagnetics Product Manager

08 success stories

• Audi saves cost and development time with virtual airbag prototyping • Bilcare optimizes package design using plastic thermoforming simulation • Simulating NASA Space Missions with Vdot™ • LTDS predicts composite materials distortion with SYSPLY • AETHRA reduces tryout time on automotive body components with sheet metal forming simulation • Cummings Scientific, LLC investigates and reconstructs accidents using simulation • TOA Industries uses simulation to control springback in thin ultra-high strength steel stamping parts • Epcor Foundry reduces mold modification costs using QuikCAST

16 product news

• Latest release of casting simulation suite includes new setup methodology and microstructure models • ESI Group announces an agreement with CTIF to distribute SALSA 3D • PAM-STAMP 2G Version 2011: a single software suite for sheet metal forming simulation • Latest release of VA ONE includes significant performance enhancements • ESI and JSP offer ARPRO® electronic data sheets for virtual seat prototyping • Virtual Performance Solution 2011

19 company news

• Acquisition of IC.IDO, the leading European vendor of immersive Virtual Reality Solutions • RAILENIUM project funding allocation by the French government • Japanese User Forum PUCA 2011 focuses on ground transportation, energy and heavy industry • 5-year strategic cooperation agreement in R&D with AVIC, strengthening ESI’s positioning on China’s booming aeronautics market • Report on ESI’s second China Forum • ESI is awarded “Innovation” trophy by Ernst & Young and Syntec Numérique • ESI named Company of the Year by the FACC • 2011 third quarter results

esi talk is issued bi-annually by ESI Group Executive Editor: Amy de Rouvray Editor-in-Chief: Celine Gallerne - celine.gallerne@esi-group.com ESI Group Marketing Parc d’Affaires SILIC 99, rue des Solets - BP 80112 94513 Rungis Cedex - FRANCE Tel: +33 (0) 1 41 73 58 00 - Fax: +33 (0) 1 46 87 72 02 www.esi-group.com - info@esi-group.com Design: Agence TETRAKTYS ISSN 12105-1739 Print: RIVET PRESSE EDITION 24, rue Claude-Henri-Gorceix - 87022 Limoges Dépôt légal: Janvier 2012 All PAM- and SYS- product names as well as other products belonging to ESI’s portfolio are tradenames or trademarks of ESI Group, except specified proprietary mention. All other trademarks are the property of their respective owners. All text and images included in the articles are the copyright of the companies presenting their applications and simulation tasks. Photo credits: AUDI AG, Bilcare Research, LTDS-ENISE, Centre de la Science des Matériaux et des Structures, Cummings Scientific LLC, TOA, Renault, DieDe & Tecnalia, Alstom Transport/ Design & Styling.

Fouad El-Khaldi

Virtual Engineering practices Strategy & Innovation then migrated to the automoGeneral Manager, tive sector where they became ESI Group. the industry’s favorite method to address the new crash testing and passenger safety requirements, introduced in the early 90’s. Moving forward, Simulation-Based Design has progressively gained the technical ability to allow for Virtual Prototyping, which has since proven to be an indispensable, mainstream technology to support engineering decisions at each and every stage of the Product Lifecycle Management process. It aids in assessment of product performance across many engineering domains and in evaluation of the product interaction with its environment. It can even be used to simulate the actual customer experience with the end product… Virtual Prototyping increasingly includes manufacturing perspectives, by addressing early in the product lifecycle how manufacturing will influence product performance and cost. Complementing this simulation capability, virtual prototyping now includes Virtual Reality solutions that can enable whole teams to interact naturally with their product in immersive 3D visualization. Virtual Prototyping helps industrial clients make the right decisions at the right time and, in some cases, reach product pre-certification without any physical testing. ESI’s Virtual Prototyping software and services, widely used across many different industries with proven benefits, are increasingly relevant to the aeronautic sector – an industry with strong market demand but facing economic pressure due to fuel prices and the challenge of tightening regulations aimed at the reduction of Greenhouse Gas Emissions and noise, or safety regulations among others. Such requirements call for not only incremental, but also drastic weight reduction and improvements in engine performance and are driving the development and evolution of new and existing materials. How will new materials, such as composites, impact product performance and its integrity? What best practices should be used to achieve optimal maintenance cycle and cost? Which processes will be the right ones when recycling requirements must be considered? Through co-creation with industry partners, ESI’s Virtual Prototyping can deliver adequate answers by taking into account each and every step of the product engineering process, and brings reliable and efficient support for engineering changes through a complex supply chain. Find out more in this magazine’s special report (p.4) about how ESI leverages 30 years of expertise to answer today’s most important technical challenges in the aeronautic sector.

G/RO/11. 146 A

issue 41 | winter 2012

3


special report

aeronautics

Reaching for the skies In the beginning... ‘Reaching for the skies’ has always been the dream of mankind. In the ancient Greek mythology Icarus and Daedalus attached wax wings to their arms in order to escape from the island of Crete. It took three millenniums to move from “dream” to “reality” when Orville and Wilbur Wright achieved the first sustained flight on December 17, 1903. Only 60 years later, commercial transportation was revolutionized by an aircraft with a fuselage longer than the distance the Wright brothers flew that day, the Boeing 747 “Jumbo Jet”. Another 3 years later, Neil Armstrong set foot on the moon… Such astonishing breakthrough had never been attained in so little time in the history of engineering.

Icarus and Daedalus attaching wax wings to their arms

Orville and Wilbur Wright

The Boeing 747 “Jumbo-Jet” prototype

4

esi talk


Computer simulation and aeronautics

Mostly non-metal

Isoparametric Finite Element quadrilaterals

Unknown Area “Blended Wing” Boeing 787 “Dreamliner”

Airbus A380

Boeing 747 “Jumbo Jet”

All metal

Product Perfomance

The contribution of Aeronautics to the field of Engineering (and in everyday life) has been immense. It is solely responsible for the origins of many computer methods engineers use today, whether related to Solid or Fluid Mechanics. Indeed the Finite Element Method was invented to gain a detailed and accurate understanding of the structural strength of an aircraft. The pioneers, Dr Turner (Boeing) and Professor Argyris (Department of Aeronautics, Imperial College) independently created the foundations of the Matrix Methods of Structural Analysis which were soon transformed by Professor Taig (British Electric Aircraft Corporation) and Professor Irons (Rolls Royce) to the Isoparametric Finite Element Method. At the same time, John Barlow (Rolls Royce) consolidated the practice of Gaussian Integration, while Professor Mark Wilkins (Lawrence Livermore Lab) rationalized the computational transient dynamics and shock wave propagation with the historic code HEMP ; the pillar of all transient dynamics codes of today, including ESI’s solvers. The rest is history, one involving much international contribution.

De Havilland Comet Lockheed Constellation

Conceptualization of Sustaining Tecnological Changes C.M. Christensen

1970

Today

2050

Time

Evolution of aeronautics : past and future

issue 41 | winter 2012

5


New challenges With the aeronautic designs of the 60s (like forward-swept wings) soon surfaced needs that metallic structures could not meet. Filamentary composite materials (in particular Carbon Fiber Reinforced Plastics) were introduced as a potential alternative. It took more than 30 years for them to evolve to the point that they could be used within secondary members in aircraft construction. However, with the arrival of the new millennium, and the anticipated exponential growth of passenger numbers, stringent environmental constraints were imposed on the Aeronautics industry regarding exhaust and noise pollution. These translate into requirements for significant aircraft weight and aerodynamic drag reduction. Today, these same requirements precipitate the need for a sharp change in aircraft design, construction and associated materials usage.

New materials Composite materials are at the forefront of aircraft technology and are now considered as candidates for primary structural members. This is a game-changer! Traditional design methods no longer apply; the manufacture of these new low weight and high strength materials (which are in fact “mini-structures” by themselves) has to be an integral part of the design process. Detailed simulations of both manufacture and design phases are now compulsory. Multiphysics simulations become a “must” as structural, aero-elastic, thermal and electromagnetic disciplines interact in the Vulnerability Assessment of the aircraft. Since working on real scale models would be complex in aviation, suitable local-to-global approaches remain cornerstones of the design process. Physical testing becomes prohibitively expensive if not impossible, thus certification procedures have to evolve rapidly towards certification-by-simulation.

The Grumman X-29 forward-swept wing experimental aircraft

ESI: a partner to the aeronautics sector ESI Group has been a partner to the aeronautics / aerospace industry through the past 30 years of challenging transformation, either via direct industrial collaboration or via state sponsored R&D projects (government or EU). Recently, ESI has signed a 5 years strategic R&D partnership with AVIC ; supplied best in class solutions that help the US NASA with Virtual Mission Simulation (read our report, p.10) ; and provided tools for composite parts research to organizations such as LTDS (read more p.11). For ESI, industrial partnerships have been acting as a catalyst for crossfertilization of simulation technology across different industries, in particular between the Aeronautics and Automotive industries, as they share similar problematics. For instance, ESI’s Virtual Performance Solution has emerged from this collaboration (find out more p.18). It has enabled collaborative virtual prototyping methods, allowing multiple domains to be addressed using a Single Core Model, supported by pertinent physically correct models, powerful optimization algorithms for robust design, and industrially focused High Performance Computing (HPC) approaches like Multi-Model Coupling. Virtual prototyping involving multiple domains is the sole credible answer for solving technical challenges in the Aeronautics of today and tomorrow. Dr Argiris Kamoulakos ESI Group Scientific Director and Fellow of the Royal Aeronautical Society

6

Birstrike simulation for the certification of the Boeing 787 “Dreamliner” composite moveable trailing edge

Find out more: www.esi-group.com/aeronautics

esi talk


3 questions for… Jean-Claude Kedzia Electromagnetics Product Manager, ESI Group

Could you please explain what is the risk involved in using a mobile phone on a plane as opposed to using other electronic devices? “Airplanes are primarily made of aluminum, an excellent conductor of electricity. When an airplane is struck by lightning, electrical energy travels through its external metallic skin and is dissipated through the static wicks attached to the trailing edges of the wings. Burn marks can generally be found at the entry and exit points of the strike. In very severe conditions, electrical equipment or avionics may be slightly damaged. Conductive properties of aluminum enable the formation of a shielding “Faraday cage” around the airplane, protecting its contents from the high intensity currents that might flow along the outer structure of the aircraft towards the static wicks. In contrast, if the radiating electricity source is located inside the aircraft, as it would be if passengers were using mobile phones, the shielding effect would strengthen the spurious parasitic signal generated by those devices. This signal would be conveyed to electronic equipment and to the aircraft avionics through the internal wiring. With the 100,000 electrical links of the brand new Airbus A380, featuring more than 300 miles of wiring (500 kilometers), you can easily imagine that Electromagnetic Interferences are generated! Surprisingly, some airlines are now offering Wi-Fi connection onboard. So how are Wi-Fi networks different from mobile signals? Although featuring various radio frequency transmitters, Wi-Fi networks are operating with highly secured IEEE protocols (a trademark of the Wi-Fi Alliance) providing high quality worldwide interoperability. The immunity of the aircraft systems is thus easy to implement – much easier than with cell phones, which differ from most Portable Electronic Devices (PED) by sending out signals strong enough to be received at distances far away from the user.”

Can ESI software predict such electromagnetic compatibility issues and how? “Experimental measurements are quite difficult to handle and very expensive to conduct with full size aircraft. On the other hand, ground testing may be quite different from real in-flight conditions - hence the need for simulation. With Electro-Magnetic Compatibility and Interference issues (EMC/EMI), the situation is made complex by the internal wiring. The objective of

issue 41 | winter 2012

Numerical EMC applications is to identify risks and define favored coupling paths that allow the electromagnetic signals to interfere with sensitive onboard devices. Codes such as CRIPTE, initially developed by ONERA (the French Aerospace Laboratory) and now integrated within PAM-CEM, ESI’s Electomagnetic Simulation Suite for virtual testing, address the management of such cable networks and related induced phenomena. This software has been complemented with other 3D products in order to make it as predictive as possible. PAM-CEM’s reliability and efficiency have been demonstrated in a definite manner in the automotive sector, where internal wiring can also be impressive, as harnesses can comprise thousands of cables and wires.”

What improvements to PAM-CEM Simulation Suite do you foresee in the future? How would these be specifically beneficial to the aeronautics industry? “Electromagnetic phenomena feature numerous and diversified mechanisms, spreading over a very wide frequency spectrum: ranging from direct currency with electrostatics, lightning or EMC/EMI and Radio Frequency communications in the low and medium bands, and up to several GigaHertz with arrays and radar devices. The electromagnetic radiation of an electronic device onboard an aircraft that includes 500 kilometers of wiring can definitely be seen as a multi-scale problem. The PAM-CEM Simulation Suite already includes several dedicated solutions for 3D radiation or induced effects, along with wiring using the CRIPTE code. In the 2011 version, ESI’s electromagnetic simulation suite has been reinforced with new tools, new modeling techniques, and new coupling procedures. Another improvement axis is related to new materials. Together with the computation of near radiated electromagnetic fields up to 24 GHz and beyond, one major PAM-CEM feature released last year addressed the modeling of very thin metalized paint coatings on plastic bumpers (the success story with MAZDA is available in ESI talk 40, pages 8 and 9). The newly released 2011 PAM-CEM Simulation Suite enables the investigation of 3D anisotropic materials. Improvements related to dispersive layered coatings will follow closely prior to the addition of composite materials management – a must for the aeronautics sector.” Find out more: www.esi-group.com/electromagnetics

7


success stories

automotive

Audi saves cost and development time with virtual airbag prototyping Using Sim-Folder helps decrease the number of physical tests required for product safety precertification Audi and ESI have been working together for many years on vehicle safety simulation. Recently, we have tackled the simulation of Out of Position (OoP) situations, in order to address the Federal Motor Vehicle Safety Standards FMVSS* 208 regulation. Recent simulations use a number of different child dummies. For each dummy model, two positions must be tested: with the dummy standing in front of the dashboard and another with the dummy seated in front of it. These simulations help Audi evaluate the physical phenomena of the airbag deployment with the objective of avoiding injuries related to deployment itself. Audi can optimize the airbag folding pattern early in the development cycle of new vehicles, saving time and cost. Audi engineers perform the complete airbag process in simulation, including folding, assembly and deployment using ESI solvers. In the past, it took a week to model and run a new folding pattern for curtain and driver side airbags. To speed up the OoP simulation cycle, Audi developed an integrated CAE method and their engineers now use Sim-Folder, ESI’s airbag folding tool, to efficiently model folded airbags. Sim-Folder helps speed up the different phases of designing occupant restraint systems. It also enables greater collaboration between the different disciplines involved – such as safety, cockpit and seat design – thanks to the use of a common platform. Audi engineers start by setting up the folding sequence in Sim-Folder. They then simulate the folding process using ESI’s Virtual Performance Solutions and add the correctly folded airbag to the car model. The positioning of the dummy and the inflator characterization are completed using Audi in-house tools, that provide the input

8

for the accurate deployment simulation using ESI’s Finite Point Method. Following this new method, the initial curtain airbag can be modeled and the associated simulation run in one or two days, while changes needed for new design iterations can be processed within a half day. The driver airbag that initially took from one to three days to model can now be modeled overnight. The passenger airbag is the most difficult. It currently takes two weeks for the initial run, but Audi aims to reduce this to one week.

Configuration of an Out of Position simulation model with a 6 year old child dummy

The major benefit of simulation is that we have a reproducible workflow keeping in details the influence of one or several parameters. With Sim-Folder, when we change one folding sequence, we can run the entire process again and obtain a folding variation overnight instead of one week for curtain

and driver airbags.

Dr. Erich Blümcke, Vehicle Safety Simulation Engineer, Audi AG.

Out of Position simulation model: airbag deployment

ABOUT AUDI AG AUDI AG is a premium luxury German automobile manufacturer which is part of the Volkswagen Group since 1964. It manufactures exquisite cars – attractive, sophisticated and technically perfect. Audi’s corporate tagline worldwide is “Vorsprung durch Technik” meaning “Advancement through Technology”.

www.audi.com for more information: www.esi-group.com/sim-folder

esi talk


success stories

pharmaceutical

Bilcare optimizes package design using plastic thermoforming simulation Benchmark study using PAM-FORM helps reduce the packaging production line time by more than 50% Thermoformed plastic blisters are widely used to package pharmaceutical dosages because of their low production cost and high performance. Recent regulatory requirements have been introduced, calling for a stronger moisture barrier when packaging many new and existing pharmaceutical products. The challenge is to provide a sufficient moisture barrier while also meeting cost and environmental concerns. Meeting moisture barrier requirements is difficult in blister packing because the packaging material undergoes heavy deformation during the thermoforming process ; affecting the thickness distribution of plastic film after the cavity formation. Non-uniform thickness and thinning in the corners of the container are important factors that determine the adequacy of the thermoforming method. Bilcare rolled out a packaging development method named BilcareOptima™, that assesses the degradation profile of the drug formulation and determines the barrier property required of the package that will protect the product during its shelf life. The company sought a method to predict the effect of material properties, and wall thickness distribution on the barrier properties of polymeric films after thermoforming to a blister pocket. This information is needed to develop the optimal blister cavity design. PAM-FORM enables a forming simulation in a 3D Virtual Environment and the associated post processor produces a unique view of the topography of thickness, stress-strain distribution, forming zones, etc. in the thermoformed pocket. Film visco-elastic deformation behavior was validated based on comparison of the experimental and simulated stress-strain data at various temperature and strain rates.

issue 41 | winter 2012

We developed a system to predict the thinning profile on blister formation and the barrier property using PAMFORM. With PAM-FORM we’re able to predict this behavior more accurately with great flexibility and user friendliness, all of which has helped us

Thickness distribution simulation in PAM-FORM

speed up our process.

Samir Bagalkote, Assistant Manager, Research & Development, Bilcare Research.

For blister design and assessment of formability and barrier properties, Bilcare now uses PAM-FORM to validate changes made in blister cavity design, initial film thickness and thermoforming process parameters. The company has cut packaging production line trialing time by more than 50%, improved packaging design by choosing the most appropriate material, reduced quality defects and saved on material and production costs by eliminating the need for a physical prototype. These results have given Bilcare confidence to try new designs and materials which can potentially bring productivity enhancements in the pharmaceutical business.

ABOUT BILCARE Bilcare Research is a leading full-service provider in the field of pharmaceutical packaging. As a global supplier with single-source capabilities, Bilcare offers a comprehensive range of pharmaceutical packaging solutions, from product-specific research to brand-building materials and design. With more than 500 employees, and 50% of the workforce based outside of India, Bilcare’s operations are spread over 4 continents with more than 500 pharma customers globally.

www.bilcare.com for more information: www.esi-group.com/pam-form

9


success stories

aerospace

Simulating NASA Space Missions with Vdot™ NASA increases space missions planning efficiency through quicker iterations of engineering processes NASA uses Virtual Missions to simulate mission processes and resource flows. Virtual Missions also help uncover issues and validate procedures and software prior to executing an actual mission. Virtual Missions have historically been paperbased processes that involve the teams getting together over a conference table to identify mission events, task inputs and outputs, the mission schedule, and required resources. Obviously there are many limitations inherent in this methodology, including the time involved, the level of detail possible, and the availability of the necessary participants. NASA needed to address the knowledge limitations for the participants, as well as the time, and detail of their traditional, paper-based approach to develop higher-fidelity and lower risk mission plans with less effort and in less time. To that end, in 2010, NASA’s Marshall Space Flight Center and Ames Research Center collaborated with Qualis and ESI to build a suite of software tools to support server-based Virtual Missions. A team from NASA, Qualis and ESI designed a simplified and efficient process for the collection of mission events, task input/output, schedules and organization responsibilities which were entered and made accessible through a web database. The team then automated the trans-

NASA Virtual Mission document

formation of the NASA database into several process visualization and simulation tools including a Vdot™ process management model which enables geographically distributed participants to walk through the virtual missions and ultimately execute and manage the actual mission. The NASA solution has 5 key components: . Web accessible process database, . Defined format spreadsheets, . Macros to produce standard file formats, . Suite of process/requirements tools, . Models and reports from the tool suite.

Vdot’s intuitive visual interface brings Virtual Missions to life by turning static, paper-based processes into active electronic processes that can be deployed, executed, managed, verified and continuously improved. Multiple iterations of this engineering process enable organizations to continuously improve their businesses and produce reusable process models for developing new business processes. *

The web database provides a means of sourcing information from staff around the world to refine the mission processes ; a process known as ‘crowd-sourcing’. Once an initial crowd-sourced mission is ready, the Excel macros automatically produce a Vdot™ process model suitable for distributed, human-inthe-loop Virtual Mission Simulation. One key advantage is that the distributed Virtual Mission participants need little to no process training. When a human task is ready, the participant receives an e-mail with a link to an interactive web page defining the task. Vdot™ orchestrates any subsequent tasks ; human or automated. This solution produces better mission plans through rapid round-trip process engineering. Vdot™ orchestrates the key activities: data capture, process analysis/improvement, simulation, and metrics gathering.

ABOUT NASA The National Aeronautics and Space Administration (NASA) is an agency of the United States government responsible for the nation’s civilian space program and aeronautics and aerospace research.

www.nasa.gov for more information: www.esi-group.com/vdot

*A s Presented at the AIAA 49th Aerospace Sciences Meeting, Orlando, FL January 6, 2011. AIAA-2011-0607 Authors: Roger Herdy – Qualis Corp., Jacobs ESTS Group ; Daniel O’Neil – NASA Marshall Space Flight Center ; Ian Sturken – NASA Ames Research Center ; Michael Nix – Qualis Corp. ; Jacobs ESTS Group ; Damian Yañez – ESI North America.

10

esi talk


success stories

aeronautics

LTDS predicts composite materials distortion with SYSPLY Reducing manufacturing time and cost by conducting tests on a virtual prototype early in the development process As part of the LCM-SMART French National Research & Development project, the Laboratory of Tribology and System Dynamics (LTDS) at the École Nationale d’Ingénieurs de Saint-Étienne (ENISE) used ESI’s SYSPLY Finite Element (FE) simulation tool to investigate the distortion and the residual stresses that occur during a liquid composite molding (LCM) process. The study focused on an L-shaped composite aerospace structural component. The manufacturing process consisted of placing the composite material in a rigid mold and then curing it in an autoclave. The effort of residual stresses appeared during the molding process when the part was removed from the mold. The part was then machined to obtain a smooth surface. The relatively simple geometry of the part chosen for the study made it easy to understand the distortions that occurred during the molding process. The machining process consisted in milling the residual stresses formed during the manufacturing process, hence representing thermo-mechanical phenomena. The thermal source inducing the heat flux coming from the primary shear zone was related to the friction coefficient from the material removal process, while a mechanical source represented the pressure. Engineers hence used SYSPLY to simulate the machining process by applying thermal and mechanical loads directly to the final cut surface. The ability of SYSPLY to simulate the complete manufacturing process in a single application provided a significant advantage. The LTDS laboratory succeeded in predicting the necessary level of residual stresses to avoid reaching material rupture. The use of an composite mold made it easy to measure the residual stresses induced on the model during

issue 41 | winter 2012

fabrication and machining. The distortions predicted by simulation were also very close to those seen on the real part. Based on simulation results, the laboratory later offered some of its customer to use one of thean optimized mold design. Simulation substantially reduced the amount of physical prototyping that was needed to produce a quality part. As a result, the development cost and time for the part was significantly lower than with previous comparable projects.

We used SYSPLY to predict virtually the residual stresses, early in the development process. There was a good correlation between the virtual and the physical results. The use of simulation with SYSPLY was really

successful.

Dr. Olga Klinkova, Research Engineer, LTDS-ENISE & Centre de la Science des Matériaux et des Structures

Predicted spring-in due to residual stresses release at the end of the manufacturing process

A B O U T LT D S LTDS (Laboratory of Tribology and System Dynamics) analyzes the behavior of structures, materials, contacts and processes by using multiscale experiments, multiphysics models and numerical simulations to optimize their performance and predict their lifetime. It is associated with the the École Nationale d’Ingénieurs de Saint-Étienne.

http://ltds.ec-lyon.fr f or more information: www.esi-group.com/composites

Composite part machining

11


success stories

automotive

AETHRA reduces tryout time on automotive body components with sheet metal forming simulation Simulating results close enough to anticipate splits, wrinkles, superficial defects and tool marks allows a significant reduction in work hours for tools tuning In its search to to improve safety, fuel economy and decrease environmental impact, the automotive industry is continually searching for stronger and lighter body panel materials. At the same time, appearance and basic structural integrity are just as important as ever. Exterior panel surfaces must be free of tool marks and any other defects ; including signs of necking caused by excessive strain. AETHRA, like other automotive suppliers dealing with sheet metal forming, frequently faces the challenge of working with new materials. These need to incorporate product designs with more complex geometries and often include thicknesses reduction, as companies strive to reduce product weight. Surface defects are frequently encountered during the tool tryout period and the resulting tuning process can become very expensive and time-consuming. Furthermore, skilled personnel and expensive equipment and materials are dedicated to correcting problems instead of making parts needed by the customer. This problem is so serious that it is making it difficult for many stamping companies to operate profitably. In 2008, AETHRA’s engineering department began a search for stamping simulation software that could support the goal of improving part quality while reducing tool tryout times and the number of material blanks needed for testing. After several months of visiting users of simulation tools and trying various software packages, AETHRA concluded that ESI’s PAM-STAMP 2G was the best fit for the company’s needs. This decision was primarily based upon PAM-STAMP 2G’s superior ability to simulate surface quality issues. Soon after acquiring PAM-STAMP 2G, the engineering and the tool testing teams from AETHRA used simulation in an attempt to duplicate the causes of a specific defect that had been observed during physical testing. This effort was supported

12

by ESI’s teams in Brazil. The simulation results correlated very well with physical testing and the software demonstrated the ability to predict splits, wrinkles, superficial defects and tool marks. AETHRA has consequently incorporated simulation into tool tryout for every new product using the following workflow: . Simulate the stamping operation ; . Run trial parts on a stamping press ; . Compare real and simulated parts ; . Modify the simulation model until the problem is solved ;

AETHRA Automotive Systems (…) significantly improved the results in prediction and resolution of surface defects in external panels using PAM-STAMP 2G. Now, to satisfy customer needs, we can test different strategies in the process development because we have confidence that we’ll see the same behav-

ior in try-out.

A. Micheletti Viana, Mechanical Engineering - Formability Wellington Caetano Soares, Mechanical Engineering - Formability Arlem Picinin Campos, Simulation Manager AETHRA Automotive Systems

. Adjust the real die to match the simulation model that solved the problem. The result has been a significant improvement in product quality and reduced tryout time prior to die release to AETHRA’s press shops.

Feedback cycle to set the contour scales

ABOUT AETHRA AUTOMOTIVE SYSTEMS Founded in 1947 with the first plant called Hammer, Aethra Automotive Systems began operating in 1981 in the automotive field as its exclusive vocation. During the last decades, the AETHRA Group participated in the major developments of vehicles in the Brazilian market, offering everything from engineering services with its modern stations of CAD/CAM/CAE, as well as construction of soft tooling, prototypes, 5D laser cut, development of definitive dies, welding and assembly lines. Today, AETHRA delivers series parts manufacturing with JIT logistics to several automotive clusters in Brazil.

www.aethra.com.br f or more information: www.esi-group.com/metal-forming

esi talk


success stories

forensics

Cummings Scientific, LLC investigates and reconstructs accidents using simulation After a tragic accident, Cummings Scientific, LLC sought to determine whether the motorcycle driver would have experienced the same injuries had he worn a different helmet Cummings Scientific, LLC is an accident reconstruction, biomechanics and biomedical engineering consulting firm. They provide accurate forensic engineering and accident investigation services. To ensure their customers the best services in reconstruction, they use Finite Element (FE) biomechanics calculation with Madymo and ESI’s Visual-Safe MAD, for the environment (GUI).

Cummings Scientific, LLC was hired to virtually reconstruct the accident scene. The main objective was to demonstrate that whatever helmet the man had been wearing, the impact and the injuries at this speed would have been the same, and that, his injuries did not depend on the helmet but on his driving speed. Cummings Scientific, LLC led its own independent reconstruction of the scene. They scanned

Using Visual-Safe MAD is nice and easy: you can quickly mesh the ge o m e t r y, c h e c k i t s compatibility and push the play button. Besides, there is no need for long training. Visual-Safe MAD is easy-to-use, I got familiar with it very

quickly.

Beau Biller, Engineering Manager, Forensic Scientist, Cummings Scientific, LLC.

the helmet and built an accurate CAD helmet model, which they integrated intoVisual-Safe MAD. They also built a geometry of the trailer, which they also integrated into Visual-Safe MAD. Then they used a solver to calculate the impact and run the simulation until finding the correct correlation.

“Using FE is kind of the cherry on top of the cake because not everybody is using it in this field, so this is definitely a competitive advantage for Cummings.” said Beau Biller, Engineering Manager, Forensic Scientist, Cummings Scientific, LLC. “Visual-Safe MAD is

a great tool for meshing, we could not get anything from Madymo alone, that’s why we got involved with ESI”, he continued. According to Beau Biller, using Madymo would have made it impractical to obtain such results because building manually the model within Madymo takes 20 times more man hours.

Cummings Scientific, LLC’s main customers are attorneys who need to use a virtual reconstruction during trials. Recently, they were involved in a project for motorcycle helmet impacts. The trigger for this project was a tragic accident: a heavy truck and a young man riding his motorcycle collided. The young man’s head hit the side of the trailer. Although he was wearing a helmet, he was severely injured.

issue 41 | winter 2012

Simulation results of the helmet after the impact.

The conclusion of their study was that, whatever the helmet, the young man would have suffered the same amount of injury because of the speed and the strength of the impact.

ABOUT CUMMINGS SCIENTIFIC , LLC Cummings Scientific, LLC has been in business for over 7 years and has gained a reputation as a leader in the field of forensic science. Founded by Dr. and Mrs. Cummings in the spring of 2003, Cummings Scientific, LLC has steadily expanded its clientèle and services clients across the United States.

www.cummingssci.com

“ESI provided our company with a cost effective and powerful tool to complete projects that would have otherwise been nearly impos-

f or more information: www.esi-group.com/visual-environment

sible” concluded Beau Biller.

13


success stories

automotive

TOA Industries uses simulation to control springback in thin ultra-high strength steel stamping parts Adjusting manufacturing processes to start using high strength lightweight materials that help reduce vehicle weight and CO2 emissions The Automotive Division of TOA Industries Co., Ltd. manufactures vehicle body and suspension parts. Like many automobile manufacturers, TOA Industries are progressively switching to ultra-high strength steel to reduce the weight of vehicles in order to cut CO2 emissions without sacrificing safety and performance. Given the exceptional yield stress of ultra-high strength steel, the manufacture of parts from this material can be challenging, with problems often arising from dimensional deviation due to springback. To create dies for use with high strength materials in a short time frame and at low cost, springback must be addressed at the design stage instead of accepting trial-and-error correction once the die is made. TOA Industries has found that, for many components made of ultra-high strength materials, conventional analytical methods are unable to predict springback accurately. For example, when a 1.2 mm thick 980MPa-class material was used for a B-Pillar Inner, the simulation did not correlate well with testing. In contrast, simulation of a Central Pillar made with 2.0 mm thick 980MPaclass material showed good correlation with physical testing. Analysis of the behavior of blanks during the stamping process revealed that the B-Pillar Inner was subject to greater unbending deformation than the Central Pillar. It is known that the stress-strain relation during unbending deformation is different from that during bending deformation, owing to the Bauschinger effect. However, the Isotropic Hardening Material Model generally used in the previous forming simulation software is unable to take the Bauschinger effect into account. This explains the lack of accuracy of springback prediction in the B-Pillar Inner.

14

“

PAM-STAMP 2G, which provides high accuracy in springback analysis, has become an essential tool for us to achieve early delivery at low cost. To develop ultrahigh strength steel automotive parts into mass production in a short period of time, accurate early assessment is very important. By using the Yoshida-Uemori material model and taking into account the Bauschinger effect, we improved springback prediction accuracy on 980MPa level parts. As a result, we succeeded in reducing the amount of physical trial

�

and error cycles.

Mr. Nobuyuki Seki, Subsection Manager, 1st Production Engineering Department, Stamping Engineering Section, TOA Industries Co., Ltd

TOA Industries therefore decided to apply the Yoshida-Uemori model, which makes it possible to take the Bauschinger effect into account. PAM-STAMP 2G predictions displayed appropriate correlation with the physically stamped part. TOA Industries used simulation to design dies that are producing ultra-high strength material parts in mass production for vehicles now available on the market.

B-Pillar Inner: PAM-STAMP 2G results obtained with Isotropic Hardening Model above (52.3 % of the points within +/- 1mm of physical test results), and using the Yoshida-Uemori model below (as much as 95.8 % of the points within +/- 1mm of physical test results)

A B O U T TOA I N D U ST R I ES CO. , LT D. TOA Industries, based in Japan, produces a wide range of automotive components including front suspension cross members, frames, pillars, side rails, link assemblies, arm assemblies and radiator panels.

www.toaweb.co.jp f or more information: www.esi-group.com/metal-forming

esi talk


success stories

machinery

Epcor Foundry reduces mold modification costs using QuikCAST Visualizing casting processes with ESI’s Casting Simulation Suite enables engineers to manage mold design changes efficiently Traditionally, aluminum molds are designed by a skilled patternmaker based on their experience and validated through a series of trials before initiating production. They are notoriously difficult to get exactly right on the first go-around. To overcome this manufacturing challenge, Epcor Foundry looked at several different casting simulation software packages and selected ESI’s QuikCAST: an entry level package at a competitive price, which is very easy to use. Epcor Foundry tried QuikCAST on a few trial parts and found that it was able to accurately simulate its molding results. Epcor Foundry use automatic molding machines - DISA Match130 (20 X 24 flask) and Sinto FBO III (20 X 24 flask). Prior to purchasing QuikCAST, Epcor Foundry ran a 356 aluminum supercharger housing mold with an iron chill to accelerate the solidification process and to eliminate shrink and/ or porosity at the base of the rotor bores. The manufacturing process was working fine but the chill was adding cost to the project, including upfront tooling expenses, part complexity and labor. Paul Kiefer at Epcor Foundry’s sister company HiTech Shapes and Designs then decided to use QuikCAST in order to simulate the same exact design and saw areas of shrinkage in the heavier areas of the part and in the isolated bolt bosses. The ability to visualize the casting process as a time sequence provided an excellent tool to help change the design. Kiefer tried a few changes including moving the gate position and adding risers to feed additional metal into the mold as it cools. After making these changes, Kiefer re-ran the simulation, which confirmed that the changes achieved the desired results. The ability to show the simulation results to the customer was very helpful in obtaining confidence in the new design.

issue 41 | winter 2012

Once the design was frozen, Epcor Foundry cut the tooling for the core boxes and patterns and ran a few sample parts. The mold produced good parts that exceeded the customer’s requirements from the very first casting. The part reached Epcor Foundry’s quality requirements and the cost was reduced by eliminating the chill.

Epcor Foundry was thus able to make a better part straight from the gate instead of having to adapt the process on the customer’s time.

Without simulation it could have taken much longer to optimize the design. However, with QuikCAST, the ability to visualize the casting process made it possible to get the design right the first time. Since implementing the software we have saved time and ultimately money. All in all, we believe that simulation has helped us improve our competitive position by delivering a better product to our customers in less time.

Mike Maratta,

Program and Engineering Manager, Epcor Foundry, Cincinnati, Ohio

After the design modifications, two sound castings were achieved As needs evolve towards more advanced modeling, EPCOR will consider using ESI’s ProCAST simulation software. Based on powerful Finite Element Technology, ProCAST is well suited to also predict distortions and residual stresses.

A B O U T E P C O R F O U N D RY Epcor Foundry, a division of Seilkop Industries, Inc. provides green sand aluminum castings to the automotive, heavy truck, aftermarket, fueling, bulk handling, pump and air movement industries.

www.seilkopindustries.com/epcor f or more information: www.esi-group.com/casting

15


product news

Latest release of casting simulation suite includes new setup methodology and microstructure models ESI announces the latest release of its Casting Simulation Suite, composed of ProCAST & QuikCAST. The suite allows for a predictive evaluation of the entire casting process, including filling and solidification defects, metallurgical changes and part distortion. It enables a rapid visualization of the effects of design changes for cast parts, to aid in making the right decisions from an early stage of the manufacturing process. Numerical simulation of casting processes helps foundries to shrink product development costs, reduce time to market, and increase product quality. This new release includes a complete new user environment, with a modeler that drastically reduces the preparation time thanks to a new methodology and enhanced automatic assembly. Also, the first release of the new preprocessor Visual-Cast provides set-up of process conditions straight onto the CAD topology,

instead of the mesh. This gives the possibility of adapting the model to the simulation needs without resetting the process definition. This version of the Casting Simulation Suite provides a built-in advisor to assist in computing the mechanical properties of aluminum after age hardening treatment for parts like wheels, suspension components, cylinder heads and engine blocks.

of today’s industry market, ESI has engaged in global major projects in various fields like microporosity, centrifugal and optimization, mainly in the aeronautic industry.

Also, new microstructure models are now available, such as the ones for Ni-Resist and Compacted Graphite Iron, two materials mostly used in the automotive industry. To ensure a defect free casting, major functionalities like core gassing, sedimentations of particles and prediction of burn-on and mold penetration have been implemented. Moreover, to continuously develop reliable lightweight products that answers the challenges

for more information: www.esi-group.com/casting

ESI Group announces an agreement with CTIF to distribute SALSA 3D To further complement of the capabilities of its Casting Simulation Suite, ESI now distributes a filling system design tool. CTIF (Centre Technique des Industries de la Fonderie), a French casting research center, and ESI Group have signed an agreement for the exclusive distribution, support and development of SALSA 3D. The tool developed by CTIF calculates efficient filling systems for pressure die casting, following experimental and fundamental rules. SALSA3D helps calculate and size gating and running systems for the High Pressure Die Casting process. It assists in designing gates, runners and

16

overflows by controlling the maximum gate velocity and its thickness based on the available pressure machine. This potentially delivers significantly increased yield and reduced die development time by modeling the filling system automatically in 3D to be then validated using ProCAST or QuikCAST. SALSA3D will gradually be integrated into the ESI Casting Simulation Suite, with the aim of offering a software combination that helps maximize productivity, reduce development time and improve the quality of parts.

CAD

GATING & RUNNER SYSTEM DESIGN

PROCESS VALIDATION

f or more information: www.esi-group.com/salsa3D

esi talk


product news

PAM-STAMP 2G Version 2011: a single software suite for sheet metal forming simulation Dedicated to all engineers involved in the sheet metal forming process, PAM-STAMP 2G Version 2011 significantly shortens time to market by providing users with the results needed to make decisions at the right time: from an early stage of design right through to production. PAM-STAMP 2G is ESI’s complete and integrated, streamlined sheet metal forming solution for automotive, aerospace, and general forming applications. It takes into account the entire tooling process and provides trade-oriented Virtual Manufacturing.

“AETHRA Automotive Systems, with the help of ESI South America in Brazil, significantly improved the results in prediction and resolution of surface defects in external panels using PAMSTAMP 2G. Nowadays, to satisfy customer needs, we can test different strategies in our process

development because we have confidence that we’ll see the same behavior in try-out,” said Arlem Picinin Campos, Simulation Manager at AETHRA Automotive Systems.

Element (TTS) of PAM-STAMP 2G to predict the ironing process. Together with the Vegter model, TTS enabled an accurate prediction of the springback after ironing.

PAM-STAMP 2G Version 2011 yet again extends the scope of sheet metal forming process simulation beyond standard stamping. For this release, the following areas were especially extended: hot forming including metallurgy and cooling, line die simulation including flanging with ironing, springback after hemming, and optimization. As an indication of the software’s efficiency: PAM-STAMP 2G earned ESI engineer Jan Novy an award for most accurate predictions of drawing and ironing processes at the NUMISHEET conference in Seoul, last June. For this simulation work, Jan Novy used the Vegter material model along with the newly developed Through Thickness Stress

Hotformed B-pillar Courtesy of Renault, DieDe & Tecnalia for more information: www.esi-groupe.com/metal-forming

Latest release of VA ONE includes significant performance enhancements VA One is a complete solution for simulating noise and vibration across the full frequency range and seamlessly combines Finite Elements, Boundary Elements, and Statistical Energy Analysis (SEA) in a single model. VA One 2010.5 introduced BSR (Buzz, Squeak and Rattle) modeling and Aero-Vibro-Acoustics, while VA One 2011 release also includes performance and productivity improvements, along with new functionality for full spectrum modeling of acoustic ducts. Performance enhancements: The SEA and Hybrid modules of VA One have been optimized to make increased use of the multi-threading capabilities of multi-core desktop machines. Speedups of up to 4.5x have been observed for processing simulations on certain models running on quadcore desktop machines, when compared with previous versions of the software.

issue 41 | winter 2012

Productivity enhancements: The latest VA One release includes a large number of productivity enhancements, including new methods for quickly editing and updating the attributes of multiple objects in a model. This reduces model building time and provides more time for solving noise and vibration problems. Modeling noise in ducts across a broad frequency range: The new VA One release includes a unique functionality for quickly modeling the transmission loss of complex ducts with arbitrary cross-section, both above and below the planewave cut-on frequency.

VA One model of BSR propensity for a vehicle door

for more information: www.esi-group.com/vibro-acoustics

17


product news

ESI and JSP offer ARPRO® electronic data sheets for virtual seat prototyping ESI’s virtual seat prototyping solution PAM-COMFORT predicts detailed information related to seat design – including possible cosmetic defects due to the manufacturing process, and seat performance in terms of occupant posture and seating comfort. PAM-COMFORT uses the physical parameters resulting from each stage of the seat manufacturing and assembly processes as an input to the following stage in order to ensure a high level of precision, whatever the seat design and the anthropometry of the occupant. ESI recently announced an innovative and collaborative project with JSP, a leading provider of strong and lightweight expanded polymers. The physical properties of ARPRO® Expanded Polypropylene, one of JSP’s high-end sustainable foam products, will be included into PAMCOMFORT’s library in order to streamline engineering development processes.

A high performance material, ARPRO® offers unique combined properties to manufacturers and seat development engineers alike: high strength-toweight ratio, light weight, chemical inertia, thermal insulation, energy absorption, acoustical properties and 100% recyclability. This intelligent partnership will allow the simulation of ARPRO®’s unique product properties via a rich, digitally enhanced library – using advanced encryption techniques – without sharing any of ARPRO®’s innovative and protected IP. This removes a barrier to innovative design considerations, which are typically impeded by the need to physically test the intrinsic properties of materials. The initiative represents a break-through in the way PAM-COMFORT users, mostly automotive engineers, will be able to make use of specific brands of innovative materials for their virtual seat prototypes.

From the early stage of a seat’s conception, virtual prototyping enables the reduction of R&D costs and the acceleration of new seat development processes.

Virtual seat prototyping with ARPRO® high performance material for more information: www.esi-group.com/comfort

Virtual Performance Solution 2011 Virtual Performance Solution (VPS) Version 2011 is a scalable software package for end-to-end virtual prototyping across multiple domains. VPS enables ESI’s customers to shorten product development time by mastering design iterations and reducing costs while ensuring high quality standards. The latest version of VPS was developed to address today’s main industrial challenges, such as new safety and environmental regulations for transportation, weight reduction, impact of new materials and manufacturing processes on product performance, development costs, and development time. Virtual Performance Solution 2011 provides numerical simulation across multiple domains: crash, impact and occupant safety; passenger comfort; linear and nonlinear statics and dynamics; strength and thermal performance; noise, vibration and harshness (NVH); and, most recently, interior acoustics.

18

New enhancements include a glass model to simulate head impacts on a vehicle’s windscreen; required by the Euro NCAP car safety performance assessment program. This new model was quickly adopted at Volkswagen AG, where Project Engineer Dr Helge Liebertz, commented: “At Volkswagen, we have been using Virtual Performance Solution for several years now, and recently, in collaboration with ESI, we improved head impact simulation on windscreen. Using a new non-local failure criterion for laminated glass in Virtual Performance Solution 2011, we could calibrate one criterion and evaluate its accuracy by comparing with several experimental results. We confirm its use at an industrial level as the criterion works very well for multiple load cases.”. The new VPS edition also integrates PAM-COMFORT, ESI’s solution for virtual seat prototyping.

Crash & Safety

NVH & Dynamics

Multi-domain Single core model Statics & Strength Comfort

Interior Acoustics

Non Linear Kinematics

f or more information: www.esi-group.com/vps

esi talk


corporate

Acquisition of IC.IDO, IC.IDO the leading European vendor of immersive Virtual Reality Solutions IC.IDO enables a quantum leap in ESI’s value offering to manufacturing industries ESI Group has acquired IC.IDO GmbH, the leading European vendor of immersive Virtual Reality Solutions. IC.IDO (“I see, I do”) specializes in the development of collaborative decisionmaking solutions serving primarily industries that manufacture complex products across multiple sites. IC.IDO’s Virtual Reality (VR) technologies enable customers to clearly present, manipulate in real time and exchange product information virtually in order to resolve

This high performance 3D visualization technology is key for our customers to bridge the gap between the virtual and physical prototyping worlds because it combines a remarkably intuitive and robust immersive user interface with unique realtime physics simulation. This combination will enable ESI to provide the best end-to-end virtual prototyping solutions with the best 3D interactive and immersive visualization capabilities.

Vincent Chaillou, President and COO of ESI Group

issue 41 | winter 2012

IC.IDO immersive 3D allow users to clearly identify and resolve issues in real-time using Virtual Reality technology manufacturing and serviceability issues in an immersive and distributed environment. IC.IDO is headquartered in Germany and has operations and customers in Europe and the United States. IC.DO was founded in 2000 to industrialize advanced research from the Fraunhofer Institute, Europe’s largest application-oriented research organization. The company was voted startup of the year by McKinsey in 2003. IC.IDO employs world class experts in the field of VR and has gained a prestigious client base including Audi, Airbus, BMW, Boeing, Bombardier, Caterpillar and John Deere among others. IC.IDO generated sales of around €4.6 million in 2010 with double digit growth. Building on this acquisition, ESI intends to enhance the visualization capabilities of its present virtual prototyping solutions. This transaction constitutes an excellent opportunity for both teams to capitalize on their unique strategic fit and synergies, in the areas of innovation, software development and global delivery.

ABOUT IC.IDO IC.IDO, pioneer and global leader of Virtual Reality and Virtual Engineering Solutions, supports companies to make their product development process more sustainable, competitive and environmentally friendly. Its Visual Decision Platform (VDP) allows targeted, interactive visual decision-making on the basis of Virtual Reality and is the most effective tool for a collaborative work of locally, globally and departmentally distributed teams. IC.IDO’s Virtual Reality Solutions are used throughout the entire product development process from design to manufacturing. IC.IDO’s solutions also generate value in sales, marketing and maintenance.

www.icido.com

f or more information: www.esi-group.com/corporate

19


corporate

RAILENIUM project funding allocation by the French government ESI welcomes the French state funding allocation for RAILENIUM, a railway infrastructure project in which the company is taking part. Government funding has been approved for the RAILENIUM project as part of the “Invest in the Future� program (National Borrowing Plan). RAILENIUM, which stands for European Institute for Technological Research, will strive to meet industry needs for the next generation of rail transport technology, in line with environmental restrictions. Leveraging public and private partnerships in the fields of research, training and innovation, the institute will spur innovation and enable equipment certification, as well as promote the excellence of French and European technology. With this government grant, RAILENIUM benefits from a total budget of 550 Million Euros.

The RAILENIUM institute is expected to increase scientific knowledge in material properties, specifically related to material reliability and carbon footprint. It will also contribute to improving management systems. ESI will help drive the development and usage of numerical simulation and modeling in order to cut R&D costs, speed up innovation, and reduce the number of physical prototypes thanks to virtual prototyping.

TGV aeroacoustic noise simulation Courtesy of ALSTOM Transport / Design & Styling

for more information: www.i-trans.org

To this date, ESI is the only software editor included in the list of RAILENIUM members.

Japanese User Forum PUCA 2011 focuses on ground transportation, energy and heavy industry Over 300 ESI customers gathered at the 22nd Japan User Forum, PUCA Japan Forum 2011, which took place in Tokyo, at the Hyatt Regency Hotel, on 5 & 6 December 2011. During the event, customers and ESI experts from around the world discussed of how virtual prototyping provides answers to key industrial challenges, specifically in the ground transportation, energy and heavy industries. This year, the 62 speakers included clients from Japan, Europe, USA and Korea, such as keynote speaker Eric Landel of Renault and Yoshinobu

20

Sawamoto of TAKATA Corporation, representing the ground transportation industry, or ESI scientific Committee member Franck Delplace from EDF, who focused on energy. The event then split into three parallel sessions, addressing industry specific issues for the transportation sector, energy, and heavy industry. Subjects were as diverse as commentaries about the Fukushima Dai-Ichi nuclear plant or multidisciplinary optimization of car hood panel design for pedestrian safety. Informal demonstrations of immersive 3D tool IC.IDO, running in parallel to the conferences during both days, were also a success.

for more information: www.esi-group.com/PUCA2011

esi talk


corporate

5-year strategic cooperation agreement with AVIC, strengthens ESI’s positioning on China’s booming aeronautics market ESI has signed a 5-year strategic R&D cooperation agreement with BIAM, the Beijing Institute of Aeronautical Materials from AVIC (the China Aviation Industry Corporation). AVIC is an ultra large state-owned enterprise and an investment institution, authorized and managed by the Central People’s Government. It has a revenue target of one trillion RMB by the end of 2017. The mutual agreement entails a very close collaboration between BIAM and ESI, sharing expertise in complementary technologies and with the objective of creating a common research team operating as the Joint Research Center for Digital Technology of Aeronautical Materials. ESI and AVIC have identified a strategic reciprocal opportunity in establishing themselves as innovation partners. In the presence of Mr. Zhanbin Xu, Vice President of AVIC, in Paris on June 13th, Professor Dr.-

Ing XiaoSu Yi, Director of S&T Committee of BIAM, and Dr. Alain de Rouvray, Chairman and CEO of ESI Group, concluded an agreement for the next 5 years that commits both partners to leveraging their mutual knowledge in the field of materials technology through the integration of shared resources, infrastructure, and work planning on innovative and collaborative projects.

“I believe ESI’s approach of co-creation will ensure that our strategic R&D partnership gives both our companies access to the tools and technologies they need to compete globally in the aeronautics market. The key to gaining competitive advantage through this partnership will lie in our ability to establish dialogue, nourish mutual trust, and manage close interaction and reactivity. These joint efforts can only generate extremely positive outcomes for both ESI and AVIC,” declared Mr. Zhanbin Xu, Vice President of AVIC.

ESI is already present in China since 2001, with offices in Beijing since 2006 and more recently in Shanghai and Chengdu. The company supplies virtual prototyping solutions to major aeronautic groups around the globe; notably AVIC, Boeing, Dassault, EADS, Embraer and Safran.

Official signature ceremony of ESI and AVIC partnership, 13 June 2011, Paris for more information: www.esi-group.com/corporate/alliances

Report on ESI’s second China Forum Bringing together virtual prototyping users and experts to the Chinese capital, ESI China Forum took place on 25 & 26 August 2011 at Grand Epoch City in Beijing.

at CAERI, reported on the role of simulation in their respective industries.

Coming in the first year of the 12th 5-year plan for the People’s Republic of China, this event provided an opportunity for industry leaders and technical specialists to consider how virtual prototyping can contribute directly to attaining their country’s objectives.

A parallel session dedicated to aeronautics featured the participation of several of the key institutes within AVIC, the China Aviation Industry Corporation. Experts from FAI, CAC, BISEI, CADI, Xi’an Engine Factory and SADRI-COMAC spoke on bird impact, metal and composites manufacturing processes, vibro-acoustics, and materials data management.

Vincent Chaillou, President Product Operations and Chief Operating Officer at ESI Group, highlighted the Research and Development benefits of virtual prototyping. The conference opened with a plenary session in which keynote speakers Mr. Guansheng Li, Senior Specialist at COMAC and Zhou Zhou, Deputy Chief Engineer

Similar sessions addressed problematics for ground transportation; highlighting crash and safety, manufacturing processes, noise, fluid mechanics and electromagnetics; with speakers from companies such as Shanghai Volkswagen, Shanghai GM, Changan Auto, Raffles Offshore Ltd and the Henkel Group, as well as from leading

issue 41 | winter 2012

Chinese academic organizations and research institutes, including Tsing Hua University, NUDT (National University of Defense Technology), SJTU (Shanghai Jiao Tong University), and SWJTU (South West Jiao Tong University).

Gala dinner of the second ESI China Forum, 25 August 2011, Beijing f or more information: www.esi-group.com/events

21


corporate

ESI is awarded “Innovation” trophy by Ernst & Young and Syntec Numérique ESI was granted the “Innovation” trophy last September during the first presentation of the ‘Top 250 software creators in France’ by Ernst & Young and Syntec Numérique, the French Professional Chamber for Digital Trades. This ranking and the four associated trophies aim to raise awareness about the fast evolving French software industry, as well as attract the attention of political and economical decision makers. A Chamber counting over 1100 member companies, including 550 software editors, Syntec Numérique has mustered its best expertise in order to publish a ranking that could provide the most objective vision of the current French software market.

Alain de Rouvray, Chairman and CEO of ESI Group, received the trophy at the ceremony, and declared, “It is an honor for ESI to be awarded the Innovation trophy from this first edition of the ‘Top 250 software creators in France’. ESI holds innovation close to its heart. It is in essence what drives and inspires our product developement. Our motivation is to discover new simple and original ways to use the most recent computing and technological advances to generate operational and competitive value for our industrial customers, while emphasizing the social utility.”

Save the date!

22

Mar 27, 2012

JEC Europe 2012

The biggest composites exhibition in Europe and in the world !

Paris, France

Mar 28, 2012

ESI India Forum 2012

Indian User Forum on virtual prototyping

Pune, India

Mar 28, 2012

Adjoint Fluid Optimization & FlowHead

Expert Seminar organized by the EU FlowHead Project & ESI Group

Munich, Germany

Apr 01, 2012

NOVEM 2012

Noise and Vibration: Emerging Methods

Sorrento, Italy

Apr 17, 2012

VAUC 2012

5th European Vibro Acoustics User’s Conference

Duesseldorf, Germany

Apr 17, 2012

22nd International Conference Radioelektronika 2012

International Conference on Radio Electronics

Brno, Czech Republic

Apr 23, 2012

Hannovermesse 2012

The world’s leading showcase for industrial technology

Hannover, Germany

Apr 29, 2012

Solidification Course 2012

Dedicated to metallurgists and foundry engineers, this course is orientated towards the application of solidification theories to industrial casting processes, etc.

Les Diablerets, Switzerland

May 21, 2012

SAMPE 2012

Society for the Advancement of Material and Process Engineering

Baltimore, USA

May 24, 2012

12th International Foundrymen Conference

International Foundry Conference

Opatija, Croatia

May 24, 2012

Eurojoin 2012

8th European Conference on Joining Technology

Pula, Croatia

Jun 04, 2012

ATOMEXPO 2012

International Forum on nuclear power

Moscow, Russia

Jun 10, 2012

Euronoise 2012

9th European Conference on Noise Control

Prague, Czech Republic

Jun 26, 2012

Teratec Forum 2012

The international meeting for High performance Design and Simulation

Paris, France

Sep 10, 2012

FOND-EX 2012

International Foundry Fair

Brno, Czech Republic

Sep 12, 2012

Foundry Conference Portoroz 2012

52nd International Foundry Conference Portoroz 2012

Portoroz, Slovenia

esi talk


corporate

ESI named Company 2011 third quarter results of the Year by the FACC Sales for 3 quarter up by 10.2% rd

On 6 May 2011, ESI was honored as “Company of the Year” by the Michigan Chapter of the French-American Chamber of Commerce (FACC), along with the U.S. automobile company Cadillac. The award recognizing outstanding accomplishments at fostering FrenchAmerican trade has been delivered yearly since 1996 to one French and one American company by the FACC, a non-profit, member-driven organization, dedicated to promoting and fostering business relationships between the United States and France.

“The 2011 FACC Companies of the Year exemplify the best qualities of companies that are striving to increase trade and commerce between two great countries and, in doing so, promoting jobs and prosperity in Michigan,” said Robert A. Hudson, President of the Michigan chapter of the FACC and an attorney with Butzel Long. Alain de Rouvray, ESI Group Chairman, co-founder and CEO declared, “This award salutes twenty-five years of earnest efforts and investments, with the generous dedication of our teams and the confident support of our lead US customers and partners to drive innovation for economic and social benefits. It causes me to recall our first success in the USA with the adoption of PAM-CRASH at General Motors to spur on vehicle crashworthiness by recourse to numerical simulation. Thereafter, ESI has continuously promoted innovative solutions in Virtual Engineering for diverse disciplines and industrial sectors in Transportation, Aerospace, Energy, etc… This award encourages us to pursue this endeavor with renewed vigor and collaborative spirit.”

Sales for the 3rd quarter of 2011/12 totalled 17.6 million Euros, up +10.2% in actual terms and at constant exchange rates compared to the 3rd quarter of the previous financial year. This quarter notably incorporated the consolidation of IC.IDO for 2 months.

9-month sales Over the first 9 months of the 2011/12 financial year, the Group recorded sales of 54.2 million Euros, up +10.1% in actual terms. In geographical terms, there was an increase in Europe (+19.1%) and Asia (+7.6%), whilst the American zone continued to be affected by a negative exchange rate effect (-0.6% in actual terms and +6.3% at constant exchange rates). By industrial sector, the first 9 months of the year notably saw an improvement in orders taken in the Automotive and Transportation (+5.7%), Aeronautics and Space (+24.2%) and Education (+57.9%) sectors, confirming the financial year’s positive trends. Alain de Rouvray, ESI Group’s Chairman and CEO comments: “Our third quarter confirms the persistence of the positive trend recorded since the start of the year. Despite an especially strong performance in the same period last year, we recorded an increase in both new business and installed base over the quarter. Moreover, Europe delivered a dynamic performance driven by buoyant demand in Central Europe and by our successful diversification. These elements show the offensive and defensive quality of our activity and attest to the high degree of innovation that we bring to our business.”

ESI exhibits at Actionaria – Paris, France – 18 & 19 Nov., 2011 For the first time, ESI participated in the Actionaria tradeshow held in Paris and dedicated to individual shareholders during two days on November 18 & 19. A dedicated team welcomed visitors and presented the latest news of the Group, its international success, development projects and answered their questions. Using visual animations, the booth also allowed to illustrate the innovative projects delivered to industry customers and partners, who aim to be at the forefront of economic and social progress, while improving their worldwide competitive advantages. It was also the opportunity for Alain de Rouvray to be part of the Agora of Chairmen and present the company to a wide audience.

Bob Hudson – FACC President, Michigan Chapter Alain de Rouvray – Chairman & CEO, ESI Group Don Butler – VP Marketing, Cadillac

issue 41 | winter 2012

François Monnier – Editor of Investir-le Journal des finances Alain de Rouvray – Chairman and CEO of ESI Group

23


ESI HEADQUARTERS 100-102 Avenue de Suffren 75015 Paris - France Phone: +33 (0)1 53 65 14 14 Fax: +33 (0)1 53 65 14 12

ESI WORLDWIDE ARGENTINA AUSTRALIA BELARUS BELGIUM BRAZIL BULGARIA CANADA CHINA CZECH REPUBLIC EGYPT FINLAND FRANCE GERMANY GREECE INDIA ISRAEL ITALY JAPAN MALAYSIA MEXICO

NETHERLANDS PAKISTAN POLAND PORTUGAL ROMANIA RUSSIA SLOVAK REPUBLIC SLOVENIA SOUTH KOREA SOUTH AFRICA SPAIN SWEDEN SWITZERLAND TAIWAN THAILAND TUNISIA TURKEY UNITED KINGDOM UNITED STATES VENEZUELA VIETNAM

info@esi-group.com w w w.esi-group.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.