Development that doesn’t cost the earth A lot of attention and investment is focused on improving living standards across the developing world, yet this could put pressure on efforts to limit the impact of climate change. We spoke to Dr Narasimha Rao about the work of the DecentLivingEnergy project in developing a body of knowledge to help balance the goal of eradicating poverty with climate change mitigation. The goal of eradicating poverty does not seem to be naturally compatible with efforts to combat climate change, as improving living standards typically leads to increased energy consumption, which in a fossildominated world increases carbon emissions. Researchers in the DecentLivingEnergy project aim to develop a body of knowledge to help balance these two objectives, looking to relate living standards more closely to energy consumption. “What basic minimum of energy use – and consequently of greenhouse gas emissions – is necessary for people to attain a certain standard of living?” asks Dr Narasimha Rao, the leader of the project. Rigorous methods are being used to assess the energy used in different activities associated with basic living standards, to which everybody is entitled. “This includes having a basic amount of nutrition, shelter, access to mobility, and to schools and hospitals, among other things” outlines Dr Rao.
Basic needs and capabilities This work builds on the existing literature in philosophy and applied ethics which describes the basic needs and capabilities common to all of us, no matter what country we live in or what else we may want in life. Researchers
are reviewing that literature, and translating it into actual material requirements, which Dr Rao says is an innovative aspect of the project’s work. “The literature lends support to the idea that there’s a universal, irreducible minimum set of capabilities that people need in life. We try to translate those into actual goods and services. An obvious example is providing clean cooking fuels to the 2 billion people who use traditional biomass stoves. This saves lives, frees up women’s time, and has a negligible impact on climate change. Less obvious are things like refrigerators in the home, and equipment to heat and cool your home to a comfortable temperature range, which support good health” he outlines. Dr Rao and his colleagues also consider the means for participating actively in society. “It’s pretty well established that people want social affiliation, they want knowledge about the world and to connect with people ,” he continues.“So that could mean access to motorised mobility to get to a job, or a hospital, in a reasonable amount of time. Access to the internet is important in this day and age, through any device, whether it’s a television, computer screen, or a cell phone,” says Dr Rao “From an energy perspective, the infrastructure required to provide cellphones is pretty trivial. This is a universal satisfiers of a basic need that
does not have a significant impact on climate change,” he outlines. This analysis is primarily concerned with understanding the requirements per person in a given society, focusing specifically on India, Brazil, and South Africa. There are heterogeneities even within societies and lifestyle differences among the population, for example between urban and rural areas, that will lead to different energy requirements, an issue that Dr Rao and his colleagues take account of in research. “We account for geographic differences, differences in social and human institutions, and differences in culture, such as dietary preferences,” he explains. For example, the average diet in Brazil is associated with a higher carbon footprint than the Indian diet, because of the higher amount of meat consumption. “These cultural differences are important,” stresses Dr Rao. “We want to guide policy in certain respects, and encourage a shift towards reducing carbon emissions, but we recognise that there are some constraints.”
Synergies: eradicating poverty and mitigating climate The goals of eradicating poverty and addressing climate change, the project finds, have important synergies. Researchers
The literature lends support to the idea that there’s a universal, irreducible set of capabilities that people need in life. We try to translate those into actual goods and services.
68
EU Research
have identified opportunities to improve development outcomes and reduce emissions at the same time; Dr Rao points to one such example. “For instance, reducing the production of white rice in the developing world, which is associated with methane emissions, and is also of relatively low nutritional value. A further innovative aspect of the project is to look at micronutrition, such as vitamins and minerals that are essential for good health,” he says. Almost 90 percent of Indians are deficient in iron, for example; moving towards the production of alternative cereals instead of white rice could both improve iron levels and reduce methane emissions. “Public health authorities in India are aware of the importance of diversifying cereal production. With this project, we have demonstrated that the health benefits can be accompanied by environmental improvements,” says Dr Rao. A significant amount of energy is likely to be required over the coming years in India for building safe homes with adequate space, and for developing transportation systems in emerging urban areas. Here too, researchers have found that using advanced, local construction materials can reduce both the cost and emissions impact of new buildings in India, compared to the prevailing practice of fired bricks. While the focus in the project has been on three countries up to this point, Dr Rao believes that this research holds broader relevance across the developing world. “What the study is doing, for the first time ever, is to provide a transparent, replicable analytical framework to quantify the requirements for eradicating poverty in terms of energy. Policymakers can examine different development targets, low carbon policies and other countryspecific conditions and see the combined effects on greenhouse gas emissions. This illuminates the relative impact of different
www.euresearcher.com
development goals, and the extent to which their achievement is going to affect our ability to achieve our most aggressive decarbonisation goals,” he says. The research also highlights the challenges in raising living standards and achieving the climate stabilisation goals set out in the 2015 Paris agreement. With rapid development in living standards, it will be a challenge to achieve ambitious climate stabilisation goals without relying to a large extent on risky technologies such as carbon capture and storage. “The good news is that if you reduce energy demand significantly, such as through the use of efficient appliances and reducing waste, you can support meeting decent living standards without relying on risky technologies,” explains Dr Rao. “There’s a trade-off, though, between achieving further lifestyle improvements, and avoiding reliance on these risky technologies. We can’t expect that in future people in developing countries will be satisfied with just basic living standards. We would expect to see energy use beyond the basic minimum.” This underlines the importance of identifying other lifestyle changes that enhance wellbeing and reduce emissions, such as using public transportation. The project’s research is primarily focused on quantifying energy needs, yet Dr Rao says their work already provides a platform for further work linking human wellbeing to the use of other resources, such as water, materials and minerals. We already understand the extent of the use of cement and steel in building homes, and the use of water for essential nutrition. Extending this work to other materials, such as petrochemicals or rare minerals, for example, would be a natural progression. “We need to understand to what extent we depend on various materials to meet basic living standards, given the environmental pressures their extraction can cause” outlines Dr Rao.
Decent Living Energy Energy and emissions thresholds for providing decent living standards to all Project Objectives
This project investigates the relationship between poverty eradication and climate change. It defines the material requirements for providing decent living standards to all, and quantifies the energy and emissions needed to deliver these standards in three countries, India, Brazil and South Africa. It provides insights on low-carbon development.
Project Funding
The Decent Living Energy project is supported by the European Research Council Starting Grant, No. 637462.
Project Participants
• Dr Jihoon Min • Dr Alessio Mastrucci • Dr Shonali Pachauri • Dr Keywan Riahi • Luis Gustavo Tudeschini
Contact Details
Project Coordinator, Dr Narasimha D. Rao The International Institute for Applied Systems Analysis (IIASA) Schlossplatz 1 2361 LAXENBURG Austria T: +43 2236 807216 E: nrao@iiasa.ac.at W: www.decentlivingenergy.org Rao, ND., J. Min, R. DeFries, SH Ghosh, H. Valin, J. Fanzo. Healthy, affordable and climate-friendly diets in India. Global Environmental Change, 49: 154-165. doi Rao, ND, J. Min. Less global inequality can improve climate outcomes. WIREs Climate Change. 10.1002/wcc.513 doi Rao, ND, B.V Ruijven, K. Riahi, V. Bosetti. Improving poverty and inequality modeling in climate research. Nature Climate Change. 7(12), 857-862. doi
Dr Narasimha D. Rao
Dr Rao is a Project Leader at the International Institute for Applied Systems Analysis with research interests in energy, climate change and development. His background is in energy systems analysis, empirical economics and ethics. He has a PhD from Stanford University and Masters degrees from MIT.
69