Flex4Grid

Page 1

A power grid that’s fit for the future The level at which energy prosumers both generate and consume energy is inherently volatile, which can affect underlying grid infrastructure. We spoke to Markus Taumberger about the Flex4Grid project’s work in developing a framework to help flexibly manage both energy demand and generation, making the power grid fit for the future The power grid

has historically been quite centralised, yet the emergence of more distributed power sources is leading to significant change, with more energy from renewable sources entering the grid. This leads to new challenges in terms of the management and operation of the grid, an issue that lies at the core of the Flex4Grid project. “We are trying to help in the transition from a centralised to a de-centralised power grid. Our role is to support flexibility management of end-users,” says Markus Taumberger, the coordinator of the project. The emerging concept of ‘prosumers’, who not only consume energy but also generate it themselves, is central to this work. “More and more people today are generating solar power from panels on their roofs which are connected to the grid for example, and this is changing how the grid works. So electricity is not only flowing from big generators to consumers, it’s also flowing in the other direction,” explains Taumberger.

62

Energy consumption and production A high degree of flexibility is required in the grid to accommodate these different sources of energy, which is a prime motivation behind the project’s work. Part of the wider aim in the project is to help localise energy consumption and production, which Taumberger says is quite a significant problem in some parts of Europe. “Some countries have a big imbalance between energy production and consumption,” he says. A number of components are being developed in the project to help address this, moving towards more flexible management of both energy demand and energy generation. “One component would be at the level of endusers, enabling monitoring and control for end-users in their homes. We have a device that makes it possible to connect appliances to our system via the end-users’ phone,” outlines Taumberger. “We also have a data-

cloud service, in which we are collecting data, aggregating it and anonymising it.” The project’s work also encompasses the development of interfaces for third parties, which opens up the possibility of the data being used to gain insights into consumer behaviour and potentially opening up a new income stream for utilities. However, while this holds important commercial implications, data management is not typically a core concern for utility companies. “It may be the case that a third party will actually run the system that we are developing,” explains Taumberger. The project’s work holds more immediate relevance for Distribution System Operators; another component under development is designed to enable utilities to manage their customers more effectively in terms of load balancing in the grid, which Taumberger says is always a priority. “The main interest for utilities is in ensuring grid stability,” he explains.

EU Research


This is an increasingly complex task, as the amount of power generated from renewable sources like photo-voltaics and wind is dependent to a large degree on weather conditions. Levels of energy demand are also subject to fluctuations, making it difficult for grid operators to plan and adapt, so innovative methods are required to maintain grid stability. “If a utility wants to maintain the stability of the power grid, they need to find ways of influencing the behaviour of prosumers,” outlines Taumberger. This could mean offering incentives to prosumers to shift energy loads to certain times of the day; Taumberger and his colleagues in the project are developing an open data service framework and certain tools to enable closer interaction between utilities and prosumers. “Utilities would need to create incentives for end-users, and then our tools would be used to automate this,” he explains. The automation of these incentives is an important aspect of the project’s work, as currently it is quite difficult to advise endusers of changing conditions in the grid and to encourage them to adapt their behaviour accordingly. An automated system by contrast will enable closer interaction, while Taumberger says there is also the possibility of providing third party services on top of existing data, so that energy demand and generation can be managed

Flex4Grid Overview

more effectively. “ We collect data from end-users, from smart meters for example. The data we collect could be analysed, and then aggregated results could be provided to the utility operator,” he says. There is room to include data from several different sources. “We use weather information, and we also have several years worth of data on individual households’ power consumption,” continues Taumberger. “We use artificial intelligence to find patterns in the data and to improve the predictive power of our models.” This holds important operational implications, as consumption peaks are a major headache

for utilities, putting a lot of strain on the underlying infrastructure. A more accurate method of predicting consumption patterns could allow utilities to try and shift usage peaks so that the grid could be used more effectively, while also minimising the need for costly investments in infrastructure. “This is very interesting for utilities, as they are able to reduce the deep load in their network and to accommodate more of these renewable energy sources, without needing to renew the infrastructure,” says Taumberger. Energy is often less expensive outside peak times, which acts as a financial incentive to end-users; Taumberger says the project’s research can

Flex4Grid Product

Flex4Grid System Architecture

www.euresearcher.com

63


FLEX4GRID Prosumer Flexibility Services for Smart Grid Management Project Objectives

Flex4Grid aims at creating an open data and service framework that enables managing flexibility of prosumer demand and generation, utilising cloud computing for power grid management and opening Distribution System Operator infrastructure for aggregator services. The Flex4Grid system will include a) a data cloud service with security and privacy mechanisms for data exchange and service management, b) prosumer generation and demand flexibility, and c) a viable business model to accelerate the deployment. The major innovations are a) opening the market for new entrants by cloud data and energy management services, b) data management and analytics services for Smart Grids, and c) the use of co‐creation to bring end users into the value creation process. System validation will be carried out in real‐ world pilots in three live electricity networks with scenarios ranging from deployment during smart meter rollout and retrofitting to large scale operation and federated demonstration of multi‐site pilots.

Project Funding

Total Cost: 3.2 M€, EC Contribution: 2.7 M€

Project Partners

• VTT Technical Research Centre of Finland Ltd (Finland) • SAE - Automation, s.r.o. (Slovakia) • Smart Com d.o.o. (Slovenia) • Institut “Jožef Stefan” (Slovenia) • Fraunhofer Institute for Applied Information Technology (Germany) • Elektro Celje d.d. (Slovenia) • Bocholter Energie und Wasserversorgung GmbH (Germany)

Contact Details

Project Coordinator. Markus Taumberger (VTT) VTT Technical Research Centre of Finland Ltd Kaitoväylä 1 90571 Oulu FINLAND T: +358 50 465 2474 E: markus.taumberger@vtt.fi W: www.flex4grid.eu

help heighten awareness of price differentials. “We have methods to pro-actively involve the user, and to ensure that they are aware of peak times and the availability of different tarriffs,” he outlines.

Pilot schemes The overall system will be validated in three pilots, of which two are in Germany and one in Slovenia. The specific circumstances around these pilots vary, with different types of data available. “Smart meters have already been rolled out in Slovenia, so they have quite an advanced grid infrastructure. We can use a lot of data gathered from smart meters,” explains Taumberger. The

are we able to do that at the right time?” explains Taumberger. This work is ongoing, and the results so far look very promising. “We have the control group and a pilot group, and we can see that the pilot group is really shifting their consumption peaks,” outlines Taumberger. “The pilot studies so far have been undertaken with a relatively small sample size, but we can extrapolate outwards from this to assess its impact on a larger group of participants.” This brings clear benefits to consumers, particularly in the Slovenian case, where end-users are currently subject to a critical peak tarriff on energy during peak times. Energy is significantly more expensive

We collect data from end-users, from smart meters for example. The data we collect could be analysed, and then aggregated results could be provided to the utility operator situation in Germany is different, where the introduction of smart meters has been delayed. “In Germany we don’t have smart meters, so we have to rely more on data that we’re collecting ourselves,” continues Taumberger. “The data is less detailed – for example we don’t have data on household consumption.” Researchers are now looking to assess the performance of the system in these different pilots. The Flex4Grid system will be used to create a so-called ‘peak event’, then researchers will evaluate the response of end-users in terms of the project’s wider objectives. “To what extent are we able to influence the behaviour of end-users? Are we able to shift consumption peaks? And

during those periods; shifting consumption to other times helps end-users save money. “End-users benefit financially from reducing consumption during peak times. They are not paying this high network fee during that period,” points out Taumberger. It’s not just Slovenian and German end-users who want to reduce their energy bills of course, and with the results of the pilot studies positive so far, Taumberger and his colleagues are looking towards the wider exploitation of their results. “One possibility is that we will continue providing this service beyond the end of the project,” he says. “We now have some more time to update the project. We’re also actively discussing in the consortium the possibility of continuing with our research.”

Markus Taumberger

Markus Taumberger is a Project Director at VTT. He leads a team of 23 in the area of Computing Platforms for Communications Systems, and alongside his work on the Flex4Grid Project, he also holds budgetary responsibility for several other initiatives.

64

EU Research


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.