Intelligent manufacturing for factories of the future Many companies today offer a combination of products and services to their customers, a trend which opens up new business opportunities. The Manutelligence project is developing a collaborative engineering platform, designed to help optimise products and improve overall efficiency, as Maurizio Petrucciani and Sergio Terzi explain Many manufacturers today
are focused not just on developing products, but also on providing additional services which will help the customer gain further value throughout the lifecycle of the product. This emerging trend towards combining products and services opens up new business opportunities, an area which forms the primary research focus for the Manutelligence project, an EC-backed initiative bringing together academic and commercial partners. “The main goal of the project is to develop a platform to support this new kind of business model around the overall design and manufacturing of products and services,” says Maurizio Petrucciani of Dassault Systèmes, one of the companies in the project consortium. Some companies in the consortium have already changed their business model, towards a mixed mode combining services and products, now the project aims to help improve efficiency in the design process. “We aim to provide better, software-based tools to these industrial companies, to help them design products and services in an integrated way,” outlines Sergio Terzi of Politechnico Milano, the project’s Scientific Counselor.
market-validated solutions. That means this project is quite close to wider commercial relevance, in terms of exploiting the outcomes of this project,” continues Petrucciani. “We are developing this platform, and then our industrial partners test it, to give us feedback on the practical usability of the solutions. This is the way we are working across each of the different use cases.” Many companies across different areas of industry already use data gathered during development and testing to optimise the design of their products. The novel feature of the Manutelligence architecture is that these types of systems are integrated with Internet
of Things (IoT) enabled systems, giving designers access to a wealth of information about the usage of the product, throughout the entire lifecycle. “This architecture is able to capture information about the practical usage of the product. For example with cars, they capture relevant information, and in the case of ship-building, they can capture information about any issue that might happen on-board during operational usage,” explains Petrucciani. Designers can then search for this information, which may be important in terms of improving the product. “The point is to provide information about the practical usage of a product in an integrated
Use cases The project is working on four different use cases, in the automotive, ship-building and construction sectors, as well as in a laboratory, all of which could potentially benefit from stronger cross-disciplinary collaboration. In the automotive sector, researchers are working with Ferrari to help the company gather and use information about car usage, which can then be used to inform product design. “In this case, we developed and implemented a unique software platform, which is able to support the specific case of Ferrari,” says Petrucciani. This platform is built on existing solutions, so researchers are not reinventing the wheel, but rather adding new elements to established foundations, which could then be useful for developers in specific scenarios. “We are starting from
www.euresearcher.com
59
system, that can then be used as an input to introduce changes in the design and manufacture,” says Petrucciani. This ability to capture and rapidly transmit in-depth information could hold real importance in the ship-building industry for example, particularly given the complexity of a ship’s structure and the fact that workers at several different sites may be involved in development and construction. The engineering department may not be located on the same site as the shipyard itself, so Petrucciani says it’s important to share information efficiently. “The information is transmitted automatically. This means that there is no need to have operational-based data exchange,” he outlines. The architecture is designed to be used throughout the product lifecycle, from the early design stages, right through to the eventual usage. “We can capture information throughout the lifecycle of the product, and use that to improve the design,” says Petrucciani. “Clearly this depends on the type of product you are producing though, as developing white goods is very different to building a ship.” The information itself could come from a wide range of sources during the entire course of the product lifecycle, including not
60
only those involved in development, but also the eventual users. One area of debate during the early stages of the project centered around identifying the key stakeholders in each specific use case, who could provide information. “We found that a large number of people can be involved,” outlines Petrucciani. In the case of shipbuilding for example, designers may want to get not only the opinions of specialist engineers on design issues, but also the
Product lifecycle The volume of information available and the stage of the product lifecycle at which it is generated varies across the different use cases, while the partners in the consortium also have different priorities. For Ferrari, the services they offer are not closely integrated with the product lifecycle, which is reflected in their priorities in terms of the engineering platform. “The big interest for Ferrari in the engineering platform was how it could help
We aim to provide better, software-based tools to these industrial companies, to help them design products and services in an integrated way views of passengers on the ideal location for a restaurant or theatre on board. “We are looking at the development of a specific type of tool which can capture this kind of information,” continues Petrucciani. “There would be quite large volumes of information, so capturing it is a major challenge, and we are addressing several important points around that. Then, with this huge amount of information, there’s also the challenge of how to manage it effectively.”
them improve the design phase of the car,” explains Petrucciani. This also holds important implications in terms of the overall costs of product development, which is always a major priority for commercial companies. “A physical prototype is a huge cost for Ferrari, so reducing the need for physical testing can lead to significant financial benefits,” stresses Petrucciani. “Another major advantage of the engineering platform is the fact that you’re able to calibrate different models.”
EU Research
MANUTELLIGENCE Product Service Design and Manufacturing Intelligence Engineering Platform Project Objectives
04-05 May, Consortium Meeting Turku
This allows designers to identify any issues and possible improvements at an earlier stage, which in the long run leads to cost savings. Petrucciani and his colleagues in the project are now looking to assess the capabilities of the platform; it has been tested by Ferrari, at the Fiorano circuit in Northern Italy. “We tested its ability to capture the IoT-derived information – the information produced during the time the car was running on the circuit – as well as its ability to input this data to the experience platform,” he says. Tests have also been held relating to the other use cases, including construction, as in the case of Lindbäcks, a Swedish SME producing modular wooden houses. “We looked at the real data captured by a sensor which was applied in an apartment. The same information was also sent to the engineering department, so that they could analyse it,” outlines Petrucciani. “There is also the case of FundacioCIM, which is a laboratory based in Barcelona. This is a different use case, with more of an environmental focus, where we can experiment and look to develop new ideas.” The project’s research also holds important implications in terms of sustainability, which is an increasingly
prominent issue in the manufacturing sector. One part of the project centered around developing software to evaluate the environmental impact of a product. “We did a demonstration showing that you can evaluate the impact of a product in the early stages of design. You can then choose materials for production accordingly, to help minimise the environmental impact, ” says Petrucciani. This is a pressing issue across large parts of the commercial sector, so while there are four use cases within the project, Terzi believes their research holds wider relevance beyond these specific examples. “What we have done can theoretically be used in other contexts,” he outlines. “Researchers, IT developers and industrial manufacturing companies have come together in the project. We are creative prototype demonstrators, which we will then bring to a wider audience.” This includes not only major companies like Ferrari and the shipbuilders Meyer Turku, but also smaller enterprises like Lindbäcks. “A consulting company may want to look into the usage of this platform, in particular extending it to small and mediumsized enterprises that maybe cannot afford to buy the entire platform,” he says. Manutelligence platform architecture
www.euresearcher.com
• Creating a cross-disciplinary collaborative management environment for ProductService engineering, able to increase the efficiency in the design process, with a potential for wide market adoption. • Integrating completelly Product Lifecycle Management and Service Lifecycle Management, using methodologies and tools to support cross development. • I nvolving all the key partakers in the value chain, including customers. •D eveloping a platform for Product-Service Design and Manufacturing Intelligence. • E xtending and improving the use of Simulation and optimize it through use of field data. • Improving precise and quick measures and simulations of cost and Sustainability issues, through Life Cycle Cost (LCC), Life Cycle Analysis (LCA) and CO2 footprint.
Project Funding
Funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no° 636951.
Project Partners
12 partners from six European Countries.
Contact Details
Project Coordinator, Maurizio Petrucciani Dassault Systemes Italia Srl Via dell’ Innovazione 3 20126 Milano Bicocca, Italy T: 39 02 3343061 E: maurizio.petrucciani@3ds.com W: http://www.manutelligence.eu Maurizio Petrucciani
Sergio Terzi
Maurizio Petrucciani is Senior Project Manager at Dassault Systèmes Italia Srl. and is responsible for the management of the MANUTELLIGENCE project. He received his PhD in Aeronautical Engineering at University of Pisa and manages complex Product Lifecycle Management (PLM) projects in different business areas (aerospace, consumer goods, apparel, etc.) to improve product development processes by reducing time to market, better addressing the target costing, enhance the collaboration, and reducing the inefficiencies costs. Sergio Terzi (m) is Associate Professor of Product Lifecycle Management at Politecnico di Milano, Department of Economics, Management and Industrial Engineering. He got his degree in Industrial Engineering in 1999, his Master in Business Administration in 2001 and finally his PhD in 2005 (on the topic of product lifecycle management). He is member of the Editorial Board of the International Journal on Product Lifecycle Management and member of the IFIP WG 5.1 and 5.7. He is also one of the founders of the International Conference on Product Lifecycle Management.
61