Neuronal mechanisms of cortico-subcortical communication in the mammalian brain

Page 1

New light on cortical connections The cortex connects to numerous subcortical areas via cortico-subcortical synapses (green and magenta clouds). Some of these are thought to function as sensori-motor interfaces. Image provided by Dr. Anton Sumser.

Much has been learned over recent years about how sensory signals are processed in cortical networks, yet the transformation of those signals into behaviour is still not well understood. We spoke to Dr Alexander Groh about his research into connections between the cortex and subcortical areas, which could shed new light on the relationship between the brain and behaviour. The development of sophisticated brain imaging techniques has allowed researchers to investigate how sensory signals are processed in cortical networks in greater depth than previously possible. The next question is what happens to these signals after they have been processed in the cortex, a topic that Dr Alexander Groh and his colleagues at Heidelberg University are working to address. “We’ve been focusing on a specific cortical interaction with sub-cortical areas, the connection between the cortex and the thalamus. Now we are in the process of extending this work to other subcortical areas,” he explains. This work involves trying to model brain functions, particularly with respect to communication between the cortex and the rest of the brain. “We try to do that by relating neuronal activity to sensory, motor and cognitive processes. We’re interested in complex functions – for example, understanding how an organism can identify what is important in a sensory scene,” outlines Dr Groh. A range of different techniques are being applied on transgenic mice in this work, including electrophysiology, optogenetics and cell-type specific approaches. “Functions and dysfunctions of the brain rely on neuronal interactions, organized across several temporal and spatial scales, ranging from synaptic interactions to local and long-range interactions between networks. We face two challenges to understand these processes. First, we need to record from different parts of the brain while maintaining the temporal and spatial resolution to understand how single neurons integrate 40

signals from multiple upstream neurons and in turn feed into their downstream partner neurons,” explains Dr Groh. “In addition, we need to be able to probe the function of specific, embedded pathways in order to understand their role in cognitive processes.” By using optogenetics, Dr Groh and his colleagues can activate specific circuits in the brain. “Optogenetics uses the expression of light sensitive membrane channels. As a result, you can control the activity in specific brain pathways of interest,” he says. These pathways can be either activated or inactivated while the brain is processing sensory information. “As a functional read-out we mainly record fast electrical signals from neurons, and lately we’ve also been using deep-brain functional imaging techniques, both of which serve as a proxy for how neurons talk to each other,”

explains Dr Groh. “On the anatomical level, we use microscopy to see how neuronal circuits are physically wired to each other; In fact, this work started on the anatomical level, when Anton Sumser and I looked at the connections that are formed between a cortical area and its sub-cortical target structures.”

Cerebral cortex The mammalian cerebral cortex itself is comprised of six layers, each with a specific set of cell types with certain morphological, electro-physiological and connectivity characteristics. The deep cortical layers, layers 5 and 6, are the output layers of the cortex, which connect the cortex to other sub-cortical areas. “Layer 6 connects the cortex to the thalamus, while there is also a very interesting output pathway in layer 5.

Cortical whisker maps in the thalamus (Image provided by Anton Sumser).

EU Research


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Neuronal mechanisms of cortico-subcortical communication in the mammalian brain by EU Research - Issuu