Powering the future of renewable energy Many people around the world still live without access to electricity, while there are also challenges around meeting demand in developed countries, leading to a concerted focus on the development of renewable energy systems. The Reelcoop project aims to both develop new generation systems and enhance research cooperation around the Mediterranean, as Professor Armando Oliveira explains The power systems of the future are likely to include a greater proportion of energy from renewable sources, a transformation process which is already well in train. In Portugal for instance, around 60 percent of the electricity supply already comes from renewable sources. Now Professor Armando Oliveira and his colleagues in the Reelcoop project aim to develop new renewable electricity generation systems. “In our project, we focused on solar photo-voltaics (PV), solar thermal (ST), concentrated solar power (CSP), and biomass,” he outlines. Three different prototype systems were developed in the project, aiming to provide a reliable supply of electricity, while also taking account of concerns around sustainability. “In two of the prototypes we are combining solar (ST or CSP) with biomass. The problem with solar of course is that the sun only shines during the day, and if you want a 24-hour system, you need another source,” explains Professor Oliveira. “For the biomass, we use olive oil production waste, which is abundant in many countries around the Mediterranean, burning it in one prototype, and gasifying it in another.” A third prototype is based on solar PV with a ventilated facade, with an electrical output of 6 kW. While the prototypes are being produced at relatively small scales, Professor
View of P3 solar field, with parabolic trough collectors
Oliveira says the technologies and concepts being developed in the project are more widely applicable. “We could potentially scale up the prototypes, using the same principles. Indeed, a plant in Spain is using this idea of combining CSP with biomass,” he stresses. The next major step in the project is to transfer this knowledge and expertise around the Mediterranean, including not only
needs. While the conventional electricity supply model is highly centralised, Professor Oliveira believes this is set to change over the coming years. “I think that in future there will be more distributed generation instead of centralised generation,” he predicts. This represents a means of more closely matching supply to demand, and potentially helping extend supply to more of the 11 billion people
One of the prototypes is a concentrated solar power system, and we are combining it with biomass. The problem with solar of course is that the sun only shines during the day, and if you want a 24-hour system, you need another source European nations, but also countries in the Middle East and North Africa. “We have partners across the region, including from Morocco, Algeria, Tunisia and Turkey. We are looking to install and test similar systems in these countries, as well as in southern Europe and other locations,” says Professor Oliveira.
De-centralised generation The wider aim in the project is to encourage closer collaboration between research partners around the Mediterranean, as countries in the region update their electricity generation systems in line with modern
across the world who currently live without access to electricity. “A decentralised approach means distributing the generation, so generating electricity in the places where it is needed, such as the places where people live, the companies where they work, and so on. This means installing smaller power systems,” explains Professor Oliveira.
REELCOOP REnewable ELectricity COOPeration Professor Armando Oliveira (Project Coordinator) University of Porto - Dept of Mechanical Engineering Portugal T: +35 1-22 204 1768 E: acoliv@fe.up.pt W: http://www.reelcoop.com
Armando Oliveira is Professor of Mechanical Engineering at the University of Porto, where he is Director of the Centre for Renewable Energy Research. He has participated in 19 European research and development projects related to the development of new and sustainable energy systems, managing a total budget in excess of 11 million euros. He is Executive Editor of the Int Journal of Low Carbon Technologies (Oxford University Press) and a Member of the EPSRC Peer Review College (UK).
www.euresearcher.com
65