Multiscale modelling strategies for designing new materials The discovery of materials with novel or enhanced properties is central to technological progress, opening new possibilities across many areas of industry. The VIRMETAL project aims at accelerating this process by means of multiscale modelling strategies that will enable scientists to design, process and test advanced metallic alloys in silico before they are manufactured, as Professor Javier Llorca explains The development of
new materials plays a central role in technological innovation. There are many instances throughout history where the synthesis of a material with novel properties has led on to significant technical breakthroughs. This is the case, for instance, with the synthesis of multilayers with giant magnetoresistance, which led to a dramatic increase in the capacity of hard disk drives. An alternative route to technical progress is through the progressive improvement of existing engineering materials for novel applications, as has been seen in superalloys and composites in the aerospace industry for example. In practice, both of these routes act as a brake on technological progress, yet recent developments in modeling tools, along with advances in multiscale modeling strategies and continued increases in computational power, promise to open up new possibilities to accelerate the discovery and design of new materials for engineering applications. A wide range of modeling tools are available nowadays to simulate the behavior of materials for particular length and time scales, including density functional theory, molecular mechanics, computational thermodynamics, finite elements, etc. These techniques have already been used to design materials with improved properties or unexpected structures, such as new catalysts or Lithium (Li)-based materials for batteries. However, this is only possible because the critical structure or properties depend on phenomena which take place at particular time and length scales, which can be simulated using just a single one of the aforementioned techniques. This is not always the case, and in fact it is unlikely to be observed in materials intended for structural applications. Balanced mechanical properties like stiffness, strength and toughness are dependent on many different processes which take place along nine or more orders of magnitude in length scales, from nanometers to meters. This dependence on different length scales is even more apparent in multifunctional (smart) materials.
56
VIRMETAL Project This challenge forms the backdrop to the work of the VIRMETAL project, an ERCbacked initiative which aims to develop novel multiscale modeling strategies to carry out virtual design, virtual processing and virtual testing of advanced metallic alloys for engineering applications. The ultimate goal in the project is to enable the design, testing and optimization of new metallic alloys in silico before they are actually manufactured in a laboratory, which would dramatically reduce the time necessary to discover and incorporate new materials in industrial applications.
Magnesium) and Mg-Al-Zn (MagnesiumAluminum-Zinc) systems, both of which hold considerable industrial interest. Some exciting results have already been achieved. For instance, a multiscale modelling strategy has been developed to predict the homogeneous and heterogeneous nucleation of θ’ (Al 2Cu) precipitates in an Al-Cu alloy during high temperature aging. The model parameters that determine the different energy contributions (chemical free energy, interfacial energy, lattice parameters, elastic constants) were obtained from computational thermodynamics or first-principles density functional theory.
Researchers aim to demonstrate that multiscale modelling can be used to predict the microstructural development during solidification and thermomechanical processing, as well as to extend the virtual testing capabilities to include damage and fracture Nevertheless, not everything can or should be computed, and critical experiments constitute an integral part of the research program for the calibration and validation of the multiscale strategies. Research is focused on two metallic alloys from the Al-Cu-Mg (Aluminum-Copper-
From this information, the evolution and equilibrium morphology of the θ’ precipitates is simulated in 3D using the phase-field model. The model was able to reproduce the evolution of the different orientation variants of plate-like shaped θ’ precipitates with orientation relationship
Figure 1. (a) Multiscale simulation of the nucleation and growth of θ’ (Al2Cu) precipitates on dislocations during high temperature aging of an Al-Cu alloy. (b) Transmission electron microscopy micrograph showing the formation of a staircase structure of θ’ precipitates on a dislocation. (From H. Liu, B. Bellón, J. LLorca. Acta Materialia 132 (2017) 611-626.)
EU Research