Rare earth and transition metal doping of semiconductor materials synthesis magnetic properties and

Page 1

Rare earth and transition metal doping of semiconductor materials synthesis magnetic properties and room temperature spintronics 1st Edition

Dierolf

Visit to download the full and correct content document: https://textbookfull.com/product/rare-earth-and-transition-metal-doping-of-semiconduc tor-materials-synthesis-magnetic-properties-and-room-temperature-spintronics-1st-ed ition-dierolf/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Transition metal catalyzed furans synthesis : transition metal catalyzed heterocycles synthesis series 1st Edition Wu

https://textbookfull.com/product/transition-metal-catalyzedfurans-synthesis-transition-metal-catalyzed-heterocyclessynthesis-series-1st-edition-wu/

Transition Metal-Catalyzed Pyridine Synthesis.

Transition Metal-Catalyzed Heterocycle Synthesis Series 1st Edition Wu

https://textbookfull.com/product/transition-metal-catalyzedpyridine-synthesis-transition-metal-catalyzed-heterocyclesynthesis-series-1st-edition-wu/

Theoretical Spectroscopy of Transition Metal and Rare Earth Ions From Free State to Crystal Field 1st Edition

Mikhail G. Brik (Editor)

https://textbookfull.com/product/theoretical-spectroscopy-oftransition-metal-and-rare-earth-ions-from-free-state-to-crystalfield-1st-edition-mikhail-g-brik-editor/

Semiconductor nanocrystals and metal nanoparticles: physical properties and device applications 1st Edition Chen

https://textbookfull.com/product/semiconductor-nanocrystals-andmetal-nanoparticles-physical-properties-and-deviceapplications-1st-edition-chen/

Transition Metal-Catalyzed Benzofuran Synthesis XiaoFeng Wu

https://textbookfull.com/product/transition-metal-catalyzedbenzofuran-synthesis-xiao-feng-wu/

Advances in magnetic materials : processing, properties, and performance 1st Edition Zhang

https://textbookfull.com/product/advances-in-magnetic-materialsprocessing-properties-and-performance-1st-edition-zhang/

Nanocomposite materials: synthesis, properties and applications 1st Edition Jyotishkumar Parameswaranpillai

https://textbookfull.com/product/nanocomposite-materialssynthesis-properties-and-applications-1st-edition-jyotishkumarparameswaranpillai/

Transition Metal Catalyzed Pyrimidine, Pyrazine, Pyridazine and Triazine Synthesis Xiao-Feng Wu

https://textbookfull.com/product/transition-metal-catalyzedpyrimidine-pyrazine-pyridazine-and-triazine-synthesis-xiao-fengwu/

Spintronics Handbook, Second Edition: Spin Transport and Magnetism: Volume Two: Semiconductor Spintronics Evgeny Y. Tsymbal (Editor)

https://textbookfull.com/product/spintronics-handbook-secondedition-spin-transport-and-magnetism-volume-two-semiconductorspintronics-evgeny-y-tsymbal-editor/

Relatedtitles

NanostructuredSemiconductorOxidesfortheNextGenerationofElectronicsand FunctionalDevices:PropertiesandApplications (ISBN978-1-78242-220-4)

Graphene:Properties,Preparation,CharacterisationandDevices (ISBN978-0-85709-508-4)

Silicon-On-Insulator(SOI)Technology (ISBN978-0-85709-526-8)

V.Dierolf,I.T.Ferguson,J.M.Zavada

WoodheadPublishingSeriesinElectronicand OpticalMaterials:Number87 RareEarthandTransition MetalDopingof SemiconductorMaterials Synthesis,MagneticPropertiesand RoomTemperatureSpintronics
AMSTERDAM • BOSTON • CAMBRIDGE • HEIDELBERG LONDON • NEWYORK • OXFORD • PARIS • SANDIEGO SANFRANCISCO • SINGAPORE • SYDNEY • TOKYO WoodheadPublishingisanimprintofElsevier

WoodheadPublishingisanimprintofElsevier

TheOfficers’ MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UK 50HampshireStreet,5thFloor,Cambridge,MA02139,USA LangfordLane,Kidlington,OX51GB,UK

Copyright © 2016ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-08-100041-0(print)

ISBN:978-0-08-100060-1(online)

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ForinformationonallWoodheadPublishingpublications visitourwebsiteat http://store.elsevier.com/

Listofcontributors

H.Asahi OsakaUniversity,Osaka,Japan

S.M.Bedair NorthCarolinaStateUniversity,Raleigh,NC,UnitedStates

V.Dierolf LehighUniversity,Bethlehem,PA,UnitedStates

S.Dong UniversityofNotreDame,NotreDame,IN,UnitedStates

N.A.El-Masry NorthCarolinaStateUniversity,Raleigh,NC,UnitedStates

S.Emura OsakaUniversity,Osaka,Japan

I.T.Ferguson MissouriUniversityofScienceandTechnology,Rolla,MO, UnitedStates

Y.Fujiwara OsakaUniversity,Suita,Osaka,Japan

T.Fukushima OsakaUniversity,Osaka,Japan

J.K.Furdyna UniversityofNotreDame,NotreDame,IN,UnitedStates

S.Gupta GeorgiaInstituteofTechnology,Atlanta,GA,UnitedStates

S.Hasegawa OsakaUniversity,Osaka,Japan

H.X.Jiang TexasTechUniversity,Lubbock,TX,UnitedStates

M.H.Kane TexasA&MUniversity,Galveston,TX,UnitedStates

H.Katayama-Yoshida OsakaUniversity,Osaka,Japan

A.Koizumi OsakaUniversity,Suita,Osaka,Japan

V.Kumar Dr.VijayKumarFoundation,Gurgaon,Haryana,India;ShivNadar University,UttarPradesh,India

W.R.L.Lambrecht DepartmentofPhysics,CaseWesternReserveUniversity, Cleveland,OH,UnitedStates

J.Y.Lin TexasTechUniversity,Lubbock,TX,UnitedStates

X.Liu UniversityofNotreDame,NotreDame,IN,UnitedStates

A.Masago OsakaUniversity,Osaka,Japan

G.D.Metcalfe U.S.ArmyResearchLaboratory,SensorsandElectronDevices Directorate,Adelphi,MD,UnitedStates

B.Mitchell UniversityofMountUnion,Alliance,OH,UnitedStates

N.Nepal U.S.NavalResearchLaboratory,Washington,DC,UnitedStates

A.Ney JohannesKeplerUniversity,Linz,Austria

H.Ohta KobeUniversity,Kobe,Japan

S.Okubo KobeUniversity,Kobe,Japan

E.D.Readinger InternationalRecti fierCorp.,St.Paul,MN,UnitedStates

K.Sato OsakaUniversity,Osaka,Japan

M.Seike OsakaUniversity,Osaka,Japan

B.W.Wessels NorthwesternUniversity,Evanston,IL,UnitedStates

N.Woodward LehighUniversity,Bethlehem,PA,UnitedStates

J.M.Zavada NYUTandonSchoolofEngineering,Brooklyn,NY,UnitedStates

Y.K.Zhou OsakaUniversity,Osaka,Japan x Listofcontributors

WoodheadPublishingSeriesinElectronic andOpticalMaterials

1 Circuitanalysis

J.E.Whitehouse

2 Signalprocessinginelectroniccommunications:Forengineersand mathematicians

M.J.Chapman,D.P.GoodallandN.C.Steele

3 Patternrecognitionandimageprocessing

D.Luo

4 Digital filtersandsignalprocessinginelectronicengineering:Theory, applications,architecture,code

S.M.BozicandR.J.Chance

5 Cableengineeringforlocalareanetworks

B.J.Elliott

6 DesigningastructuredcablingsystemtoISO11801:Cross-referenced toEuropeanCENELECandAmericanStandards

Secondedition

B.J.Elliott

7 Microscopytechniquesformaterialsscience

A.ClarkeandC.Eberhardt

8 Materialsforenergyconversiondevices

EditedbyC.C.Sorrell,J.NowotnyandS.Sugihara

9 Digitalimageprocessing:Mathematicalandcomputationalmethods

Secondedition

J.M.Blackledge

10 Nanolithographyandpatterningtechniquesinmicroelectronics

EditedbyD.Bucknall

11 Digitalsignalprocessing:Mathematicalandcomputationalmethods, softwaredevelopmentandapplications

Secondedition

J.M.Blackledge

12 Handbookofadvanceddielectric,piezoelectricandferroelectricmaterials: Synthesis,propertiesandapplications

EditedbyZ.-G.Ye

13 Materialsforfuelcells

EditedbyM.Gasik

14 Solid-statehydrogenstorage:Materialsandchemistry

EditedbyG.Walker

15 Lasercoolingofsolids

S.V.PetrushkinandV.V.Samartsev

Polymerelectrolytes:Fundamentalsandapplications

EditedbyC.A.C.SequeiraandD.A.F.Santos

17 Advancedpiezoelectricmaterials:Scienceandtechnology

EditedbyK.Uchino

18 Opticalswitches:Materialsanddesign

EditedbyS.J.ChuaandB.Li

19 Advancedadhesivesinelectronics:Materials,propertiesandapplications

EditedbyM.O.AlamandC.Bailey

20 Thin filmgrowth:Physics,materialsscienceandapplications

EditedbyZ.Cao

21 Electromigrationinthin filmsandelectronicdevices:Materialsandreliability

EditedbyC.-U.Kim

22 Insitu characterizationofthin filmgrowth

EditedbyG.KosterandG.Rijnders

23 Silicon-germanium(SiGe)nanostructures:Production,propertiesand applicationsinelectronics

EditedbyY.ShirakiandN.Usami

24 High-temperaturesuperconductors

EditedbyX.G.Qiu

25 Introductiontothephysicsofnanoelectronics

S.G.TanandM.B.A.Jalil

26 Printed films:Materialsscienceandapplicationsinsensors,electronics andphotonics

EditedbyM.PrudenziatiandJ.Hormadaly

27 Lasergrowthandprocessingofphotonicdevices

EditedbyN.A.Vainos

28 Quantumopticswithsemiconductornanostructures

EditedbyF.Jahnke

29 Ultrasonictransducers:Materialsanddesignforsensors,actuators andmedicalapplications

EditedbyK.Nakamura

30 Wasteelectricalandelectronicequipment(WEEE)handbook

EditedbyV.GoodshipandA.Stevels

31 ApplicationsofATILAFEMsoftwaretosmartmaterials:Casestudies indesigningdevices

EditedbyK.UchinoandJ.-C.Debus

32 MEMSforautomotiveandaerospaceapplications

EditedbyM.KraftandN.M.White

33 Semiconductorlasers:Fundamentalsandapplications

EditedbyA.BaranovandE.Tournie

34 Handbookofterahertztechnologyforimaging,sensingandcommunications

EditedbyD.Saeedkia

35 Handbookofsolid-statelasers:Materials,systemsandapplications

EditedbyB.DenkerandE.Shklovsky

36 Organiclight-emittingdiodes(OLEDs):Materials,devicesandapplications

EditedbyA.Buckley

37 Lasersformedicalapplications:Diagnostics,therapyandsurgery

EditedbyH.Jelínkova

16
xii WoodheadPublishingSeriesinElectronicandOpticalMaterials

Semiconductorgassensors

EditedbyR.JaanisoandO.K.Tan

39 Handbookoforganicmaterialsforopticaland(opto)electronicdevices:Properties andapplications

EditedbyO.Ostroverkhova

40 Metallic filmsforelectronic,opticalandmagneticapplications:Structure, processingandproperties

EditedbyK.BarmakandK.Coffey

41 Handbookoflaserweldingtechnologies

EditedbyS.Katayama

42 Nanolithography:Theartoffabricatingnanoelectronicandnanophotonicdevices andsystems

EditedbyM.Feldman

43 Laserspectroscopyforsensing:Fundamentals,techniquesandapplications

EditedbyM.Baudelet

44 Chalcogenideglasses:Preparation,propertiesandapplications

EditedbyJ.-L.AdamandX.Zhang

45 HandbookofMEMSforwirelessandmobileapplications

EditedbyD.Uttamchandani

46 Subseaopticsandimaging

EditedbyJ.WatsonandO.Zielinski

47 Carbonnanotubesandgrapheneforphotonicapplications

EditedbyS.Yamashita,Y.SaitoandJ.H.Choi

48 Opticalbiomimetics:Materialsandapplications

EditedbyM.Large

49 Opticalthin filmsandcoatings

EditedbyA.PiegariandF.Flory

50 Computerdesignofdiffractiveoptics

EditedbyV.A.Soifer

51 SmartsensorsandMEMS:Intelligentdevicesandmicrosystemsforindustrial applications

EditedbyS.NihtianovandA.Luque

52 Fundamentalsoffemtosecondoptics

S.A.KozlovandV.V.Samartsev

53 Nanostructuredsemiconductoroxidesforthenextgenerationofelectronics andfunctionaldevices:Propertiesandapplications

S.Zhuiykov

54 Nitridesemiconductorlight-emittingdiodes(LEDs):Materials,technologies andapplications

EditedbyJ.J.Huang,H.C.KuoandS.C.Shen

55 Sensortechnologiesforcivilinfrastructures

Volume1:Sensinghardwareanddatacollectionmethodsforperformance assessment

EditedbyM.Wang,J.LynchandH.Sohn

56 Sensortechnologiesforcivilinfrastructures

Volume2:Applicationsinstructuralhealthmonitoring

EditedbyM.Wang,J.LynchandH.Sohn

57 Graphene:Properties,preparation,characterisationanddevices

EditedbyV.SkakalovaandA.B.Kaiser

38
WoodheadPublishingSeriesinElectronicandOpticalMaterials xiii

58 Silicon-on-insulator(SOI)technology

EditedbyO.KononchukandB.-Y.Nguyen

59 Biologicalidentification:DNAamplificationandsequencing,optical sensing,lab-on-chipandportablesystems

EditedbyR.P.Schaudies

60 Highperformancesiliconimaging:FundamentalsandapplicationsofCMOS andCCDsensors

EditedbyD.Durini

61 Nanosensorsforchemicalandbiologicalapplications:Sensingwith nanotubes,nanowiresandnanoparticles

EditedbyK.C.Honeychurch

62 Compositemagnetoelectrics:Materials,structures,andapplications

G.Srinivasan,S.PriyaandN.Sun

63 Quantuminformationprocessingwithdiamond:Principlesandapplications

EditedbyS.PrawerandI.Aharonovich

64 Advancesinnon-volatilememoryandstoragetechnology

EditedbyY.Nishi

65 Lasersurfaceengineering:Processesandapplications

EditedbyJ.Lawrence,C.Dowding,D.WaughandJ.Griffiths

66 Powerultrasonics:Applicationsofhigh-intensityultrasound

EditedbyJ.A.Gallego-JuarezandK.F.Graff

67 Advancesindelay-tolerantnetworks(DTNs):Architectures,routingand challenges

EditedbyJ.J.P.C.Rodrigues

68 Handbookof flexibleorganicelectronics:Materials,manufacturingand applications

EditedbyS.Logothetidis

69 Machine-to-machine(M2M)communications:Architecture,performanceand applications

EditedbyC.Anton-HaroandM.Dohler

70 Ecologicaldesignofsmarthomenetworks:Technologies,socialimpactand sustainability

EditedbyN.SaitoandD.Menga

71 Industrialtomography:Systemsandapplications

EditedbyM.Wang

72 Vehicularcommunicationsandnetworks:Architectures,protocols,operation anddeployment

EditedbyW.Chen

73 Modeling,characterizationandproductionofnanomaterials:Electronics, photonicsandenergyapplications

EditedbyV.TewaryandY.Zhang

74 Reliabilitycharacterisationofelectricalandelectronicsystems

EditedbyJ.Swingler

75 Industrialwirelesssensornetworks:Monitoring,controlandautomation

EditedbyR.BudampatiandS.Kolavennu

76 Epitaxialgrowthofcomplexmetaloxides

EditedbyG.Koster,M.HuijbenandG.Rijnders

77 Semiconductornanowires:Materials,synthesis,characterizationandapplications

EditedbyJ.ArbiolandQ.Xiong

xiv WoodheadPublishingSeriesinElectronicandOpticalMaterials

78 Superconductorsinthepowergrid

EditedbyC.Rey

79 Opto fluidics,sensorsandactuatorsinmicrostructuredoptical fibres

EditedbyS.Pissadakis

80 Magneticnano-andmicrowires:Design,synthesis,propertiesandapplications

EditedbyM.Vazquez

81 Robustdesignofmicroelectronicassembliesagainstmechanicalshock, temperatureandmoisture

E.-H.WongandY.-W.Mai

82 Biomimetictechnologies:Principlesandapplications

EditedbyT.D.Ngo

83 Directedself-assemblyofblockco-polymersfornano-manufacturing

EditedbyR.GronheidandP.Nealey

84 Photodetectors

EditedbyB.Nabet

85 Fundamentalsandapplicationsofnanophotonics

EditedbyJ.Haus

86 Advancesinchemicalmechanicalplanarization(CMP)

EditedbyS.Babu

87 Rareearthandtransitionmetaldopingofsemiconductormaterials:Synthesis, magneticpropertiesandroomtemperaturespintronics

EditedbyV.Dierolf,I.T.FergusonandJ.M.Zavada

WoodheadPublishingSeriesinElectronicandOpticalMaterials xv

Computationalnanomaterials designfornanospintronics: room-temperaturespintronics applications 1

1.1Introduction

Electronsarealwayscarryingthecharge(e ),electronmass(me),andspin(S ¼ 1/2) thatarecausedbytherelativisticquantummechanics.The e ofelectroncancarrythe chargecurrent(electricandmagnetic fields),the me ofelectroncancarrytheheat (kineticenergy),andthe S cancarrythespincurrent(angularmomentum)inthe condensedmatter(see Fig.1.1).Today’sconsumerelectronicsstronglydependson theachievementsinsilicon-basedmicroelectronicsthatenableahighdegreeofsystem integrationbasedonSi-CMOStechnology.However,thistechnologywillreachits limitsintermsofenergyconsumptionandsystemintegrationbyaround2020.To gobeyondtheselimitations,weneedtodevelop,forinstance,moreenergy-efficient (nonvolatile),high-speed(THz),andhigher-density(Tbit/Inch2)nanoscale-size system-integrateddevicesthatutilizethespinpropertyofthechargedcarriers (spintronics),asschematicallydepictedin Fig.1.1.Othertechnologiesthathave beenproposedtoovercomethelimitationofSi-CMOStechnologyaremoltronics (molecular-electronics),quantronics(quantum-electronics),andatomtronics (atom-switchingelectronics) [1 4].

Inparalleltothetothesenewclassesofelectronics,wealsoneedtodevelop bottom-upnanotechnologytofabricatethefunctionalnanosuperstructures,including self-organizednanocrystalgrowthmethodsasalternativestothetop-downnanotechnologysuchasSi-CMOS-basednanolithography.Inthischapter,weproposethe self-organizednanosuperstructurefabricationmethodbasedonthespinodalnanotechnologybycontrollingthedimensionality(2Dor3D)ofthecrystalgrowth.Wediscuss thedesignandrealizationof Konbu phaseby2Dcrystalgrowthand Dairiseki phaseby 3Dcrystalgrowthconditions,combinedwiththeshapecontrolledbyvaporpressure modulation.

Themostprobablecandidateforthenewclassofelectronicstogobeyondthe limitationofSi-CMOStechnologyissemiconductornanospintronics,bycombining thespin-andcharge-degreeoffreedomsbasedonthealreadyexcitingsemiconductor nanotechnology.Thiswasdevelopedduringthelasthalf-centuryandisnowvery sophisticated,wherewecancontrolthespin spininteractionbyelectric- fieldgating RareEarthandTransitionMetalDopingofSemiconductorMaterials http://dx.doi.org/10.1016/B978-0-08-100041-0.00001-9 Copyright © 2016ElsevierLtd.Allrightsreserved.

Figure1.1 IllustrationofGordonMoore’slawforSi-CMOS-basedsemiconductormemoryand microprocessor.Pastprogressofmemoryandmicroprocessorisbasedonthislaw.Around 2020,Si-CMOStechnologyisreachingthedead-endandphysicalfabricationlimitsonenergy consumptionandthesizeeffectintheelectric-fieldgating.Thecandidatetogobeyondthe Si-CMOStechnologymaybespintronics,moltronics,quantronics,oratomtronics.

combinedwiththefabricationmethodofSi-CMOStechnologyandspin-degreeof freedom.However,weneedtherealisticsemiconductornanospintronicsmaterials fordevicesthatshouldhavethesuper-highCurietemperature(TC) > 1000Kinorder toavoidthespin fluctuationandtheinstabilityofthemagnetizationcausedbytheweak magneto-crystalanisotropyorshapeanisotropyattheroomtemperature(T ¼ 300K) fortherealizationofrealisticsemiconductornanospintronicsforindustrialapplications. Fortherealizationofsemiconductornanospintronics,weshoulddesignandrealize(1) thesuper-high- TC ferromagneticsemiconductors(TC > 1000K)inwhichwecan controlthespin spininteractionfromferromagnetictoantiferromagnetic(orparamagnetic)bytheelectric-fieldgating,or(2)thesuperparamagneticnanostructurematerials withsuper-highblockingtemperature(TB > 1000K)causedbythemagneto-crystal anisotropyorshapeanisotropyinwhichwecancontrolthemagneticspin spininteractionfromferromagnetictoparamagneticinthenanosuperstructuresofmagnetic semiconductorsbytheelectric-fieldgating(see Fig.1.2).

Todesignandrealizethesenanospintronicsmaterialsbasedonabinitioelectronic structurecalculationandmultiscalesimulationforthedesignandfabricationof self-organizednanosuperstructures,semiconductornanospintronicsmaterials,and alsonanospintronicsdevices,wehavedevelopedtheComputationalNano-Materials Design(CMD®)systemasshownin Fig.1.3

Historically,theprogressoftheindustrialsocietyisbasedonthebasicresearchon thematerials(Materials);wedevelopthedevicesbasedonresearchanddevelopment

1013 1012 1011 1010 109 108 107 106 105 104 103 102 101 100 19601970 Kilo xtor 1965 data (moore) Bipolar PMOS NMOSCMOS Voltage scaling Pwr eff scaling New nonostructures Moore’s law will outlive CMOS 10 μm 1 μm 100 nm 10 nm Memory Microprocessor Beyond CMOS Spintronics Moltronics Quantronic Atomswitch Transistors/die Mega xtor Giga xtor Tera xtor 1980 1990 200020102020 2030
4RareEarthandTransitionMetalDopingofSemiconductorMaterials

Figure1.2 Schematicexplanationofsemiconductornanospintronics [1,3,5].Bycontrollingthe magneticspin spininteractionbytheelectric- fieldgatinginthenanoscalesize,wecan fabricatethesemiconductornanospintronicsdevicesbycontrollingthespincurrent(angular momentum),charge(electric- field),andatomic-masscurrent(kineticenergyorheat)ofthe electrons.

Figure1.3 ComputationalNano-MaterialsDesign(CMD®)System,whichwasdevelopedin OsakaUniversity [1,3,5].Basedontheabinitioelectronicstructurecalculationsandmultiscale simulations,wecananalyzethephysicalmechanismandchemicalfabricationprocess. Thenbasedonthephysicalandchemicalprocessmechanisms,wecanpredictthenew functionalitiesandnewmaterials.Finally,usingthequantumsimulations,wecanverifythe functionalityanddeviceapplicability.CombiningCMD® withtheexperimentalveri fication, wecandesignandrealizethenewfunctionalmaterialsanddevices. Computationalnanomaterialsdesignfornanospintronics5

6RareEarthandTransitionMetalDopingofSemiconductorMaterials

(R&D),wherealargegapcalled “DeathValley” alwaysexistsbetweenthebasic research(Materials)andR&D(Devices)(see Fig.1.4).Then,basedonR&D,we canindustrializethesystemandsoftwarebydevelopingthesystemintegration,where alargegapcalled “Darwin’sSea” alwaysexistsbetweenR&Dandtheindustrialization.In “Darwin’sSea,” astrongcompetitionbetweenthedevelopingcompanyexists andasnaturalselectionalwaysoccurs, fi nallyonlyoneprofitablecompanycansurvive throughinthecompetitivemarket.

Ingeneral,ittakesmorethanhalfacentury,eveninthecaseofsuccessful Si-CMOStechnology,toreachfromthebasicresearchtoindustrializationbythe bottom-updevelopmentthroughthethreehierarchalindustrialstructuresofMaterials, Devices,andSystemandSoftware(see Fig.1.4).Inordertoacceleratethedevelopmentfromthebottomupthroughthehierarchystructures,wehavedevelopedthe CMD® system,wherewestartfromthepredictionanddesignofthelikelyfuture society,andproposethesuitablesystemandsoftwarenecessarytosolvefuture problemsrelatedtoenergy,environment,socialsecurity,andanagingsociety. Then,inordertorealizethesystemandsoftwaretosolveourfutureproblems,we candesignthedevicesbasedontheR&D.Therefore,wecandesignthenewmaterials andfunctionalitiesthatweneedforthedevelopmentofthefunctionaldevicesinR&D. IntheCMD® system,wecanfollowthetop-downmethodologyinordertoshortenthe developmenttimebasedontheCMD® andExperimentalVerifications.

Inthissection, firstofall,wediscusstheferromagneticmechanismindisordered dilutemagneticsemiconductorsandreliableevaluationmethodof TC comparing

Figure1.4 HierarchyofindustrialstructureofMaterials(basicresearch),Devices(R&D),and SystemandSoftware(industrialization) [1,3,5].Oursocietychangesfromanindustrialsociety toaknowledge-basedsociety.Attheinterfacebetweenthedifferenthierarchalstructures,large gapsexist,suchas “DeathValley” and “Darwin’sSea.” Tomakeaseamlessconnection betweenthegaps,weneeddesign-basedmaterialsanddevicefabrication.Here,theoriginality inthematerialsdesignistheoriginofthepro fitabilityinthemarket.

withtheavailableexperimentaldata.Then,wediscusshowtoincreasethe TC by codopinginordertoincreasethesolubilityofmagneticimpuritiesinsemiconductors, superparamagneticphenomenatoincreasetheblockingtemperaturebyspinodalnanodecompositionusingthelowsolubilityofthemagneticimpuritiesinsemiconductors. Wealsodiscusstheshapecontrolofnanomagnetsbycontrollingthespinodalnanodecompositionanddimensionalityofthecrystalgrowth(2Dor3D).Inorderto combinethehighsolubilitybycodoping,high-ef ficiencylightemissionbycodoping, andmagneticinteractionssuchasp-fexchangemechanism,wediscussthenewfunctionalityofrare-earthimpurity-dopedwidebandgapsemiconductors,includingthe circularlypolarizedlightemission.Finally,basedontheseresults,wediscussthe designofd0 ferromagnetismwithout3dtransitionmetal(TM)impuritiesandwithout rare-earthimpuritiesinconventionaloxidessuchasMgO,whereusingthespinodal nanodecompositioncausedbythelowsolubilityofdefectsandimpuritiesbycontrollingthehighblockingtemperatureofsuperparamagnetism.

IntheCMD® System(see Fig.1.3), firstweproposethephysicalmechanismand chemical-reactionmechanismforthefabricationofnewfunctionalmaterialsbasedon theanalysisofthemechanismsbyquantumsimulationsusingthedevelopedapplicationsforthequantumsimulationsandmultiscalesimulations.Second,afterweunderstandthephysicalmechanismandchemicalprocesses,wecandesignandpredictthe newfunctionalmaterialsandprocessmethodsbasedonthequantumsimulationsand multiscalesimulations.Third,thenwecancheckthenewfunctionalitybasedonthe quantumsimulations.Byitineratingthesethreesteps,wecandesignandrealizethe newfunctionalmaterialsbasedonthequantumsimulationsandmultiscalesimulations (see Fig.1.3).

In Section1.2,wediscusstheelectronicstructureofdisordereddilutemagnetic semiconductors,themechanismofferromagneticinteractioncausedbylong-ranged Zener’sp-dexchangeinteraction,andtheshort-rangedZener’sdoubleexchangeinteraction;thecalculationof TC byMonteCarlosimulation(MCS);andthecodoping methodinordertoincreasethesolubilityofmagneticimpuritiestoincreasethepercolationsofshort-rangedmagneticinteractions [2].In Section1.3,wediscussthespinodalnanodecompositionandhighblockingtemperatureofsuperparamagnetismbased onthemultiscalesimulationofthespinodalnanodecompositionbasedontheabinitio calculationandMCSofthecrystalgrowthbycontrollingthecrystalgrowthdimensionality(2Dand3D)inthethermalnonequilibriumcrystalgrowthconditionand dynamicallycreatednewphasessuchas Dairiseki phase(quantumdot)and Konbu phase(nanowire),where TB becomesdominantshowinghysteresiscausedbythelarge magneto-crystalanisotropyandshapeanisotropyinthesuperparamagnetism [6].In Section1.4,wediscusstheelectronicstructureofrare-earthimpuritiesinGaN,computationaldesignofmaterialsforhigh-efficiencylightemission,high-densitydopingof rare-earthimpuritiestorealizethemagnetism,andcircular-polarizedlightemitting diodes(LEDs)basedonabinitioelectronicstructurecalculations.Finally,in Section1.5,wediscusstheelectronicstructureofMgO-basedhigh-TC nanospintronics materialswithd0 ferromagnetism,includingtheelectronicstructure,thed0 ferromagnetismwithoutmagneticTMimpuritieswithveryhigh TB in Konbu and Dairiseki phasescausedbythe2Dand3Dspinodalnanodecomposition. Computationalnanomaterialsdesignfornanospintronics7

8RareEarthandTransitionMetalDopingofSemiconductorMaterials

1.2Disordereddilutemagneticsemiconductors

Thediscoveryofthecarrier-inducedferromagnetismindilutemagneticsemiconductors(DMSs)suchas(Ga,Mn)Asand(In,Mn)Aswasfollowedbyvastseriesofexperimentalandtheoreticalinvestigationsconcerningthefundamentalmechanismofthe ferromagnetismanditsapplicationtothesemiconductorspintronics [7 14].Sofar, ontheferromagnetisminDMS,twoimportantmechanismsareproposedtheoretically. Oneisthep-dexchangemechanism [15,16] andtheotheristhedoubleexchange mechanism [17].Owingtotherecentaccuratetransportmeasurementsanddetailed spectroscopicanalysis,discussiononthedominantmechanismhasbeenreconsidered carefully [18 20].However,thereseemsaconsensusthatthetwomechanismsplay themostimportantroletodescribethemagnetismofDMS.Therefore,inthissection, fi rstwegiveabriefdiscussiononthep-dandthedoubleexchangemechanismsbased onthe first-principlescalculations,andthendescribehowaccuratelywecanpredict TC ofDMSfrom firstprinciples [12].Finally,threestrategiestorealizeroom-temperature ferromagnetismareproposed.

1.2.1p-dexchangeanddoubleexchangemechanisms

MostoftheDMSsystemsaresynthesizedbydopingmagneticimpurities(usually3d TMssuchasMnandCr),incompoundsemiconductorssuchasGaAs,InAs,and ZnTe.Sincethevalencebandofthehostsemiconductorisconstructedfromp-states ofanion,thekeyfactorindeterminingtheelectronicstructureandmagneticstateis therelativepositionbetweend-statesoftheTMionandp-statesoftheanion [12,21].

WhenTMimpuritiesareintroducedinthehostsemiconductors,d-statesofTM hybridizewithp-statesofhostanion.Ifthed-statesofTMarehigherinenergythan p-statesofanion,normallyTMd-statesappearinthebandgapandformimpurity bands.Whentheinducedimpuritybandsarepartiallyoccupied,thebandenergyof thesystemisloweredduetothebroadeningoftheimpuritybands.Sincetheband broadeningeffectivelyoccursintheferromagneticcon fi gurationofmagnetic momentsofTMimpuritiescomparedtoantiferromagneticconfi guration,theferromagneticstateisstabilized.Thiss ituationisschematicallyshownin Fig.1.5(a) Thismechanismisca lleddoubleexchange [17] andisimportanttypicallyinwide bandgapsemiconductor-basedDMSsuchas(Ga,Mn)Nand(Ga,Cr)N,Cr-doped DMS(Zn,Cr)Te,andsoon.Sinceoverlappingwavefunctionscausebandbroadening,theinteractionrangeofthedoubleexchangeisusuallyshortduetothe exponentialdecayofthewavefunctionoftheimpuritystatesthatareusuallylocated inthemiddleofthebandgap.

Ontheotherhand,whenthed-statesofTMarelowerinenergythanthep-statesof anion,TMd-bandsappearatthelowerpartofthevalencebands.DuetothehybridizationbetweenTMd-bandsandthevalencebands,thevalencebandsareshiftedupin energy.IfthemagneticmomentsofTMimpuritiesalignferromagnetically,the valencebandsshownetspinsplitting.Therefore,holedopinginthissysteminduces magneticpolarizationinthevalencebandsandthesystemgainsmagneticenergy. Sincethisenergygainisnotachievedwhenthedirectionofthemagneticmoments

Computationalnanomaterialsdesignfornanospintronics9

Band-broadening

d States

d States

Valence p-band

d States

Valence p-band p-d mixing p-d mixing

d States

Figure1.5 Schematicpictureofthedensityofstatesof(a)doubleexchangesystemand (b)p-dexchangesystem.

FromBelhadjiB,etal.JPhys:CondensMatter2007;19:436227.

areantiferromagnetic(therefore,nomagneticpolarizationofthevalencebands),the ferromagneticstatebecomesstable.Thissituationisillustratedin Fig.1.5(b).This mechanismiscalledp-dexchange [15,16] andisimportanttypicallyinMn-doped narrowgapDMSsystems.Inthep-dexchangesystems,magneticpolarizationof valencebandsmediatesferromagneticinteraction,therefore,theinteractionrangeis intrinsicallylong.

TheelectronicstructureoftypicalIII-VDMSsystemswascalculatedbyusingthe Korringa-Kohn-Rostokercoherentpotentialapproximation(KKR-CPA)withinthe localdensityapproximation(LDA).Calculateddensityofstates(DOS)of(Ga,Mn) N,(Ga,Mn)P,(Ga,Mn)As,and(Ga,Mn)Sbisshownin Fig.1.6[12].Wecanrecognize transitionfromatypicaldoubleexchangesystem(Ga,Mn)N(Fig.1.6(a) tothep-d exchangesystem(Ga,Mn)Sb(Fig.1.6(d)).(Ga,Mn)P(Fig.1.6(b))and(Ga,Mn)As (Fig.1.6(c))areinbetween [12,21,22].

TypicalTMconcentrationinDMSis10 20%.Inthisconcentrationrange,itis crucialforaccurate TC predictiontotaketheinteractionrangeintoaccount.Thisis easilyunderstoodbytheanalogytothesitepercolationproblem.Forexample, whenthemagneticinteractionisextremelyshortandonlythenearestneighborinteractionisimportant,underthepercolationthresholdtheferromagneticnetworkcannot spreadoverthecrystaltomakethewholesystemferromagnetic.Evenabovethe threshold,iftheconcentrationisnothighenough TC mightbesuppressedvery much.Wecallthisthemagneticpercolationeffect,andthiseffectisnotcorrectly consideredinthe TC calculationbythemean fieldapproximation(MFA),because

(a) (b)
Conduction band
E
E
F
F

10RareEarthandTransitionMetalDopingofSemiconductorMaterials

Figure1.6 CalculatedDOSof(a)(Ga,Mn)N,(b)(Ga,Mn)P,(c)(Ga,Mn)As,and(d)(Ga,Mn) SbbyusingtheKKR-CPA-LDA.TotalDOSandpartialdensityofd-statesatMnsiteare plotted.

FromSatoK,BergqvistL,KudrnovskyJ,DederichsPH,ErikssonO,TurekI,etal.RevMod Phys2010;82:1633.

randomdistributionofTMimpuritiesinthecrystalisaveragedoutintheMFA.Forthe calculationof TC beyondtheMFAwehavetoperformMCS.Theimportanceofthe magneticpercolationeffectdependsontheinteractionrange.Forexample,iftheinteractionrangeisinfi nitelylong,theMFAbecomesaccurate.Asexplained,theinteractionrangedependsonthemechanismthatmediatestheferromagneticinteractions,and themechanismreflectstheelectronicstructureofDMS.Therefore,inordertocalculate TC ofDMSaccuratelywithfullaccountofthechemicaltrend,weneedtocalculate effectiveexchangeinteractionsbetweenTMimpuritiesasafunctionofdistance, andthecalculatedexchangeinteractionsshouldbeusedintheMCS [12,23].This pointisdiscussedinthenextsubsection.

1.2.2Reliablecalculationof TC

TheeffectiveexchangeinteractionsbetweenTMimpuritiescanbecalculatedfrom fi rst-principlesbyusingthemappingontheclassicHeisenbergmodel.Intheclassic Heisenbergmodel,themagneticstateofthesystemisdescribedbytheHamiltonian:

H ¼ X isj Jij ei ! $ ej ! ; [1.1] Up spin Down spin Up spin Down spin Down spin Up spin Down spin Up spin (Ga, Mn)N (a)(b) (c)(d) (Ga, Mn)As (Ga, Mn)Sb (Ga, Mn)P Total Mn-3d Total Mn-3d Total Mn-3d Total Mn-3d 3 2 1 0 1 2 3 2 1 0 1 2 3
Energy relative to the Fermi energy (eV) Total and partial DOS (1/eV/unitcell, atom)
–8–6–4–20246–8–6–4–202468

where ei ! denotestheunitvectoralongthedirectionofmagneticmomentatsite i and J ij istheeffectiveexchange interactionbetweensite i and j. Accordingto theLiechtensteinetal., Jij canbeestimatedbyusingthemultiplescattering theoryas:

where dti ¼ t [ i t Y i (t [ i isatomic t-matrixatsite i forspin-upstate), sij isthescattering pathoperatorconnectingsites i and j, ε istheenergy,and εF istheFermienergy [24]. ThisexpressioncanbeeasilyevaluatedintheframeworkoftheKKR-CPAmethodto describethesubstitutionaldisorder.

Calculated Jij showsaclearchemicaltrendasshownin Fig.1.7[22].In(Ga,Mn)N, theinteractionrangeisquiteshort,refl ectingthedoubleexchangenatureofthe exchangeinteractionsinwidebandgapsemiconductors.In(Ga,Cr)N,thecalculated Jij isalsoveryshortrange.Sincethenearestneighborinteractionisverylarge, TC bytheMFAbecomesveryhighevenforlowconcentration.However,thishigh TC istheartifactoftheMFAandrealisticestimationof TC bytheMCSgivesavery

Figure1.7 CalculatedexchangeinteractionsbetweenMnimpuritiesin(a)(Ga,Mn)N, (b)(Ga,Mn)P,(c)(Ga,Mn)As,and(d)(Ga,Mn)Sbasafunctionofdistance. FromDederichsPH,SatoK,Katayama-YoshidaH.PhaseTransitions2005;78:851. Computationalnanomaterialsdesignfornanospintronics11

Jij ¼ J 1 p Z εF N dti sij dtj sji d ε; [1.2]
14 12 10 8 6 4 2 0 4 3 2 1 0 1% (Ga, Mn)P (Ga, Mn)Sb (Ga, Mn)As (Ga, Mn)N (a)(b) (c)(d) 1% 5% 15% 1% 15% 5% 3% 5% 15% 5% 15% 012345 0.8 0.6 0.4 0.2 0 –0.2 –0.4 012345 1.4 1.2 1 0.8 0.6 0.4 0.2 0 012345 012345 Distance (lattice constant)Distance (lattice constant) Distance (lattice constant) Distance (lattice constant) Exchange interactions (mRy) Exchange interactions (mRy) Exchange interactions (mRy) Exchange interactions (mRy)

lowvalue.Therefore,thedoubleexchangesystemisrealisticashigh-TC DMSonly whenhighconcentrationdopingispossible.

Ontheotherhandin(Ga,Mn)Sband(Ga,Mn)As(Fig.1.7(d)and(c)),the interactionrangeisrelativelylongduetothep-dexchangenatureoftheexchange interactions.Inthep-dexchangesystems,theinteractionsaregenerallyweak comparedtothedoubleexchangesystems;however,duetothelongrangenatureof theinteractionsthep-dexchangehasanadvantageoverthedoubleexchangefor lowconcentrationtorealizetheferromagnetism.Actually,sofarthebestinvestigated DMSsare(Ga,Mn)Asand(In,Mn)As.

(Zn,Cr)Teand(Ga,Mn)Pareinbetweenthedoubleexchangeandthep-d exchange.Asexplainedintheprevioussubsection,therelativeimportanceofthe twomechanismsdependsontherelativelocationofTMd-statescomparedtothe hostvalencebands,thereforerealsystemsaredistributedbetweentwoextremecases, namelythedoubleandthep-dexchange,showingwidevarietyandthecomplexityof realmaterials.

TypicalresultsoftheMCSfor T C of(Ga,Mn)N,(Ga,Mn)P,(Ga,Mn)As, (Ga,Mn)Sb,(Zn,Cr)Te,and(Ga,Cr)Nareshownin Fig.1.8[12,23,25].For (Ga,Mn)P,(Ga,Mn)As,and(Zn,Cr)Te,theMCSresultsreproduceexperimental resultsverywell.Theoverestimationof TC byMFAandRPAisclearlyseeninthe figureforallsystems,butthedegreeoftheoverestimationdependsontheinteraction range.AccordingtotheMCSof TC itiswellunderstoodthathighconcentration dopingofTMimpuritiesisnecessaryforrealizinghigh TC.Basedonthisguideline towardhigh TC,highconcentrationdopinghasbeenattemptedexperimentally forvarioussystems.However,ithasbeenrevealedthathomogeneoushighconcentrationdopingisquitedifficulttorealizeevenwithnonequilibriumcrystalgrowthtechnique [26].Inthenextsubsection,weproposethreestrategiesforovercomingthis difficulty.

1.2.3Towardhigh TC

Accordingtothe first-principlespredictions,generallyhighconcentrationdopingis neededforrising TC,therefore,lowsolubilityofTMimpuritiesinDMSpreventsus fromrealizinghigh TC.ThisistheintrinsicnatureofDMSandinthepreviousexperimentalfabricationofDMSmaterialsthisdif ficultyhasbeenpartlyovercomebyusing nonequilibriumcrystalgrowthtechniques.However,thetheoreticallyrequired concentrationtoreachroom-temperatureferromagnetismistoohightorealizeand weneedanewapproach.Sofar,wehaveproposedsomematerialdesignsalongthe followingthreedirections.

• Codopingmethod

Oneoftheindicationsofthetendencyforphaseseparationappearsinthecalculatedmixing energy.Themixingenergy DE of(Ga,Mn)Asiscalculatedas:

DE ðxÞ¼ E ðGa1 x Mnx AsÞ ð1 xÞE ðGaAsÞ xE ðMnAsÞ; [1.3] 12RareEarthandTransitionMetalDopingofSemiconductorMaterials

0246810121416

0246810121416 Mn concentration (%) Mn concentration (%)

0246810121416

Mn concentration (%)

Cr concentration (%)Cr concentration (%)

Figure1.8 CalculatedCurietemperatureof(a)(Ga,Mn)N,(b)(Ga,Mn)P(c)(Ga,Mn)As, (d)(Ga,Mn)Sb,(e)(Ga,Cr)N,and(f)(Zn,Cr)Te.Curietemperatureiscalculatedasafunction ofTMconcentration.MFA,randomphaseapproximation(RPA),andMCSwereusedforthe calculations.Thenumbersarereferencesfortheexperimentalresults.

FromSatoK,FukushimaT,Katayama-YoshidaH.JPhys:CondensMatter2007;19:365212.

where x istheconcentrationofMnand E( x )istheenergyofcompound X,respectively. Byde fi nition,positive D E indicatesthat(Ga,Mn)AsfavorsphaseseparationtoGaAs andMnAs.Re fl ectingtheexperimentallowsolubilityofMninGaAs,themixingenergy of(Ga,Mn)Asiscalculatedtobepositive.Positivemixingenergyisalsocalculatedfor

800 700 600 500 400 300 200 100 0 800 700 600 500 400 300 200 100 0 0510152005101520 350 300 250 200 150 100 50 0 350 300 250 200 150 100 50 0 0246810121416 350 300 250 200 150 100 50 0 350 300 250 200 150 100 50 0 1 2 1 3 MFA 7 RPA MFA MCS 6 Experiment (Ga, Mn)P RPA MCS (Ga, Mn)N (a)(b) (c)(d) (e)(f)
Curie
Curie
(K)
Curie temperature (K) Curie temperature (K) Curie temperature (K)
temperature (K) Curie temperature (K)
temperature
Mn concentration (%) (Ga, Mn)Sb MFA RPA MCS 12 (Zn,
MFA RPA 15, 16 Experiment MCS MCS 14 Experiment 13 RPA MFA (Ga, Mn)As Experiment 8 8 8 9 MCS RPA MFA Experiment 4 5 10 11 9 9 (Ga, Cr)N Experiment
Cr)Te
Computationalnanomaterialsdesignfornanospintronics13

14RareEarthandTransitionMetalDopingofSemiconductorMaterials

theotherDMSsystems,suchas(Ga,Mn)N,(Ga,Cr)N,(Zn,Cr)Te,andsoon, andcorrespondsreasonablytotheexperimentalobservationofphaseseparationin theseDMS.

Inthecodopingmethod,inadditiontoTMimpurities,carrierdopantsareintroduced simultaneously.TheadditionalcarrierdopantsshouldbechosensothattheycompensatecarriersoriginatingfromTMimpurities.SincetheTMimpuritynormallybehavesasan acceptor,inthecodopingforDMSweshouldchoosedonorimpurities.Duetotheintroductionofcodopants,themixingenergyofTMimpuritiesisloweredandphaseseparationis suppressed,leadingtohighsolubility [27].Thisisanadvantageofthecodoping,butit hasadisadvantagetoo.Becauseofthecompensationofholecarriers,theferromagnetism isweakenedduetothecodoping.Therefore,afterthecrystalgrowthbyusingthecodoping method,thecodopantsshouldberemovedfromthecrystaltorecovertheferromagnetism. Fromthispointofview,mobileinterstitialdonorimpuritiesareproposedasgoodcodopants forDMS.IthasbeenshownthatLiinterstitialworksideallyasthecodopantfor(Ga,Mn)As [28,29].Asanotherpossibilityofcodoping,rare-earthimpurityandN-vacancycodopingin GaNwillbeproposedin Section1.4.

• Superparamagneticblockingphenomena Sofar,wehavefocusedonthehomogeneousDMSsystems.ThehomogeneousDMSmight beeasytohandlewhenweconsiderthefabricationofspintronicsdeviceswithhighreproducibility.IfweareonlyinterestedinferromagneticbehaviorofDMS,wecanmakeuseof inhomogeneous(namelyphaseseparated)DMS.TheinhomogeneousDMScanbeconsideredahybridmaterial,whereforexamplein(Ga,Mn)Ascase,nanomagnetsofMnAs(or (Ga,Mn)AswithhighconcentrationofMn)areembeddedinthehostsemiconductor GaAs.Thesenanomagnetsareexpectedtohavehigh TC,butduetotheabsenceofmagnetic exchangeinteractionbetweennanomagnetsthesystembecomessuperparamagnetic.Ifthe sizeofthenanomagnetsissmallenoughtobesinglemagneticdomainandthemagnetic anisotropyisimportant,thedirectionofmagnetizationofthenanomagnetis fixedalong themagneticeasyaxis.Sincethemagnetizationreversalisblockedbelowtheblockingtemperature(TB),thesystemlookslikeferromagnetsfor T < TB.Sincewecancontrolthesizeof thenanomagnetsbytuningcrystalgrowthcondition,materialsdesignforhigh-TB inhomogeneousDMSispossible [30].Anexampleofmaterialsdesignalongthisideawillbe describedin Section1.3.

• Searchfornewmaterials

ForgettingabouttheadvantageofusualIII-Vsemiconductorsthathavecompatibility withthepresentelectronicsandextendinghostmaterialstootherthanIII-Vsemiconductors,wecanchooseexoticsemiconductorsashostsemiconductorsfornewDMS.For example,IV-VIsemiconductorsuchasGeTeisknowntoshowhighsolubilityofTM impuritiesandmaterialsdesignofGeTe-basedDMSwasproposed [31,32].Thetheoreticalpredictionwaspartlysupportedbyexperimentalresults.Wecanchooseevenoxides ashostmaterials.Duetothestronglycorrelatednatureofoxides,thereisapossibilityto realizeferromagnetismwithoutanyTMimpurities.Thisiscalledd 0-magnetism [33 36] andisdiscussedindetailin Section1.5 togetherwithself-organizationofnanostructures inoxides.

Inthissection,wehavediscussedtheoriginoftheferromagnetismand first-principles methodforcalculating TC ofDMS.ItisemphasizedthatthemagneticpercolationisimportanttounderstandanddesignthemagneticpropertiesofDMS.Basedonthisknowledge,we havediscussedthreepossibledirectionstowardhigh-TC DMSmaterials.Someofthemwill bediscussedfurtherinthenextsections.

1.3Spinodalnanodecompositionandhigh blockingtemperature

Asdiscussedin Section1.2.3,theinhomogeneityinDMSsystemshasattractedalot ofattention,becausethisfeaturecouldopenthewaytonewandnovelspintronic devicesbyutilizing TB.Suchamovementstartedwiththeinconsistencybetween thetheoryandexperiment;thatis,intheexperiments [26,37,38],roomtemperatureferromagnetismwasobservedforlowconcentrationofthemagneticimpurities,whereasthetheorypredictedverylow TC forlowconcentrationofthemagneticimpuritiesduetothemissingmagneticpercolation [12].In2006,Satoand Katayama-Yoshida [39] proposedthatspinodalnanodecomposition(spinodal decompositioninnanoscalesize)isanimportantrolefortheinhomogeneityin DMS,basedonabinitiocalculations.Sincetheirwork,manypeoplehavebeen interestedintheinhomogeneityofthemagneticimpuritiesinDMS,andthenthespinodalnanodecompositionhasbeenactuallyobservedintheexperiments [40,41],as shownin Fig.1.9.Inthissection,wewillpresentthetheoreticalinvestigationsofthe inhomogeneityinDMSsystemsbyabinitiocalculations,andalsodemonstratethe simulationofthe2D(Konbu-phase)and3D(Dairiseki phase)spinodalnanodecompositionsbytheMonteCarlomethod.

1.3.1Mixingenergy

WebeginbydiscussingmixingenergyinDMSsystems. Fig.1.10 showsthemixing energiesof(a)(Ga,Mn)N,(b)(Ga,Cr)N,(c)(Ga,Mn)As,and(d)(Zn,Cr)Tebythe redlinesasafunctionoftheTMimpurityconcentration [12,42].AlltheseDMSsystemshaveconvexconcentrationdependenciesofthemixingenergywiththepositive values,leadingtothephaseseparation;thesefoursystemshavethemiscibilitygaps. Inthecalculationsof Fig.1.10,thecrystalstructureisassumedtobezincblende structure.Therefore,theseDMSsystemsundergothephaseseparationcoherently withkeepingthezincblendestructure;forexample,forthecaseof(Ga,Mn)N, thezincblendeGaNandMnNaregeneratedinthecrystal.Inparticular,(Ga,Mn) Nand(Ga,Cr)Nwiththeirwidebandgapshavethelargermixingenergies,compared tothecasesof(Ga,Mn)Asand(Zn,Cr)Te.Inthissense,itisconsideredthatthefabricationofhomogeneousnitrideDMSsareverydifficultbyexperiment.Wenotethat sincethecalculationsin Fig.1.10 areperformedbytheKKR-CPAmethod,thestructuraloptimization,whichcausesthereductionofthemixingenergy,isnottakeninto account.Wecanseetheeffectofstructuraloptimizationformixingenergybythe supercellcalculationandclusterexpansionmethodin [43].In Fig.1.10,themixing energiescalculatedbythecodopingmethodarealsoshown.Byintroducingadditional codopants,suchasO,N,andIatoms,intoDMS,wecandrasticallyreducethemixing energy,sothatthesolubilityoftheTMimpuritiesincreases [28,29].Thisisdueto theenergygainbytheself-compensationbetweentheTMimpurities(acceptor)and codopant(donor).ThepreviousdiscussionfocusedonthephasestabilityofDMS

Computationalnanomaterialsdesignfornanospintronics15

16RareEarthandTransitionMetalDopingofSemiconductorMaterials

Figure1.9 (a)Colormapofthehighestdoped(Ga,Mn)Nsample(Mn ¼ 11%). Red, blue,and green correspondtotheMn-Ka,Ga-Ka fluorescenceline,andinelastic(Compton)scattering signal,respectively.Ga(in black)andMn(in red)profilesalongthewhitescanlineareshown inthelowerpart. (FromMartínez-CriadoG,SomogyiA,RamosS,CampoJ,TucoulouR, SalomeM,etal.ApplPhysLett2005;86:131927.) (b)Energy-filteredelectronmicrographs showingCrdistributionfor4%Cr-dopedAlNgrownatdifferentsubstratetemperatures: (i)700 C;(ii)800 C. (FromGuL,WuSY,LiuHX,SinghRK,NewmanN,SmithDJ.JMagn MagnMater2005;290 291:1395.)

(Ga,Mn)N (Al,Cr)N
Mn-K
GaescapepeakMinpile-up 67891011 Energy(keV) Mn
Scattering 40 nm 30 nm Low(Mn) Mn-K Ga-K Ga-K α α Mn-Kβ β GaescapepeakMinpile-up 67891011 Energy(keV) Fluorescence Ga-Kα Mn-Kα 0.10 0.05 0.00 1.0 0.9 0.8 01020 X(μm) 304050 Profiles (i) (a) (b) (ii) 25 μ m
High(Mn)Ga-Kα
α Mn-Kβ Ga-Kβ
Ga

Figure1.10 Calculatedmixingenergiesof(a)MninGaN,(b)CrinGaN,(c)MninGaAs,and (d)CrinZnTe.

FromSatoK,BergqvistL,KudrnovskyJ,DederichsPH,ErikssonO,TurekI,etal.Rev ModPhys2010;82:1633;SatoK,FukushimaT,Katayama-YoshidaH.JpnJApplPhys2007; 46:L1120. Computationalnanomaterialsdesignfornanospintronics17

systemsatzerotemperature.For finitetemperature,weneedtocalculatethemixing freeenergy: FM ðcÞ¼ EM ðcÞ TS;

where T istemperatureand S ismixingentropy.Fromthebehaviorofthemixingfree energy,thephasediagramsofthespinodaldecompositionandbinodaldecompositions canbeeasilydescribed.

1.3.2Chemicalpairinteraction

Asinthepreviousdiscussion,thegeneralDMSsystemsundergothespinodalnanodecomposition,sothatthedistributionofthemagneticimpuritiesinDMSisnolonger homogeneous.Inordertocloselyinvestigatetheconfigurationofthemagnetic impuritiesunderthespinodalnanodecompositionandhowtheinhomogeneityofthe

[1.4]
2525 2020 10 10 15 15 5 05 00.20.40.60.810 00.20.40.60.8100.20.40.60.81 00.20.40.60.81 –5 Mixing energy (mRy) Mixing energy (mRy) Mixing energy (mRy) Mixing energy (mRy) MnconcentrationCrconcentration MnconcentrationCrconcentration Undoped UndopedUndoped Undoped O:5% O:5% O:5% O:10% O:10% O:10% O:15% O:15% O:15% GaMnNGaCrN 3 4 2 1 0 –1 GaMnAsZnCrTe I:15% I:10% I:5% 10% 15% 10N:5% 8 6 4 2 0 –2 –4 (a)(b) (c)(d)

18RareEarthandTransitionMetalDopingofSemiconductorMaterials

magneticimpuritiesaffectsthemagnetisminDMS,wecalculatethechemicalpair interaction.ForabinaryalloyA1 cBc,thechemicalpairinteractionbetweensites i and j, Vij,isde finedby:

where V AB ij ispotentialenergywhentheAandBatomsoccupythe i and j sites, respectively.Asunderstoodfromthedefinition,thenegative Vij meansattractive interaction,whereasthepositiveoneleadstorepulsiveinteraction.Ducastelleand Gautier [44] proposedaprescriptiontocalculatetheeffectivepairinteraction,nowcalled generalizedperturbationmethod(GPM).ThedevelopmentofGPMforKKR-CPA formalismwasdonebyTurchi [45].InGPM,thechemicalpairinteractioncanbe calculatedby

Here, tA(B) isthesinglesite t-matrixoftheatomA(B)and T ij isthescattering pathoperator. Fig.1.11 showsthechemicalpairinteractionin(a)(Ga,Mn)N, (b)(Ga,Cr)N,(c)(Ga,Mn)As,and(d)(Zn,Cr)Teasafunctionofthedistance betweenthetwomagneticimpurities.Asshownin Fig.1.11 ,mostchemicalpair interactionsofthesesystemshavethenegativevalues,leadingtoattractiveinteraction,andthe fi rstnearestneighborin teractionsareconsiderablystrongcompared totheotherpairs.Therefore,(Ga,Mn)N,(Ga,Cr)N,(Ga,Mn)As,and(Zn,Cr) Teundergophaseseparationduetotheattr activepairinteractions;thespinodal nanodecompositioncanoccurduringthe crystalgrowth.Suchtendencyofthe chemicalpairinteractionsisconsistent withthecalculatedconvexpositivemixing energyin Fig.1.10 .

1.3.3Simulationofthespinodalnanodecomposition: Dairiseki phaseversus Konbu phase

BasedonthechemicalpairinteractioncalculatedbytheGPM,wecansimulatethe spinodalnanodecompositioninDMSbyusingtheMonteCarlomethod.Thespinodal nanodecompositionisakindofphaseseparationinalloys.Forcasesofphaseseparationsinalloys,theordinaryIsingmodel,wheretheorderparameterisnotconserved,is notappropriate.Therefore,acorrectmodeltodescribephaseseparationsofalloysis theconservedorderparameterIsingmodel:

H ¼ 1 2 X isj Vij si $ sj ;

where Vij isthechemicalpairinteraction. si istheoccupationnumberofan impurityatomatsite i;thatis, s i ¼ 1ifsite i isoccupiedbyaTMimpurity,

AA
þ V BB ij
V AB ij ;
Vij ¼ V
ij
2
[1.5]
Vij ¼ 1 p Z ImTr L DT ij DT ji d ε; D ¼ t 1 A ðεÞ t 1 B ðεÞ: [1.6]
[1.7]

Computationalnanomaterialsdesignfornanospintronics19

Figure1.11 Chemicalpairinteractionsbetween(a)MninGaN,(b)CrinGaN,(c)MninGaAs, and(d)CrinZnTeasfunctionofdistancenormalizedtothelatticeconstant.Negative interactionsindicatethatthepairinteractionsareattractive.

FromSatoK,BergqvistL,KudrnovskyJ,DederichsPH,ErikssonO,TurekI,etal.RevMod Phys2010;82:1633;FukushimaT,SatoK,Katayama-YoshidaH,DederichsPH.JpnJAppl Phys2006;45:L416.

whereas si ¼ 0ifsite i isoccupiedbyahostatom.Here,weapplyKawasaki algorithm [47] fortheconservedorderparameterIsingmodel.

1.3.3.1 Dairiseki phase

First,thesimulationsofspinodalnanodecompositionfor3Dcrystalgrowthareconsidered.Inthiscase,alargeface-centeredcubic(FCC)supercellisprepared,andthenthe TMimpuritiesinDMSarerandomlydistributedasaninitialconfiguration.Starting fromtherandomdistributionoftheimpurities,wechooseoneimpuritysiteandtry tomovetheimpuritytoasitethatischosenfromtheunoccupiednearestneighborsites byobeyingtheMonteCarlocriterion.Thetrialsitecanbeanyoneofthenearest neighborsites,(ie,oneofthe12sitesinFCCcase).

Fig.1.12(a)and(c) showthesimulationresultsofthe3Dspinodalnanodecompositionfor(Zn,Cr)Teand(Ga,Mn)N, respectively.These figuresarethesnapshotsofTMimpuritydistributionafter100 MonteCarlostepsperthemagneticsite.OnlyCrandMnimpuritiesareindicated bytheredpointsandthenearestneighborbondsarecombinedbythewhitebars. Theimpurityconcentrationis fixedto5%forallcasesandwetake17 17 17conventionalFCCcellsasasimulationbox.Thesimulationsareperformedatscaledtemperatureof kBT/V01 ¼ 0.5foreachcase.Thiscorrespondsto916and2164Kfor

20RareEarthandTransitionMetalDopingofSemiconductorMaterials

Figure1.12 Simulatedspinodalnanodecompositionphasesinthebulk(a)(Zn,Cr)Teand (c)(Ga,Mn)N,andin(b)(Zn,Cr)Teand(d)(Ga,Mn)Nunderthelayer-by-layergrowth condition.Inthe figures,onlymagneticsitesareindicatedbythe redpoints.Theconcentration ofmagneticimpuritiesis5%foreachcase.

FromSatoK,BergqvistL,KudrnovskyJ,DederichsPH,ErikssonO,TurekI,etal.RevMod Phys2010;82:1633;FukushimaT,SatoK,Katayama-YoshidaH,DederichsPH.JpnJAppl Phys2006;45:L416.

(Zn,Cr)Teand(Ga,Mn)N,respectively.Thesesystemsarequenchedfrom T ¼ N to T ¼ 0:5kB jV01 j atthe0MonteCarlostep.Asshownin Fig.1.12(a)and(c),the magneticimpuritiesformmoreisolatedclusterwithincreasingtheMonteCarlosteps, comparedtotheinitialrandomconfiguration,sothatthesystemsbecomesuperparamagnetic.Wecallsuchspinodalphase “three-dimensional Dairiseki phase,” where Dairiseki meansthemarbleinJapanese.Actually,thethree-dimensional Dairiseki phasewasexperimentallyobservedin(Ga,Mn)N,(Ga,Cr)N,(Al,Cr)N,and (Zn,Cr)Te [26,41,48,49].Itiseasilyspeculatedthatthesecomplicatedconfi gurations ofthemagneticimpuritiesstronglyaffectthemagnetisminDMSsystems.The TC valuesof(a)(Ga,Mn)N,(b)(Ga,Cr)N,(c)(Ga,Mn)As,and(d)(Zn,Cr)Tewith the Dairiseki phasecalculatedbyRPAarepresentedin Fig.1.13.Thehorizontal axisistheMonteCarlostepcorrespondingtotheannealingtimeinacrystalgrowth experiment.TheRPAmethodcanexactlytakethemagneticpercolationeffectinto consideration,andprovidetherealisticestimationof TC.Sincethecalculatedresults dependontheinitialconfi gurationofthemagneticimpuritiesinthesimulationbox, wesimulatethe30differentspinodalnanodecompositionphasestotakeconfiguration

(a)(b) (c)(d)

Computationalnanomaterialsdesignfornanospintronics21

LDA+U, LDA+U, LDA+U, U =0.3Ry, J =0.06Ry U =0.3Ry, J =0.06Ry U =0.18Ry, J =0.074Ry

Figure1.13 T C RPA of(a)(Ga,Mn)N,(b)(Ga,Cr)N,(c)(Ga,Mn)As,and(d)(Zn,Cr)Teasa functionofthenumberofMonteCarlostepsperimpurity.AsincreasingtheMonteCarlo steps,thephaseseparationdevelops.Forhigherconcentrations, TC increasesduetothe increasedpercolationpathbyclustering.Ontheotherhand,forlowerconcentrations, TC decreasesandthesystembecomessuperparamagnetic.

FromSatoK,BergqvistL,KudrnovskyJ,DederichsPH,ErikssonO,TurekI,etal.Rev ModPhys2010;82:1633;SatoK,Katayama-YoshidaH,DederichsPH.JpnJApplPhys 2005;44:L948.

average.Asshownin Fig.1.13,inthecaseofthelowmagneticimpurityconcentrations,the TC valuesdecreasewiththeMonteCarlostep.Suchatendencycanbe understoodfromthefactthattheferromagneticinteractionsworkonlyinthesmall clusters,howevercannotspreadovertheentirecrystal(ie,thesuperparamagnetism isstableinthecaseofthelowTMimpurityconcentration).Ontheotherhand,the calculated TC valuesincreasewiththeMonteCarlostepinthehighconcentration regionabovethepercolationthreshold.Thisisbecausethemagneticimpuritiescan establishthemagneticpercolatingpathswithformingthelargeclusters.Therefore, thestrongferromagneticinteractions,originatingfromthe fi rstnearestneighboratoms, cancontributethehigh TC.

1.3.3.2 Konbu phase

Next,thenonequilibriumlayer-by-layercrystalgrowthsimulationswiththe2Dspinodalnanodecompositionareintroduced [46].Inthissimulation,theatomicdiffusionis restrictedonlyonthesurface,andonlythenearestneighborsitesonthesamesurface canbecandidatesforatrialsiteinthelayer-by-layersimulation(oneofthefoursitesin

600 500 400 300 200 100 0 5% 5% 5% 15% 15% 15% Cr:10% Cr:15% Cr:20% Cr:5% 20% 20% 20% 30% 30% 30% Curie temperature (K) 600 500 400 300 200 100 0 Curie temperature (K) 600 500 400 400 300 300 200 200 100 100 0 0 Curie temperature (K) Curie temperature (K) (Ga,Mn)N (Ga,Mn)As
(Ga,Cr)N (Zn,Cr)Te
MonteCarlostepMonteCarlostep (a)(b) (c)(d)
020406080100020406080100

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.