ListofContributors
AidaAbbasalizadeh
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
VassilikiAggelatou InstituteofGeologyandMineralExploration,Athens,Greece
ZachariasAgioutantis DepartmentofMiningEngineering,UniversityofKentucky,Lexington,KY,USA
UweAltenberger UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany
HelmutAntrekowitsch
ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria
EfthymiosBalomenos
NationalTechnicalUniversityofAthensSchoolofMiningandMetallurgicalEngineering, ZografosCampus–Athens,Greece
GeorgeBarakos
HZDR–HelmholtzInstituteFreibergforResourceTechnologies,Freiberg,Germany
GregoryB.Barnes
G.B.Barnes&Associates,SouthPerth,WA,Australia
EvaBartekova ´
UnitedNationsUniversity-MERITandMaastrichtUniversity,Maastricht,TheNetherlands
NinaK.Boesche
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany
IsmarBorgesdeLima
UniversidadeEstadualdeRoraima,UERR,Brazil,&SouthernCrossUniversity,SCU,Gold Coast,QLD,Australia
E.Bourbos
SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece
MaximilianBrell
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany
PanagiotisDavris
NationalTechnicalUniversityofAthensSchoolofMiningandMetallurgicalEngineering, ZografosCampus–Athens,Greece
ElsDeCanck
DepartmentofInorganicandPhysicalChemistry,CenterforOrderedMaterials,Organometallics andCatalysis(COMOC),GhentUniversity,Ghent,Belgium
xix
JeriffaDeClercq
DepartmentofIndustrialTechnologyandConstruction,IndustrialCatalysisandAdsorption Technology(INCAT),GhentUniversity,Ghent,Belgium
JeroenDeDecker
DepartmentofInorganicandPhysicalChemistry,CenterforOrderedMaterials,Organometallics andCatalysis(COMOC),GhentUniversity,Ghent,Belgium
BayarmagnaiEnkhzul
CentralGeologicalLaboratory,Ulaanbaatar,Mongolia
AndreaFerrari
D’AppoloniaS.p.A.,Genoa,Italy
I.Giannopoulou
SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece
BertilGrundfelt
KemaktaKonsultAB,Stockholm,Sweden
X.Guo
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
JensGutzmer
InstituteofMineralogy,TUBergakademieFreiberg,Freiberg,Germany
SabrinaHerrmann
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg, Germany
LarsOlofHo ¨ glund KemaktaKonsultAB,Stockholm,Sweden
SotirisN.Kamenopoulos
SchoolofMineralResourcesEngineering,TechnicalUniversityofCrete,Chania,Greece
A.Karantonis
SchoolofChemicalEngineering,NationalTechnicalUniversityofAthens,Athens,Greece
S.Kaya
DepartmentofMetallurgicalandMaterialsEngineering,MiddleEastTechnicalUniversity (METU),Ankara,Turkey
MirandaKeith-Roach
KemaktaKonsultAB,Stockholm,Sweden
JamesC.Kennedy
ThREEConsulting,St.Louis,MO,USA
KostasKomnitsas
SchoolofMineralResourcesEngineering,TechnicalUniversityofCrete,Chania,Greece
xx LISTOFCONTRIBUTORS
FriederikeKo ¨ rting
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany
AnneKousa
GeologicalSurveyofFinland,Kuopio,Finland
JukkaLaukkanen
GeologicalSurveyofFinland,GTKMineralprocessing,Outokumpu,Finland
WalterLealFilho
HamburgUniversityofAppliedSciences,ResearchandTransferCentre“ApplicationsofLife Sciences”,Hamburg,Germany
LingZhiLi
ChinaWesternMiningCo.,Ltd,Xining,Qinghai,P.R.China
BatzorigLkhagvasuren
CentralGeologicalLaboratory,Ulaanbaatar,Mongolia
ChristinLubitz
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany
StefanLuidold
ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria
PalomaMagistrati
FenMineralsA/S,Norway
NabeelA.Mancheri
InstituteofSocialScience,UniversityofTokyo,Tokyo,Japan
DelgermaaMargai
MongolGazarLLC,Ulaanbaatar,Mongolia
ChristianMielke
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany
HelmutMischo
InstituteforMiningandSpecialCivilEngineering,TUBergakademieFreiberg,Freiberg, Germany
Nicolo ` Olivieri
D’AppoloniaS.p.A.,Genoa,Italy
DimitriosPanias
SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece
AnnePapenfuß
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany
LISTOFCONTRIBUTORS xxi
IoannisPaspaliaris
SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece
SebastiaanPeelman
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
EsaPohjolainen
GeologicalSurveyofFinland,Espoo,Finland
AlexanderPoscher
ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria
V.Prakash
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
ChristianRogass
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany
RobertoV.Santos
Servic¸oGeolo ´ gicodoBrasil–CPRM–SGAN603Conj.“J”ParteA–1 andar–CEP70.830-100–Brası´lia–DF,Brazil
HolgerSchnideritsch
ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria
HansK.Schønwandt
G.B.Barnes&Associates,SouthPerth,WA,Australia
SeshadriSeetharaman
DepartmentofMaterialsScienceandEngineering,RoyalInstituteofTechnology,Stockholm, Sweden
DeborahShields
DepartmentofEconomics,ColoradoStateUniversity,FortCollins,CO,USA
JiltSietsma
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
FranciscoV.Silveira
Servic¸oGeolo ´ gicodoBrasil–CPRM–SGAN603Conj.“J”ParteA–1 andar–CEP70.830-100–Brası´lia–DF,Brazil
ZhiH.I.Sun
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
LucyTakehara
Servic¸oGeolo ´ gicodoBrasil–CPRM–RuaBancodaProvı´ncia,PortoAlegre-RS,Brazil
xxii LISTOFCONTRIBUTORS
LidongTeng
DepartmentofMaterialsScienceandEngineering,RoyalInstituteofTechnology,Stockholm, Sweden
SabineTonn
HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany
Y.A.Topkaya
DepartmentofMetallurgicalandMaterialsEngineering,MiddleEastTechnicalUniversity (METU),Ankara,Turkey
AkseliTorppa
GeologicalSurveyofFinland,Kuopio,Finland
ThomasUlrich
DepartmentofGeoscience,AarhusUniversity,Aarhus,Denmark
PascalVanDerVoort
DepartmentofInorganicandPhysicalChemistry,CenterforOrderedMaterials,Organometallics andCatalysis(COMOC),GhentUniversity,Ghent,Belgium
XiaoshengYang
GeologicalSurveyofFinland,GTKMineralProcessing,Outokumpu,Finland
YongxiangYang
DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands
VolkerZepf
ScientistattheChairofResourceStrategy,UniversityofAugsburg,Germany
LISTOFCONTRIBUTORS xxiii
ANOVERVIEWOFTHE USEFULNESSANDSTRATEGIC VALUEOFRAREEARTHMETALS 1
VolkerZepf
ScientistattheChairofResourceStrategy,UniversityofAugsburg,Germany
1. CRITICALRAREEARTHS
Therareearthelements(REEs),alsocalledrareearthmetalsorjustrareearths(REs),havebeenthe mostprominentanddiscussedrawmaterialssinceabout2009.Inthatyear,Chinaannounceda reductioninREEexportquotasofnearly50%to30,000tons(t)1 rareearthoxides(REOs)(theusual measurefortradedREmaterials)(Zepf,2013).Thus,asupplyriskwasfearedbecauseChinahasade factoproductionmonopoly.Atthesametime,theeconomicimportanceoftheREEsemergedbecause ofimportantfunctionsinenvironmentallyfriendlyproductssuchasenergy-savinglamps,electriccars, and(sometypesof)windturbinegenerators(WTGs).Consequently,REEshaverepeatedlybeen identifiedassomeoftoday’smostcriticalelements.
ThesupplyriskissuegainedfurtherweightwhensomeobviousenvironmentalproblemsinREE miningwerereported(Bradsher,2009).Toovercometheseriskysituations,newREEminesoutside Chinawereplannedandsetup.Researchforbettermaterialsefficiencyandsubstitutionswaspushed. Eventually,theformermineatMountainPass,California,andtheMountWeldmineinsouthwestern Australiawentintocommissionaround2012.There,newmining,separation,andrefiningtechnology wasinstalledtoallowenvironmentallysoundproduction.Yettoday,bothcompaniesstrugglewithlow pricesforREEs,whichcausehugefinancialdeficitssothatevenbankruptcyisimminent.Despite theseproblems,thecompaniestrytokeepoperationsrunning.Nevertheless,REEshaveinherent specialchemicalandphysicalcharacteristicsthatallowextraordinaryfunctionalities,andthusREEs areidealingredientsforahugevarietyofapplications.
Thisintroductorychapterwillexplaintheseissuesbrieflytoshowthewholecomplexityofthe productionanduseoftheREEs.Theintroductiongivesanoverviewwithouttoomuchdetail,because thefollowingchapterswillprovidetheseanalyses.
1.1 WHATREEsARE
TheInternationalUnionofPureandAppliedChemistryclassifiesREEsasagroupof17elementsin thethirdgroupoftheperiodictableofelements(Connelly,2005).TheREEsthusincludescandium
1Note:Commashavebeenusedas1000dividers;pointsindicatedecimals.
RareEarthsIndustry. http://dx.doi.org/10.1016/B978-0-12-802328-0.00001-2 Copyright © 2016ElsevierInc.Allrightsreserved.
CHAPTER
3
(Sc,atomicnumber21),yttrium(Y,39),andthelanthanides,whicharelanthanum(La,57),cerium (Ce,58),praseodymium(Pr,59),neodymium(Nd,60),promethium(Pm,61),samarium(Sm,62), europium(Eu,63),gadolinium(Gd,64),terbium(Tb,65),dysprosium(Dy,66),holmium(Ho,67), erbium(Er,68),thulium(Tm,69),ytterbium(Yb,70),andlutetium(Lu,71).Promethiumisnot usuallyincludedinthediscussionbecauseitistheonlyradioactiveREEandprincipallyitdoesnot occurinnature.Nexttotheumbrellaterm“REE,”theelementsarefurthergroupedintolightREEs (LREEs)andheavyREEs(HREEs),andsomeauthorssuchas Kingsnorth(2010) addamediumclass ofREEs(MREEs).Theattributionstothesegroupsarenotdistinct:theUnitedStates(US)Geological Survey(USGS)callsLatoGdtheLREEsandTbtoLuandYtheHREEs(USGS,2014).Kingsnorth, however,usesLatoNdasLREEs,PmtoGdasMREEs,andTbtoLuplusYasHREEs(Kingsnorth, 2010).IntroductionofthethreegroupsmaybecomecommonbecausethenewChinesetaxrates differentiateamongLRE,MRE,andHRE,i.e.,light,medium,andhighrareearth–richconcentrates (Argus,2015).
Theterm“rareearth”tracesbacktothetimeofdiscoveryoftheelements,ataround1800.The originandreasonforcallingthematerials“rare”arenotexplicit,buttheetymologicalexplanation givenby Reiners(2001) ishelpful.Shearguesthattheadjective“rare”wasusedfromthefifteenth centuryonwardforsomethingstrange,extraordinary,andastonishing(Reiners,2001).Thus,“rare” doesnotrefertoarareoccurrencebuttoastrangehabitusofthematerials.Today,thelowconcentrationsofREEsinorebodiesmaybeconsideredasbeingrare.“Earth,”however,isclearlyacommon wordforoxidicmaterialsinthenineteenthcentury.
1.2 CHEMICALANDPHYSICALPROPERTIES
Muchinformationaboutspecialchemicalandphysicalpropertiesisprovidedinstandardscientific encyclopediasandschoolbooks.Therefore,hereonlyafewspecialtieswillbediscussedbecause theyexplainbothchallengesduringseparationandrefiningandpotentialapplicationareasfor REEs.Ingeneral,withincreasingatomicnumbers,atomsattachonemoreelectron,whichaddsto theouterelectronorbitalandtheatomradiibecomelarger.Forthelanthanidesnotonlytheouter shellbutalsothelower-lying4f-orbitalisbeingfilledwithelectrons.Thisresultsinasimilarouter (electron)appearanceofalllanthanidesbutalsostrongerforcesinsidetheatoms.Asaconsequence, theatomicradiiaredecreasingwithincreasingatomicnumber,aphenomenonknownaslanthanide contraction.SomeREEatomshaveatomicradiisimilartorock-formingelements,whichexplains whyREEsareoftenfoundinrocksthatcontaincalcium,thorium,uranium,andstrontium(formore informationsee Zepf,2013 ).However,thephysicalpropertieshavenosuchsimilaritiesbutrather differences.SomeREEshaveidealmagneticbehavior,suchasGd,Dy,Nd,andSm,whereasothers suchasErandTbinheritsharplydefinedenergystatesthatcanbeusedefficientlyinlightingand laserapplications.
2. THECRITICALITYISSUE
ThecriticalityoftheREEshasbeendeterminedinnumerousstudies.Oneofthefirstarticles addressingREEsas“criticalresourcesforhightechnology”wastheUSGSinaFactSheetpublishedin 2002(USGS,2002).Afurtherremarkablestudy, Minerals,CriticalMinerals,andtheUSEconomy, publishedin2008bytheNationalResearchCouncil(NRC),developedthewell-knowncriticality
4 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
matrixintroducingasmainindicators“supplyri sk”andthe“impacttosupplyrestriction”;the latterindicatorisaboutequivalenttotheterm economicimportance.ThegroupoftheREEswas identifiedashighlycriticalinsupplyriskandnearlyhighconcerningtheimpactofsupplyrestriction( NRC,2008).
In2009,Angereretal.conductedaprofoundstudyonrawmaterialsforemergingtechnologiesin whichneodymiumwasrankedthesecondmostcriticalelement(Angereretal.,2009).In2010,the EuropeanCommissionissuedthe CriticalRawMaterialsfortheEU,areportoftheadhocworking groupthatpinpointedthegroupoftheREEsascriticalwiththehighestsupplyriskandmedium economicimportance(EuropeanCommission,2010).
AsequeltotheNRCworkwasthe CriticalMaterialsStrategy publishedin2010bytheUS DepartmentofEnergyinwhichinthematrixasdevelopedbytheNRCindividualREEswereidentifiedasbeingthemostcriticalelementsunderinvestigation(USDOE,2010).Theupdate1yearlater confirmedthestatus(USDOE,2011).Consultantsandpressmediajoinedthepublicationcircle,e.g., Reuters’analysisofthe“FightforRareEarths”(Reuters,2010). Hurst(2010) reportedontheChinese REEindustryandexplainedlessonstobelearned.
In2011, ErnstandYoung(2011) reportedonREEsastechnologymineralsforwhichdeficitsin supplywereidentified.Thefocuswasmoreonminingventuresratherthanongeneralcriticality.Inthe sameyear,theEuropeanJointResearchCenterdealtwith“CriticalMetalsinStrategicEnergy Technologies”andattributedtodysprosiumandneodymiumanoverallhighriskbasedonmarketand politicalfactors(JRC,2011).In2014,theUnitedNationsConferenceonTradeandDevelopment producedaspecialreportonREsthatdiscussedglobalhighdependencyonChineseREEproduction andtheimportanceofREEsfordefenseapplications(UNCTAD,2014).Sinceabout2010,manymore suchstudiesandsequelswithmoreorlessthesameassessmentshowedup,sothatfromthis perspectivetheextraordinaryimportanceandcriticalityofREEswereunderlined.
3. OCCURRENCES,MINING,ANDPRODUCTION
3.1 ABUNDANCEANDGEOLOGY
Theattributeofrarityinthenameof“REEs”requiresacloserlook.Thereare12elementsinthe earth’scrust,whichtogethercomprisemorethan99%ofthemass(O,Si,Al,Fe,Ca,Mg,Na,K,Ti,H, Mn,andP)(Skinner,1976).Allotherelementssharetheremaining1%.AmongthemaretheREEs. Withinthisgroupofrelativelyrareelements,theREEsrangeinthelowerhalf,whereasseveral elementsseemfairlyabundant.Accordingtotheresearchof RudnickandGao(2003),yttriuminthe uppercontinentalcrustisaboutasabundantaslithium;ceriumisaboutasabundantaszinc;neodymiumandlanthanumareaboutasabundantascopper,andevendysprosiumisabouttwiceas abundantasgoldoreighttimesasabundantasplatinum.However,thesecitationsofabundancegive onlyaverageconcentrationsandmassvalues.Thenumbersdonotreflecttypicalconcentrationsof elementsinrocksthatdevelopduringpetrogenesis.Goldandcopper,forexample,occurinnative states;i.e.,theseelementsaggregate(sometimes)tonuggettypes,whereasREEsneveroccurinsuch nativestates.Aninterestinginsightgivestheannualminingproductionquantitiesofyttriumatan estimated7000tandlithiumat36,000t;copper18.7milliont;lanthanum2 about25,300tand 2Assuminganaverageoreconcentrationof23%Laand18%Nd;calculatedwithanannualproductionof110,000t.
3. OCCURRENCES,MINING,ANDPRODUCTION 5
neodymium1 19,800t;andcerium1 55,000tandzinc13.3milliont(USGS,2015b).Thus,themessage ofthetabledescribingabundanceisofnorealhelpwhentalkingaboutactualextractionpotential. ThemajororesfromwhichREEsarebeingproducedarebastnaesite,monazite,xenotime,andionadsorptionclays.Bastnaesiteisafluorocarbonatemineralwiththebasicformula3 [(Ln)(CO3)F] composedofvariousadditionsofLREEandafewHREEs(Zepf,2013).Thisoreistheprimary feedstockoftheChineseBayanOboandtheCaliforniaMountainPassMine.Monazite,aphosphate mineralwiththetypicalformula[(Ce,La,Y,Th)PO4],cancontainadditionsofotherLREEsandafew HREEs.Amajorproblemwhenprocessingmonazitesisradioactiveresidues,whichhavetobetreated accordingly.MonaziteisthemainoreoftheAustralianMountWeldmine.Xenotimesandion-adsorption clayscontainrelativelyhighpercentagesofHREE,butthesemineralsthemselvesarerareorhavean overalllowREEconcentration.MainextractionareasofthesemineralsareinsoutheasternChinese provinces.
3.2 MININGANDPRODUCTION
3.2.1HistoricalDevelopment
ThefirstcommercialuseofREEswasprobablytheinventionofAuer-LightandAuermetalusedfor lighterflints;bothproductswerediscoveredandmerchandizedbyAustrianchemistCarlAuervon Welsbacharoundtheyear1900(Zepf,2013).Therawmaterialswereheavysandthatservedasballast inships.Overthecourseoftheworldwarsheavysandminingwaspushedinasearchforradioactive materialsfornuclearresearchmainlyintheUS.ThisfirstphaseofREEminingiscalledtheMonazite Placerera(USGS,2002).
Withtheinventionofcolortelevision,theneedforeuropiumincreasedrapidly,andthediscoveryof theREEdepositatMountainPassinCaliforniainthemid-1960scanbeconsideredthebreakthroughof REEmining;thissecondphaseiscalledtheMountainPassera,whichendedinthemid-1980s.Inthe 1950s,theironoredepositinBayanObowasdiscovered,whichsoonshowedconsiderableREEcontent. MajorproductionoftheseREEsbeganinthemid-1980sandbecametheprimaryproducerofREOs intheworld.WithclosureofthemineatMountainPassaroundtheyear2000,monopolyoverproduction ultimatelywenttoChina.ThisthirdphaseiscalledtheChineseera(USGS,2002).
3.2.2GlobalProductionandReserves
Figure1 showsthedevelopmentofglobalREEproductionfromthe1950sto2014.Inthe1950sthe globalproductionofREOsreachedabout1000tanditdoubledin1960.In1970productiongrewto 16,000t;in1980to27,000t;in1990to53,000t;andin2000to90,000t,reachingtwopeaksin2006 and2009at137,000and135,000t,respectively.Since2009,globalproductiondeclinedforthree yearsto110,000tin2014(USGS,2015a).Inadditiontothesenumbers,considerableillegalminingis probablypresent.
Annualillegalproductionisestimatedtobe40,000t(Xinhua,2014).Atthefinalconferenceofthe EuropeanRareEarthsCompetencyNetwork,KingsnorthstatedthatChinaadmitteda40%shareof illegalmagneticREsupply(Moores,2014).Bothnumbersreferringtoillegalproductionare emphasizedonlytobeestimates.Itisalsouncertainwhatthesenumbersactuallytell:Does40,000t refertoREOsanddoesithavetobeaddedtoofficialproductionvalues?Whatelementsbelongtothe
3Lnstandsforlanthanides.
6 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
Rareearthelementproduction,1950–2014.Notes:Theproductiondatarefertothelanthanides, i.e.,excludingyttriumandscandiumproduction.Datagiveninmetrictons(1t=1000kg).
Sources:USGSMineralsYearbooks1994–2012;USGSMineralCommoditySummarises2015.
magneticREsupply?Itislikelythatconsiderableillegalminingandtradearepresent,butactualdata remainobscure.
Annualglobalproductionnumbersareknown;quantitativesharesoftheindividualREEsarenot available,however.Thenumberscanandhavetobeinterpolatedfromknownconcentrationsofsingle elementsintheminedores.OftheREEscontainedinthebastnaesiteoftheBayanOboorebody,50% iscerium(CeO2),lanthanumcomprisesabout25%(La2O3),andtheneodymiumcontentisabout17% (Nd2O3)(ZhiLiandYang,2014).Usingasimplifiedassumptionthattheentireglobalproductionis derivedfromsuchores,theindividualsharecanbededucedwithreasonablereliabilityforLREEs:In 2014,withanannualproductionof110,000tREOs,ceriumcontainedis55,000t,lanthanumis 27,500t,andneodymium18,700t.
Variousseparationandrefiningtechniquesareexplained,e.g.,by GuptaandKrishnamurthy (2005),sojustonemajoraspectneedsrecognition:thatduringseparationandrefininginafirststep, ceriumandlanthanumalwayshavetobeseparatedbeforeotherREEscanbeextracted.Thismeans thattheseparationofthecheapestREEs,ceriumandlanthanum,requiresalotofbeneficiationcost. Thesupplyofthesetwoelementsislikelyhigherthandemand.Forlanthanum,thesystemicsubstitute oflithiumionbatterytechnologyalsoreducesdemand.
3.2.3Reserves
GlobalREEreservesin2014aregivenas130milliontREO.Until2008,globalreserveswere 88milliont(USGS,2009),sothattoday’sreservesaretheresultofrecentexplorationsuccesses.From thesereserves,55milliontbelongtoChina(42%),22milliontareBrazilian(17%),andAustraliaand theUStogetherown5milliont,whichislessthan5%ofglobalreserves(USGS,2015b).Itispossible
FIGURE1
3. OCCURRENCES,MINING,ANDPRODUCTION 7
thatsomeofthecurrentexplorationprojectswilldetectevenmoredepositssothatreservefigures couldincreaseevenmore.Basedoncurrentannualproductionof110,000tREOandsome 130milliontofreserves,areserves-over-production(R/P)valueofnearly1200yearsresults,arange thatisoneofthelongestofallelementsknown.Thisfactshouldhaveacomfortingeffect,butREEs arestillconsideredcriticalelements,becausethetopicofreservesisnocriterionfordetermining criticality.Also,R/Pvaluesareonlyoftheoreticalqualitybecausesomebodyhastostartamining project,whichrequireslargeinvestmentsforseveralyearsbeforesomecashbackcanbeexpected. Obviouslyonlylong-termconsiderationsbasedonpositivefutureearnings,i.e.,highpricesforraw materials,maypushsuchprojects.However,recentminingprojectsshowedthatpredictionshavebeen toooptimistic.
3.2.4MajorMines
Today,themajoractiveREEminesarelocatedinChina,theUS,andAustralia,withseveralglobal projectshavingreachedmaturestatesofdevelopment.InChina,theworld’slargestREEmineis locatedinBayanObo,InnerMongolia,withseparationandrefiningfacilitiessome150kmsouthin Baotou.FurtherminingareasareinSichuanandinthesoutheasternprovinces,wheremainlyHREEs arebeingproduced.IntheUS,theformerMountainPassminewasreopenedin2012andwasplanned toproduceabout20,000tREOsperyearwiththeoptiontorampupproductionto40,000tREOs.In the2014annualreport,however,thecompanyreportedproductionofabout5000tREO,butalso considerablerisksandproblems,sothatprolongedoperationisnotguaranteed.Currentproduction willincreaseonlywhenmarketconditionsimprove(Molycorp,2015c).
TheAustralianLynasCorp.openedtheMountWeldmineinsouthwesternAustralia,whereREEs areminedfromphosphateoresandthecompanyproducednearly4000tREOin2014(Lynas,2015). Plansdated2010talkedabouttheproductionof22,000tREOsin2014(Lynas,2010),whichshows theerrorofthisprediction.Numerousotherexplorationprojectswereorareongoingandafewhave reachedmatureplanningstages. Elsner(2011) reported381knownREprojectsworldwide(Elsner, 2011)atdifferentprogressstages,andTechnologyMetalsResearch(TMR)providedanupdatedlistof advancedREprojects,theTMRAdvancedRare-EarthProjectsIndex,whichcurrentlycontains53in anadvancedstate.Amongthemareprojectswithhugeorebodies,e.g.,inGreenland,Canada,theUS, Kenya,Australia,Brazil,SouthAfrica,andRussia(Hatch,2015).
PredictionsforfutureREEminingwereandarecontroversial.Basically,allfuturedemandpredictions,aspresentedbyminingcompanies,weretoooptimistic.In2010,LynasCorporationestimatedglobaldemandtoreach182,000tin2014(Lynas,2010).Consultantsestimateddemandfor 2015toreach185,000tgivenadatauncertaintyof 15%(ChegwiddenandKingsnorth,2010). Factually,productionin2014was110,000tREO(USGS,2015b);thefirstpredictionwasoffbyabout 50%;howaccuratethesecondestimatewashasyettobeseen.Itis,ofcourse,extremelydifficultto predictmarketdevelopment,especiallyinthecaseofREEs,whensupplyrisksleadtoincreased researchformaterialefficiencyandsubstitutesandthuschangedemand.
3.2.5Ecology
In2009,journalistsreportedondamagingeffectstohumansandtheenvironmentfromREEmining andseparation.HilsumreportedfromBaotou,wheretailingpondswerefullofacidandchemicals (Hilsum,2009),andBradsheraddressedsoutheastChineseminingofionicclaysinwhichREEswere
8 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
minedwithprimitiveandnonsustainingextractionmethodsbydrainingacidsonsoiltodissolveREEs. Theacidsarethenwashedintogroundwaterandriversandpoisonsoils(Bradsher,2009).TheUS EnvironmentalProtectionAgencydealtwiththenegativeenvironmentalimpactsofREEminingin bothChinaandtheUSandconfirmedreporteddamage(EPA,2012).However,thenegativeeffectsto naturearenotsolelyassociatedwithREEminingbutaccompanyallmining,beneficiation,separation, andrefiningactivitiesirrespectiveoftherawmaterial.Miningleadstoencroachmentsonnatureand requiresenergy,fuels,andchemicals,whichhavetoberemediatedaccordingly.Ifthisisnotdone properly,environmentaldamageisinevitable.
ForREEs,environmentaldamagehascertainlyoccurred,buttosolvetheproblem,onemoreaspect hastobeconsidered:Whatcausedtheimpact?Wasitduetononexistingenvironmentalproceduresin legalminingortoinadequateadherencetoexistingregulations,orcandamagebetracedbacktoillegal andprohibitedactivities?
3.3 RECYCLING
RecyclingofseveralREEshasbeendemonstratedatleastinresearchandatlaboratorylevels. Binnemansetal.discussedvariousapproachesinacomprehensivemeta-studywithdisappointing resultsthatin2011onlyabout1%ofREEshadbeenrecycled(Binnemansetal.,2013).Research aboutin-usestocksofREEswasprovidedby DuandGraedel(2011);oneresultfor2007wasthatthe stockofLa,Ce,Nd,andPrequaledfourtimesannualproduction.Incaseofnorecycling,thesheer amountofcurrentdissipativeusebecomesapparent.IfproductsthatcontainREEsarerecycledtoday, usuallybaseandnoblemetalsareregainedbuttheREEsarelostanddisappearinslagsorresiduesor getstoredinlandfillsites.Infact,considerabledissipationhastobeassumedformostREEs.
Nevertheless,recyclingoftheseapplicationareaswasinvestigatedandbasicallyvalidated:the recyclingofphosphorsfromenergy-savinglampsandlight-emittingdiodes(LEDs)toobtainmainly europium,terbium,andyttrium;therecyclingofbatteriesofthenickelmetalhydridetype(NiMH), fromwhichmainlylanthanum,butalsocerium,praseodymium,andneodymiumcanbeextracted;and therecyclingofneodymium-iron-boron(NdFeB)permanentmagnetstoregainneodymium,praseodymium,anddysprosium.Inthelattercase,theMotorRecyclingprojectinGermanyin2011–2014led by Siemens(2011) showedpromisingresultsforfuturerecycling.
3.4 SUBSTITUTION
ThespecialcharacteristicsoftheREEspredisposethemforahugevarietyofapplicationsandfunctions. Formost,nodirectsubstitutesareavailable,i.e.,elementforelement,butseveralsystemicsubstitutesare onthemarket.InthecaseofNdFeBmagnets,nodirectreplacementofNdorPrisknown.Onasystems levelothermagnettypesareavailablebutmostdonotreachthestrengthofNdFeB-typemagnetsor cannotbeproducedsmallenoughwiththesameperformance;directorsystemicsubstitutionsareonly partiallypossible.
OnedisadvantageofNdFeBmagnetsistheirsusceptibilitytooperatingtemperaturesaboveabout 100 C.Oncethesearereached,themagnetsbegintolosetheirremanence(magneticcharacteristics). Theadditionofabout3–6%dysprosiumenhancestheCurietemperature(theresistancetohigher temperatures)sothatthemagnetsaresuitableforapplicationinautomotivetractionmotors.Toreduce
3. OCCURRENCES,MINING,ANDPRODUCTION 9
theneedfordysprosium,whichisoneoftherareREEs,intensiveresearchhasbeguntoidentify substitutesfordysprosiumorevenformagnetswithnoREEs(ARPA-E,2015;ArnoldMagnetics, 2013).
Inthecaseofwindturbines,thosebasedonREEmagnetsdonothaveadirectionsubstitution material;onthesystemiclevel,however,thereareotherefficienttechnologiesinoperationsuchas asynchronousdriveturbinesorelectricallyexciteddirectdriveWTGs.
Forphosphorsinlightingapplications,nopotentialsubstitutesarecurrentlyavailable,butthe inventionofLEDsledtoonewaytoreducephosphorquantities.BatteriesoftheNiMHtypereceived competitionbylithium-iontechnology,whichhasbetterenergydensitiesandthussmallersizes,faster recharging,nomemoryeffect,lessdischarging,andlongerpoweravailability(Bosch,2015).
Insummary,thesearchforsubstitutessoundsambiguousbecauseforseveralapplicationssystemic alternativesareavailable(e.g.,windturbines);theR/Pismorethan1200years,andresearchon recyclingispushedforward.
4. APPLICATIONS
TheREEsareagroupof17elementsthathavesomesimilaritiesbutalsoindividualcharacteristicsso thateachelementhasavarietyofapplications,summarizedin Table1
ItshouldbenotedthatthislistdoesnotshowwhichquantitiesofREEsarerequiredinthevarious applications,nordoesitsaywhetherdemandandsupplyarebalancedorifthereexistsurplusesor deficitsofsupply.
Anotherdepictionofapplicationsisoftenusedalongapplicationareassuchaspermanentmagnets, phosphors,batteryalloys,fluidcatalyticcracking(FCC),ceramics,glassadditives,polishingpowders, autocatalysts,andmetallurgy. Table2 showstheuseofselectedREEsinvariousapplications.
AdominantargumentisoftencitedthatREEsareindispensableoratleastnecessaryforhightechnologyapplications,lifestyleproducts,andproductsandsystemsthatguaranteethechangeover toalow-carbonenergysociety.TheconsiderationthatREEsarerequiredforhigh-technologyproducts iscorrect,butthismessagedoesnotsaywhichelementisrequiredforwhichapplicationinwhat quantity.Cerium,forexample,isrequiredtoproduceautomotivecatalyststoenable,togetherwith noblemetalsplatinumorpalladium,anefficientexhaustemissioncontrol.Thisapplicationiscertainly ahigh-techoneandservestheenvironment.CeriumiscurrentlythemostavailableREEandthusisnot criticalwithrespecttogeneralphysicalexistence,noristhereasupplyriskexpected,becauseChina itselfprobablyisinterestedinsellinghugeamountsof(cheap)ceriumtoobtainatleastsomecashback tosupportoperations.
ThestatementthatwindturbinesrequireREEsisoftenheard,butagainthisdogmatic-sounding “fact”usuallyimpliesawrongperception,that all windturbinesrequireREEs.Thisdefinitelyis notthecase.TheshareofasynchronouswindtechnologythatdoesnotcontainREE-basedgenerators wasatabout82%attheendof2013(Smith,2014),with318GWofwindenergyinstalledglobally (GWEC,2014).Theremaining18%weredirectdrivesystems,ofwhichabouthalfwereENERCON turbinesthatuseseparatelyexcitedmagnetsusingcopperwiring(Zepf,2015).Infact,about9%or about30GWofinstalledWTGsarebasedonREEmagnets.Directdrivesystemsincorporatefeatures andcharacteristicsthatmakethemmoresuitableoradvantageousforlocationssuchasoffshore windparks.
10 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
Table1Listof(Selected)REEApplications
La · Nickelmetalhydridebatteries(Prius,forklifts)
· HydrogenstoragealloysLaNi3
· Alloyingagent
· Sputteringtargets
· Opticallenses
· Hostforphosphors
· Petroleumfluidcatalyticcracking(FCC)
· Cathodematerialinsolidoxidefuelcell
Ce · Catalystforautomotivethree-way-emission catalysts
· Petroleumfluidcatalyticcracking(FCC)
· Glassadditives
· Decolorizer,opacifier
· Ultravioletlightabsorption
· Polishingmediaforglass,lenses, semiconductors
· Phosphors
Pr · AdditivetoNd2Fe14B
· Pr-stabilizedZrO2
· Coloringagents
· Glassblower’sandwelder’sgoggles(withNd)
· Telecommunicationsystemsasdopantin fluoridefibers
Nd · Nd2Fe14Bpermanentmagnets
· AlloyingagentforMgalloys
· Lasers
· Metalhalidelamps
· Nd-stabilizedZrO2 syntheticgems
Sm · SmCopermanentmagnets
· Coloringagent
· Phosphors
· Nuclearindustry radiationshielding
Eu
· Phosphors(redcolors)
· Nuclearindustry radiationshielding
Gd · Hostforphosphors
· Magneticresonanceimagingcontrastagents
· Nuclearfuelrodaddition,safety
· X-rayintensifyingscreen
· LaserYGG(yttrium-gadolinium-garnet)
Tb · Phosphors(green)
· X-rayintensifyingscreens
· Terfenol-D(TbxDyy)Fe2
· Magneto-restrictivealloy
Note:Thisislistisnotall-inclusive.
Source: Gschneidner(2011) and GuptaandKrishnamurthy(2005)
Dy
· AdditivetoNd2Fe14Bpermanent magnetstoimprovehigh-temperature performance,increasecoercivity
· Phosphors
· Nuclearindustry radiationshielding
Ho
· Research
· Metalhalidelamps
· YIG(yttrium-iron-garnet)lasers
· YAGandYLFsolid-statelasers
Er
· Fiberoptics signalamplifiers
· Lasers(mainlymedical/surgicaland dentaluse)
· Coloringagent
Tm
· X-rayintensifyingscreens
· Metalhalidelamps
· Research
Yb
· Opticallenses
· Pressuresensors(metal)
· Research
Lu
Sc
Y
· Research
· HostforscintillatordetectorsandX-ray phosphors
· High-performancealloys
· Lasers
· Phosphors
· Ceramics
· Hostforphosphors
· YAGlaserhostmaterial
· Y-stabilizedZrO2
· YIG(yttrium-iron-garnet) communications,radars,phaseshifters
· YBa2CuO2 high-temperature superconductor
· Alloyingagent
4. APPLICATIONS 11
Notes:PercentagesshowtheshareofthesingleREEsintheapplicationarea.Forexample,FCCmeansthatfromallREEsused,90%isLaand10%isCe.Thesevalueshaveno connectionwithactualquantitativenumbers,nordotheyhintofsupply demand(im)balances. Actualproductionin2010was126,000tREO,asreportedbythe USGS(2015b),p.2012,MineralsYearbookRareEarths.AdvancedreleaseasofFebruary2015. aLynas(2010):InvestorPresentation,March2010. bCalculatedusingdemandestimatepercentageswithestimatedproductionfor2010.
La (%)a Ce (%)a Pr (%)a Nd (%)a Sm (%)a Eu (%)a Gd (%)a Tb (%)a Dy (%)a Y (%)a Check Sum Demand Estimate (2010)a (%)a Production Estimate: 134,000t REO (2010)a (tREO)b Permanent magnets 23692151002432,160 Phosphors9105256910068040 Battery alloy 503431031001216,080 Fluid catalytic cracking 9010 10016 21,440 Ceramics1712612 531001 1340 Glass additives 246613 2968 10,720 Polishing powders 31654 10015 20,100 Auto catalysts 59023 1007 9380 Metallurgy2652517 1009 12,060
Table2ShareofREEsinVariousApplicationAreas
12 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
5. PRICEDEVELOPMENTANDCONSEQUENCES
Untilabout2008to2009,theprices4 forREEs,whicharenottradedonthestockexchanges,were relativelystableandmoderate.In2010,pricesforbasicallyallREEsincreasedmoderately,andin early2011pricessoaredtoanunprecedentedpricepeakinJuly2011.Thispriceexaggerationstruck allREEswithsomevariations.Sharesofstockmarketsofnon-Chineseminingcompaniesclimbedin parallel,pushingtheiroperationalstatus.AwaytobreaktheChineseproductionmonopolywasin sight.FromtheendofJulyonward,however,pricesdeclinedandthetrendcontinuedinprincipleuntil mid-2015,withafewvariationsforsomeREEsinbetween.
Theexpectationofhighmarketpricesforcriticalelementsisnolongervalid.Deceasingprices causedthesharesofnewminestodeclineaswell,sothattodaythesecompaniesfaceseverefinancial problems.ThechangeintheChineseexportsystemin2015raiseddifferenthopes.InJanuary,the exportquotawasrevokedandinMay,exporttaxeswererelieved.Lowerpriceswereexpectedby customers,andhigherpricesbyproducersasaresultofnewandclearregulations.Indeed,prices declinedevenfurther,maybebecauseMolycorp,Inc.,hadfiledavoluntarypetitionforreliefunder Chapter11oftheUSBankruptcyCodeandappliedforrestructuringsupport(Molycorp,2015a).Soon, pressreleasesannouncedtheendoftheREEhype(e.g.,DPAreleasepublishedby FAZ,2015).
6. POLITICSANDPOLICIES
TheoftendeterminedcriticalityoftheREEsmainlycausedbytheChineseproductionmonopolyand theexportrestrictionsimposedonvariousREEproductsmadethetopicageopoliticalissue.The followinginformationisbasedon Zepf(2013),whodealtwithChinesepredominanceinthiscase.
AfterclosureoftheUSmineinMountainPassin2000,China’sproductionmonopolywassubstantiated.Atthesametime,thefirstexportquotasweredisseminatedbyChinabutwereneverusedto theirfullestextent.In2006and2008,Chinesecompaniesimposedproductionandprocessingquotas. Exporttaxesandthereductionofexportquotasfor2010eventuallyledtoacriticalperception regardingthefuturesupplyofREEs.Accompaniedbyunprecedentedpricehypeinmid-2011,fears existedthatthesupplyofREEscouldactuallybeatstake.
ChinaarguedthattheyhadtosolvesevereenvironmentalproblemsthatoccurredduringREE miningandprocessing.DisputesettlementsbroughtforwardtotheWorldTradeOrganization(WTO) bytheUS,Japan,andEuropeagainstthisargumentandagainsttheChinesepracticeofexportrestrictionswerepartiallygranted(Zepf,2013).Asaconsequence,Chinawithdrewtheexportquotain thebeginningof2015andabolishedtheexporttaxesasofMay1,2015.Instead,anewREresourcetax wasintroducedtoreplacerecentpolicies.Thenewratesarestaggeredwith11.5%forLREEproducts outofInnerMongoliaand27%forMREEandHREEproducts(LOC,2015).
IntheUS,themonopolisticproductionofChinawasseentobecriticaltothedefenseindustry, whichrequiresREEsforavarietyofproductsandweaponsystems;consequently,REEswereputhigh ontheagenda(GAO,2010).TobreakChina’sdominanceoverproduction,numerousexploration projectswerestartedworldwideandafewmineshavesucceededasfarashavingstartedproduction. Lostknow-howinextractiveREEindustrieshasbeenreworked.Minersandindustriesattheendofthe
4MarketpricescanberetrievedfromInternetplatformssuchas www.metal-pages.com or www.asianmetal.com.
6. POLITICSANDPOLICIES 13
productionchainhavestartedverticalintegration-typecooperationtosupportminingandsafeguard supply.Thisisshown,forexample,bysignedcooperationbetweenMolycorp,ShinEtsu,andSiemens toprovideREEsupplyformagnetproductionandthesubsequentmanufactureofwindturbinesovera 10-yearperiod(Molycorp,2015b).Next,intensiveresearchprojectsespeciallyintheUSandEurope weresetuptoinvestigatematerialefficienciesandsearchforpartialorcompletesubstitutionofREEs inseveralapplications.Optionsforrecyclingincreasinglyimprovedandresearchisfocusedon obtainingprocedurestorunlarge-scalerecycling.
7. WHEREWEARETODAY
Withoutquestion,theREEsaresomeofthemostinterestingmaterialsthatshowimpressivecharacteristicsinahugevarietyofapplications.Theserangefromsimplelighterflintstomagnetsfor speakers,motors,generators;specialsteels;optimizedfluidcatalyticcrackingtoachievehigheryields inoilrefining;lasers;batteries;andmanymore.Theyallowtheproductionoflightweightmaterials withbetterstrengthwithafewpercentadditionsofREEs.Someoftheseproductscanhelpinlow carbontechnologiesandapplicationsandprovidenicelifestylegadgets.Otherusesarerelatively profanebutstillrequired.So,fromaneconomicimportancepointofview,theREEscancertainlybe consideredofhighvalue.
ThesupplysideisdominatedbythecurrentandperhapsfutureproductionmonopolyofChina. Supplyriskscanbeconsideredhighbecauseinprincipleonlyonesuppliercountryisavailable.Onthe otherhand,Chinaitselfisparticipatingintheglobalmarket,sotheriskmaybelowerthananticipated. RegulatoryinterventionsinChina’sexportpracticesthatwerenotaccordingtoWTOrulessucceeded atfirstbecausequotasandtaxeshavebeencanceled,butnewlyannouncedresourcetaxesmayshow thatintheendnolowerpricesinthisrespectcanbeexpected.ThismayproveadvantageousforChina, fortheenvironment(asmoremoneypotentiallyisavailable),andfornon-Chineseminers,andhigher pricesmayrendereconomicrecyclingpossible.
Rareearthelementshaveavastarrayoffunctionalitiesthatmakethesematerialsidealcandidates forapplicationsandproductsinallaspectsoflife.ThecomplexstoryoftheREEsstillneedstobe entangledtounderstandtheirrelationshipsandtoidentifysolutionsforREEuse.Thisbookaddresses thesechallengestothebenefitoffutureeconomicandecologicREEuse.
ACKNOWLEDGMENTS
Theauthor’sworkissponsoredbytheBayerischesStaatsministeriumfuerBildungundKultus,Wissenschaftund Kunst(BavarianMinistryforEducation,Culture,ScienceandArts)underthegraduateprogram“Resource strategicconceptsforsustainableenergysystems”attheUniversityofAugsburg.
REFERENCES
Angerer,G.,Marscheider-Weidemann,F.,Luellmann,A.,Erdmann,L.,Scharp,M.,Handke,V.,Marwede,M., 2009.RawMaterialsforEmergingTechnologies.TheInfluenceofSector-specificFeedstockDemandon FutureRawMaterialsConsumptioninMaterial-IntensiveEmergingTechnologies.Finalreport–Abridged. FraunhoferIRBVerlag,Stuttgart,Germany.
14 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
Argus,2015.ArgusWhitePaper:ImpactofChangestoChinesePolicyontheRareEarthMarketin2015. Retrievedfrom: https://www.argusmedia.com/Methodology-and-Reference/w/media/4EFDC00E1F484177 A8268ED9C9C95D27.ashx.
ArnoldMagnetics,2013.EnergyCriticalMagneticMaterialManufacturingProcesses.Retrievedfrom: http:// www.arnoldmagnetics.com/WorkArea/DownloadAsset.aspx?id¼5951.
ARPA-E,2015.ProgramOverviewREACT–RareEarthAlternativesinCriticalTechnologies.Retrievedfrom: http://arpa-e.energy.gov/?q¼arpa-e-site-page/view-programs
Binnemans,K.,Jones,P.T.,Blanpain,B.,VanGerven,T.,Yang,Y.,Walton,A.,Buchert,M.,2013.Recyclingof rareearths:acriticalreview.JournalofCleanerProduction51(2013),1–22. http://dx.doi.org/10.1016/ j.jclepro.2012.12.037.
Bosch,2015.VergleichmitNiCd,NiMH(ComparisonLi-IontechnologywithNiCdandNiMH(translation oftheauthor)).Retrievedfrom: http://www.bosch-professional.com/static/specials/li-ion/de/de/technologycomparison.html
Bradsher,K.,December26,2009.Earth-FriendlyElements,MinedDestructively.TheNewYorkTimes. Chegwidden,J.,Kingsnorth,D.J.,2010.Rareearths:facingtheuncertaintiesofsupply.In:Presentationatthe 6thInternationalRareEarthsConference,HongKong,November2010.Retrievedfrom: http://download .docslide.us/uploads/check_up03/192015/554c0dbeb4c905f1518b4632.pdf
Connelly,N.G.,2005.NomenclatureofInorganicChemistry:IUPACRecommendations2005.TheRedBook. RoyalSocietyofChemistry,Cambridge.
Du,X.,Graedel,T.,2011.Globalin-usestocksoftherareearthelements:afirstestimate.EnvironmentalScience andTechnology45,4096–4101. http://dx.doi.org/10.021/es102836s.
Elsner,H.,2011.KritischeVersorgungslagemitschwerenSeltenenErden–Entwicklung“GruenerTechnologien” gefaehrdet?(Criticalsupplyofheavyrareearths–developmentofgreentechnologiesatstake?(translationby theauthor))CommodityTopNews36.Retrievedfrom: http://www.bgr.bund.de/DE/Gemeinsames/Produkte/ Downloads/Commodity_Top_News/Rohstoffwirtschaft/36_kritische-versorgungslage.pdf?__blob¼publication File&v¼4
EPA,2012.RareEarthElements:AReviewofProduction,Processing,Recycling,andAssociatedEnvironmental Issues.UnitedStatesEnvironmentalProtectionAgency,OfficeofResearchandDevelopment,Washington,D.C. Ernst,Young,2011.TechnologyMinerals.TheRareEarthsRaceIsOn!Retrievedfrom: http://de.slideshare.net/ Tehama/technology-minerals-the-rare-earths-race-is-on-april-2011 . EuropeanCommission,2010.CriticalRawMaterialsfortheEU.ReportoftheAd-hocWorkingGroupon DefiningCriticalRawMaterials.
FAZ,July06,2015.LetzterUS-Fo ¨ rderepleite:HypeumSelteneErdenistvorbei(Bankruptcyoflast US-producer:hypearoundrareearthelementsisover(translationofauthor)).FrankfurterAllgemeine Zeitung,Agenturmeldung.Retrievedfrom: http://www.faz.net/agenturmeldungen/dpa/letzter-us-foerdererpleite-hype-um-seltene-erden-ist-vorbei-13687628.html.
GAO,2010.GovernmentAccountabilityOffice.Subject:RareEarthMaterialsintheDefenseSupplyChain. GAO-10–617R.Retrievedfrom: http://www.gao.gov/new.items/d10617r.pdf (07.07.15.).
GschneidnerJr.,K.A.,2011.Therareearthcrisis–thesupply/demandsituationfor2010–2015.MaterialMatters6. Article2.
Gupta,C.K.,Krishnamurthy,N.,2005.ExtractiveMetallurgyofRareEarths.CRCPress,BocaRaton. GWEC,2014.GlobalWindReport:AnnualMarketUpdate2013.GlobalWindEnergyCouncil.Retrievedfrom: http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf.
Hatch,G.,2015.TMRAdvancedRare-EarthProjectsIndex.Retrievedfrom: http://www.techmetalsresearch.com/ metrics-indices/tmr-advanced-rare-earth-projects-index/.
Hilsum,L.,2009.“RareEarth”ShortageThreatensGreenRevolution.ByChannel4News.Retrievedfrom: http:// www.channel4.com/news/articles/science_technology/rareþearthþshortageþthreatensþgreenþrevolution/ 3451837.html
REFERENCES 15
Hurst,C.,2010.China’sRareEarthElementsIndustry:WhatCantheWestLearn?InstitutefortheAnalysisof GlobalSecurity(IAGS),Washington,D.C.
JRC,2011.CriticalMetalsinStrategicEnergyTechnologies.AssessingRareMetalsasSupply-ChainBottlenecks inLow-CarbonEnergyTechnologies.EuropeanCommission,EuropeanUnion,Luxembourg. Kingsnorth,D.,2010.Rareearths:facingnewchallengesinthenewdecade.In:PresentationattheSMEAnnual Meeting2010inPhoenixArizona.Retrievedfrom: http://www.terramagnetica.com/downloads/IMCOA2010-03-SME-Presentation-Final-R2.pdf
LOC,2015.LibraryofCongress:China–ResourceTaxesAdjustedforRareEarth,Tungsten,Molybdenum. Retrievedfrom: http://www.loc.gov/lawweb/servlet/lloc_news?disp3_l205404398_text
Lynas,2010.InvestorPresentation2010.Retrievedfrom: https://www.lynascorp.com/Presentations/2010/ Investor_Presentation_March_10_823534.pdf
Lynas,2015.FromMinetoMarket.LynasCorporationAnnualReport2014.Retrievedfrom: https://www .lynascorp.com/Annual%20Reports/2014%20Annual%20Report.pdf
Molycorp,2015a.Molycorp,Inc.(15–11357).(Chapter11)case.Retrievedfrom: https://cases.primeclerk.com/ molycorp
Molycorp,2015b.NewsReleaseApril15,2015:MolycorpChosentoSupplyRareEarthsforUseinHighEfficiencySiemensWindTurbineGenerators.Retrievedfrom: http://www.molycorp.com/molycorpchosen-to-supply-rare-earths-for-use-in-high-efficiency-siemens-wind-turbine-generators/ Molycorp,2015c.Form-10k.AnnualReportfortheFiscalYearEndedonDecember31,2014.Retrievedfrom: http://phx.corporate-ir.net/External.File?item¼UGFyZW50SUQ9NTg1MDIxfENoaWxkSUQ9MjkzMTg4f FR5cGU9MQ¼¼&t¼1.
Moores,S.,2014.ChinaAdmits40%ofMagneticRareEarthsSupplyIsIllegal.Mining.com.BenchmarkMineral Intelligence,October21,2014.Retrievedfrom: http://www.mining.com/web/china-admits-40-of-magneticrare-earths-supply-is-illegal-2/ NRC,2008.Minerals,CriticalMinerals,andtheU.S.Economy.NationalResearchCounciloftheNational Academies.TheNationalAcademiesPress,Washington,D.C. Reiners,C.S.,2001.WasistdasSelteneandenSeltenenErden?EinechemiedidaktischeReflexion(Whatisthe “rare”attherareearths?Achemical-didacticalreflexion(translationoftheauthor)).ChemieinunsererZeit35 (2),110–115.
Reuters,2010.FightforRareEarth.Retrievedfrom: http://www.groenerekenkamer.nl/download/RareEarths.pdf. Rudnick,R.L.,Gao,S.,2003.Compositionofthecontinentalcrust.In:Holland,H.D.,Turekian,K.K.(Eds.), TreatiseonGeochemistry.PergamonScienceandTechnologyBooks,SanDiego,pp.1–64. Siemens,2011.RecyclingElectricMotorsasSourceofRawMaterials.Retrievedfrom: http://www.siemens.com/ innovation/en/news/2011/e_inno_1137_2.htm.
Skinner,B.J.,1976.Asecondironageahead?AmericanScientist64(3),258–269. Smith,P.,October06,2014.QuestionsoftheWeek:WillPermanentMagnetGeneratorsReplaceDFIG? WindpowerMonthly.Retrievedfrom: http://www.windpowermonthly.com/article/1315794/questionweekwill-permanent-magnet-generators-replace-dfig.
UNCTAD,2014.CommoditiesataGlance.Specialissueonrareearths.No.5.Retrievedfrom: http://unctad.org/ en/PublicationsLibrary/suc2014d1_en.pdf
USDOE,2010.CriticalMaterialsStrategy.Retrievedfrom: http://energy.gov/sites/prod/files/piprod/documents/ cms_dec_17_full_web.pdf
USDOE,December2011.CriticalMaterialsStrategy.Retrievedfrom: http://energy.gov/sites/prod/files/DOE_ CMS2011_FINAL_Full.pdf
USGS,2002.RareEarthElements–CriticalResourcesforHighTechnology.USGSFactSheet087-02.Retrieved from: http://pubs.usgs.gov/fs/2002/fs087-02/
USGS,2009.MineralCommoditySummaries,January2009.RareEarths.Retrievedfrom: http://minerals.usgs .gov/minerals/pubs/commodity/rare_earths/mcs-2009-raree.pdf
16 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE
USGS,November2014.TheRare-earthElements–VitaltoModernTechnologiesandLifestyles.FactSheet 2014-3078.Retrievedfrom: http://pubs.usgs.gov/fs/2014/3078/pdf/fs2014-3078.pdf
USGS,2015a.HistoricalData.DS140,RareEarthsStatistics.AsofJanuary30,2015.XLS-spreadsheet. Retrievedfrom: http://minerals.usgs.gov/minerals/pubs/historical-statistics/ds140-raree.xlsx
USGS,2015b.MineralCommoditySummaries2015.Retrievedfrom: http://minerals.usgs.gov/minerals/pubs/ mcs/2015/mcs2015.pdf.
Xinhua,2014.ChinaIllegalRareEarthMiningHit40,000TonnesEachYear,Expert.Retrievedfrom: http://en .xinhua08.com/a/20141103/1406631.shtml.
Zepf,V.,2013.RareEarthElements.ANewApproachtotheNexusofSupply,DemandandUse.Exemplified alongtheUseofNeodymiuminPermanentMagnets.Springer,Berlin,Heidelberg.
Zepf,V.,2015.DasverkannteRecyclingpotentialderSeltenenErden–quantitativeErgebnissefurNeodymin Deutschand(TheunknownrecyclingpotentialofREEs–quantitatieresultsfurneodymiuminGermany. (translationoftheauthor)).In:Thome ´ -Kozmiensky,K.J.,Goldmann,D.(Eds.),RecyclingundRohstoffe, Band8.TKVerlagKarlThome ´ -Kozmiensky,Neuruppin,pp.463–476.
ZhiLi,L.,Yang,X.,2014.China’sRareEarthOreDepositsandBeneficiationTechniques.Retrievedfrom: http:// www.eurare.eu/docs/eres2014/firstSession/XiaoshengYang.pdf.
REFERENCES 17