Rare earths industry technological economic and environmental implications 1st edition leal filho wa

Page 1

Rare earths industry : technological, economic, and environmental implications 1st Edition Leal Filho Walter

Visit to download the full and correct content document: https://textbookfull.com/product/rare-earths-industry-technological-economic-and-envi ronmental-implications-1st-edition-leal-filho-walter/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Biota Grow 2C gather 2C cook Loucas

https://textbookfull.com/product/biota-grow-2c-gather-2c-cookloucas/

Sustainable Economic Development: Green Economy and Green Growth 1st Edition Walter Leal Filho

https://textbookfull.com/product/sustainable-economicdevelopment-green-economy-and-green-growth-1st-edition-walterleal-filho/

International Business, Trade and Institutional Sustainability Walter Leal Filho

https://textbookfull.com/product/international-business-tradeand-institutional-sustainability-walter-leal-filho/

Climate Change and the Role of Education Walter Leal Filho

https://textbookfull.com/product/climate-change-and-the-role-ofeducation-walter-leal-filho/

University Initiatives in Climate Change Mitigation and Adaptation Walter Leal Filho

https://textbookfull.com/product/university-initiatives-inclimate-change-mitigation-and-adaptation-walter-leal-filho/

E Mobility in Europe Trends and Good Practice 1st Edition Walter Leal Filho

https://textbookfull.com/product/e-mobility-in-europe-trends-andgood-practice-1st-edition-walter-leal-filho/

Towards a Sustainable Bioeconomy Principles Challenges and Perspectives 1st Edition Walter Leal Filho

https://textbookfull.com/product/towards-a-sustainablebioeconomy-principles-challenges-and-perspectives-1st-editionwalter-leal-filho/

International Perspectives on Climate Change Latin America and Beyond 1st Edition Walter Leal Filho

https://textbookfull.com/product/international-perspectives-onclimate-change-latin-america-and-beyond-1st-edition-walter-lealfilho/

Climate Change Impacts and Adaptation Strategies for Coastal Communities 1st Edition Walter Leal Filho

https://textbookfull.com/product/climate-change-impacts-andadaptation-strategies-for-coastal-communities-1st-edition-walterleal-filho/

IsmarBorgesDeLima

UniversidadeEstadualdeRoraima,UERR,Brazil,&Southern CrossUniversity,SCU,GoldCoast,QLD,Australia

HamburgUniversityofAppliedSciences,ResearchandTransfer Centre“ApplicationsofLifeSciences”,Hamburg,Germany

RareEarthsIndustry Technological,Economic,and EnvironmentalImplications
WalterLealFilho
AMSTERDAM•BOSTON•HEIDELBERG•LONDON•NEWYORK•OXFORD PARIS•SANDIEGO•SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA

Copyright © 2016ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligence orotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

ISBN:978-0-12-802328-0

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ForinformationonallElsevierpublications visitourwebsiteat http://store.elsevier.com/

ListofContributors

AidaAbbasalizadeh

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

VassilikiAggelatou InstituteofGeologyandMineralExploration,Athens,Greece

ZachariasAgioutantis DepartmentofMiningEngineering,UniversityofKentucky,Lexington,KY,USA

UweAltenberger UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany

HelmutAntrekowitsch

ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria

EfthymiosBalomenos

NationalTechnicalUniversityofAthensSchoolofMiningandMetallurgicalEngineering, ZografosCampus–Athens,Greece

GeorgeBarakos

HZDR–HelmholtzInstituteFreibergforResourceTechnologies,Freiberg,Germany

GregoryB.Barnes

G.B.Barnes&Associates,SouthPerth,WA,Australia

EvaBartekova ´

UnitedNationsUniversity-MERITandMaastrichtUniversity,Maastricht,TheNetherlands

NinaK.Boesche

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany

IsmarBorgesdeLima

UniversidadeEstadualdeRoraima,UERR,Brazil,&SouthernCrossUniversity,SCU,Gold Coast,QLD,Australia

E.Bourbos

SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece

MaximilianBrell

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany

PanagiotisDavris

NationalTechnicalUniversityofAthensSchoolofMiningandMetallurgicalEngineering, ZografosCampus–Athens,Greece

ElsDeCanck

DepartmentofInorganicandPhysicalChemistry,CenterforOrderedMaterials,Organometallics andCatalysis(COMOC),GhentUniversity,Ghent,Belgium

xix

JeriffaDeClercq

DepartmentofIndustrialTechnologyandConstruction,IndustrialCatalysisandAdsorption Technology(INCAT),GhentUniversity,Ghent,Belgium

JeroenDeDecker

DepartmentofInorganicandPhysicalChemistry,CenterforOrderedMaterials,Organometallics andCatalysis(COMOC),GhentUniversity,Ghent,Belgium

BayarmagnaiEnkhzul

CentralGeologicalLaboratory,Ulaanbaatar,Mongolia

AndreaFerrari

D’AppoloniaS.p.A.,Genoa,Italy

I.Giannopoulou

SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece

BertilGrundfelt

KemaktaKonsultAB,Stockholm,Sweden

X.Guo

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

JensGutzmer

InstituteofMineralogy,TUBergakademieFreiberg,Freiberg,Germany

SabrinaHerrmann

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg, Germany

LarsOlofHo ¨ glund KemaktaKonsultAB,Stockholm,Sweden

SotirisN.Kamenopoulos

SchoolofMineralResourcesEngineering,TechnicalUniversityofCrete,Chania,Greece

A.Karantonis

SchoolofChemicalEngineering,NationalTechnicalUniversityofAthens,Athens,Greece

S.Kaya

DepartmentofMetallurgicalandMaterialsEngineering,MiddleEastTechnicalUniversity (METU),Ankara,Turkey

MirandaKeith-Roach

KemaktaKonsultAB,Stockholm,Sweden

JamesC.Kennedy

ThREEConsulting,St.Louis,MO,USA

KostasKomnitsas

SchoolofMineralResourcesEngineering,TechnicalUniversityofCrete,Chania,Greece

xx LISTOFCONTRIBUTORS

FriederikeKo ¨ rting

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany

AnneKousa

GeologicalSurveyofFinland,Kuopio,Finland

JukkaLaukkanen

GeologicalSurveyofFinland,GTKMineralprocessing,Outokumpu,Finland

WalterLealFilho

HamburgUniversityofAppliedSciences,ResearchandTransferCentre“ApplicationsofLife Sciences”,Hamburg,Germany

LingZhiLi

ChinaWesternMiningCo.,Ltd,Xining,Qinghai,P.R.China

BatzorigLkhagvasuren

CentralGeologicalLaboratory,Ulaanbaatar,Mongolia

ChristinLubitz

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany

StefanLuidold

ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria

PalomaMagistrati

FenMineralsA/S,Norway

NabeelA.Mancheri

InstituteofSocialScience,UniversityofTokyo,Tokyo,Japan

DelgermaaMargai

MongolGazarLLC,Ulaanbaatar,Mongolia

ChristianMielke

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany

HelmutMischo

InstituteforMiningandSpecialCivilEngineering,TUBergakademieFreiberg,Freiberg, Germany

Nicolo ` Olivieri

D’AppoloniaS.p.A.,Genoa,Italy

DimitriosPanias

SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece

AnnePapenfuß

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany;UniversityofPotsdam,Potsdam-Golm,Telegrafenberg,Germany

LISTOFCONTRIBUTORS xxi

IoannisPaspaliaris

SchoolofMiningandMetallurgicalEngineering,NationalTechnicalUniversityofAthens, Athens,Greece

SebastiaanPeelman

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

EsaPohjolainen

GeologicalSurveyofFinland,Espoo,Finland

AlexanderPoscher

ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria

V.Prakash

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

ChristianRogass

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany

RobertoV.Santos

Servic¸oGeolo ´ gicodoBrasil–CPRM–SGAN603Conj.“J”ParteA–1 andar–CEP70.830-100–Brası´lia–DF,Brazil

HolgerSchnideritsch

ChairofNonferrousMetallurgy,MontanuniversitaetLeoben,Leoben,Austria

HansK.Schønwandt

G.B.Barnes&Associates,SouthPerth,WA,Australia

SeshadriSeetharaman

DepartmentofMaterialsScienceandEngineering,RoyalInstituteofTechnology,Stockholm, Sweden

DeborahShields

DepartmentofEconomics,ColoradoStateUniversity,FortCollins,CO,USA

JiltSietsma

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

FranciscoV.Silveira

Servic¸oGeolo ´ gicodoBrasil–CPRM–SGAN603Conj.“J”ParteA–1 andar–CEP70.830-100–Brası´lia–DF,Brazil

ZhiH.I.Sun

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

LucyTakehara

Servic¸oGeolo ´ gicodoBrasil–CPRM–RuaBancodaProvı´ncia,PortoAlegre-RS,Brazil

xxii LISTOFCONTRIBUTORS

LidongTeng

DepartmentofMaterialsScienceandEngineering,RoyalInstituteofTechnology,Stockholm, Sweden

SabineTonn

HelmholtzCentrePotsdam–GFZGermanResearchCentreforGeosciences,Potsdam, Telegrafenberg,Germany

Y.A.Topkaya

DepartmentofMetallurgicalandMaterialsEngineering,MiddleEastTechnicalUniversity (METU),Ankara,Turkey

AkseliTorppa

GeologicalSurveyofFinland,Kuopio,Finland

ThomasUlrich

DepartmentofGeoscience,AarhusUniversity,Aarhus,Denmark

PascalVanDerVoort

DepartmentofInorganicandPhysicalChemistry,CenterforOrderedMaterials,Organometallics andCatalysis(COMOC),GhentUniversity,Ghent,Belgium

XiaoshengYang

GeologicalSurveyofFinland,GTKMineralProcessing,Outokumpu,Finland

YongxiangYang

DepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft, TheNetherlands

VolkerZepf

ScientistattheChairofResourceStrategy,UniversityofAugsburg,Germany

LISTOFCONTRIBUTORS xxiii

Preface

Rareearthsareelementsthatcomprisecriticalcomponentsofmanyofourmoderntechnological devicesandeverydayelectronics.Theirdemandworldwideisprojectedtoincrease,giventheir manyapplications.TheEuropeanUnion(EU)importsmorethan90%ofitsrareearthmetal (REMs)needsfromcountriessuchasChinabecausethereisnotenoughinternalsupply.Experts predictthatthedemandforthesemetalswillgrowasconsumerpreferencesshifttowardhigh-tech and“green”products.Toensuresupplysecurity,theEUistryingtoimproveaccesstorareearths, reducetheirconsumption,andenhanceextractionconditionsacrossthecontinent.Yet,despitethe relevanceofandneedforrareearths,theirtechnologicalandeconomicelementsandtheenvironmentalimplicationsoftheirexplorationandtradearenotfullyunderstood.Thisinnovativebook willprovidesuchacontributionandwilladdressthisgapinthebookmarket.

Amainmotivationforproposingabookonrareearthshasbeentheglobalincreasingdemandfor critical,updated,andextensiveanalysisandinformationonthetheme.Thebookhasaninterdisciplinaryorientationwithafocusontechnical,scientific,academic,economic,andenvironmental andmarketissues;thus,itwidelycoversmultipleinterestsoftheaudience.Thechaptersprovide updatedinformationandapricelessanalysisofthetheme.Theypresentthelatesttechniques, approaches,processes,andtechnologiesthatcanreducethecostsofcompliancewithenvironmental concernsinawaythatmakesitpossibletoanticipateandmitigateemergingproblems.Attheendof eachmainpartofthebook,acriticalsummaryoutlinesthetechnological,economic,andenvironmentalimplicationsoftherareearthreserves,explorations,andmarket.

Atthebeginning,achapteroffersaconcisebutmeaningfulgeopoliticalanalysisofthecurrent worldwidescenarioandtheimportanceofrareearthexplorationforgovernments,corporategroups, andlocalstakeholders.Rareearthelements(REEs)arecomposedof15chemicalelementsinthe periodictable.Scandiumandyttriumhavesimilarproperties,withmineralassemblages,andare thereforereferredtoalikeintheliterature.Althoughtheyareabundantontheplanetsurface,rareearths arenotfoundinconcentratedform,whichmakesthemeconomicallyvaluablebecauseofthechallenges anddifficultiesinobtainingthem.Theirimportanceintheindustryliesinthefactthatalmostallnewer technologiesrequiretheserareminerals,suchassolarandwindenergysystems,smartphones,theaerospaceindustry,high-efficiencylightingandelectricmotors,andhybridandelectricvehicles.

Inviewofthehighdemandforrareearths,theirexplorationshouldoccuronasustainablebasis usingprocesseswith“green”technologies;inthissense,recyclinghasapivotalroleandhasits ownspaceanddiscussioninthebook.Thebookprovidesadescriptionofthemanyfacetsand complexitiesrelatedtorareearthexploration,development,anddisposal,whichhaverevealedthemselvestobeofutmostimportancetotheeconomiesofdevelopedanddevelopingcountries,among whichareChina,theUnitedStates,Australia,India,Brazil,andGermany,tomentionjustafew. Rareearthshavesuddenlybecomeanationaltechnologicalandeconomicprioritybecausecountries haveaimedtobecomeevenmorecompetitiveintheworldmarket,andthesemineralsareunquestionablyessential.

Asobservedinthemarketfactsheetsandinstitutionalreports,worldwidedemandisexpectedto growby8–11%eachyearandminingandproductionmaynothappenatthesamestride.Theprojected globaldemandforREEsin2016isatleast160,000tonsannually,suggestingaHobbesandCalvin principlethattheoreticallyexplainsthedynamicsofagulfbetween‘supply’and‘demand’,inwhich rawresourcedemandssurpasssuppliesforspecificminerals.

xxv

Simplyput,inthenearfuturetheREEsectorrisksfacingshort-termshortages.Theincreasein demandisintertwinedwithenvironmentalimplicationsofproductionandexistingsupplyrisksowing toanintricateandcomplexmarket.TheseissueshavestrikinglyledtotheidentificationofREEsas criticalrawmaterials.

TherecyclingandreuseofREMsisapromisingfieldbecauseitalsosavesenergyusedinmining andprocessing,conservesresources,andreducespollutionandgreenhousegasemissions.Consistent withthisgoal,itisimportanttoundertakeananalysisofsocioenvironmentalandsocioeconomic elementsandtoproduceguidelinesthatshouldbeconsideredinthesustainablerecyclingofREMs, inlinewiththeprinciplesofsustainabledevelopmentandcorporatesocialresponsibility.

Intermsofsocioeconomicsustainability,apossiblecourseofactionistodevelopanalyticalguides forthesocioeconomicevaluationoftheexploitationofREMsandtheirrecycling.Suchguidesmay thenbeusedaspolicytoolstoallowinformeddecisionstoensuresocioeconomicelementsareconsideredintheexploitationandrecyclingofREMs,ensuringsustainabilityaspectsarefullyconsidered.

Companiesintheinformationtechnologyandenergysector(e.g.,windenergy)urgentlyneedto addressproblemsrelatedtotheirshortsupplyofREEs.Onewaytoaddresstheproblemistomaximize theuseofalreadyexistingREEs(i.e.,theirrecoveryfromexistingelectronicequipment);thisleadsa discussionofthesustainabilityoftherareearthsindustrynotonlyinminingbutalsoinoverallREE production,consumption,andrecycling.Inthiscontext,recyclingmethodsmayhaveanimportantrole andwillbeusefultocompanies.Yet,thereisapaucityofresearchinthisfield.

Thepurposeofthisbookistocompilecurrentinformationandreportonresearchandprojectsthat mayultimatelycatalyzeeffortstodevelopastrategyformanagingREEresourcesasawholeand reducingtheirpotentialenvironmentalimpactsinparticular.Itconsistsofasetofchaptersinwhich eachelement(technological,environmental,ormarket)isemphasized.Topresentthetopicssystematically,thebookwasdividedintothreemainparts. PartI dealswithrareearthreservesandmining; PartII focusesonrareearthprocessesandhigh-techproductdevelopmentandindustrymarketissues; and PartIII dealswithrareearthenvironmentalissues:opportunitiesandchallenges.

Eachchapterpresentshighlightsofthemethodsandfindingsofupdated,unique,particularstudies providedbyexpertsonrareearths,whoareeitherresearchersofacknowledgedhighereducation institutionsorbelongtorenownedresearchinstitutesworldwide.Thebookgathersacollectionof high-qualityscientific,academic,andtechnologicalworkthatisofutmostvaluetothoseinterested inorengagedwiththerareearthssector. Chapter1 offersanoverviewofthecurrentsituationand trendsofrareearthsrelatedtopertinentissuesoftheindustry,eithereconomicfactsorinnovativescientificsolutionsandnewapproachestoaproblemissue:forinstance,anenvironmentalone.Thusbeginsavaluableoutlineforastartupreadingintothetheme. Chapter2 providesacriticalreviewon Chineserareearthexportrestrictionsandimplicationswithregardtoitscurrentmonopolyoverthe industry,andprovidesinsightsintothemarketintermsofvolume,value,andavailability. Chapter3 examineshowUnitedStates/InternationalAtomicEnergyAgencyregulatoryconstraintshave beenunfavorableforWesternrareearthproducersandhavethereforecontributedtosomeextent toChina’srareearthproductionleadership.Thechapterdiscussestheeconomicviabilityofrare earthsintheinterfacesofgeochemistryandvaluechainintegration. Chapter4 reportsonthepotentialityofREEsinBrazilbycomprehensivelyanalyzingrareearthsitesinBrazilianlands,includingthe capacityofmineswithestimatedreserves.ItdiscussesdetailsaboutREEsinacountrywith promisingproductioninthefollowingdecades.Thecurrentstateofactiveoperationalminesin differentregionsofthecountryisfullydiscussedregardinggeologicalandeconomicvalueaspects. Chapter5 describestherareearthdepositTanbreezinsouthGreenlandanditspotentialityand concentratesinthesoilwithconservativeestimatesofmorethanfourbilliontonsofspecificREEs.

xxvi PREFACE

Thechapterlargelycontributestotheliteraturebyadvancinghigh-intensemagneticseparation,and thereforecansubstantiallyminimizetheimpactofwasteproducts. Chapter6 contributestothe rareearththemebydevelopingamixofqualitativeandquantitativesustainabledevelopmentcriteria andindicators,whichcaninturnbeusedforassessingREEminingprojects.Theproposedcriteriaand indicatorscanbeusedbyoverallstakeholders,aswellastoassistdecisionandpolicymakers regardingthebottomlineconcerningsocial,economic,environmental,geopolitical,andtechnological aspectsforREEdevelopment. Chapter7 extendstheanalysisofsustainabilityinREEminingbyelaboratingaframeworkthatincludesfundamentalelementscontributingtoaholisticsustainableplatform forREEsincludingtangibleandintangiblevariables,limitingandcontrollingfactors,andoutputsfor improvingaglobalscenarioonREEsgiventheabsenceofanexistinginternationalinterorganizational regulatoryagencyforthesector.Theframeworkcanbewidelyappliedtoasetofsituationshelpingto balancegoverningpositionsanddecisionsaboutcertainmultidimensionalproblemissuesintherare earthindustry. Chapter8 dealswithananalysisofrareearthundergroundminingandradioactivityin termsofcontrolandmonitoringstrategies.Itattemptstodetermineradondispersionsourcesandthe risksrelatedtoradiationexposure.Itfocusesonkeyissuesofrareearthexplorationandprocesses, suchasoccupationalexposition,tailings,minewater,dustsuppression,andventilation.Thechapter discussesenvironmentalandhealthissuesofrareearthproduction. Chapter9 examinesChina’s rareearthresources,production,mines,andoremineralogy,aswellasbeneficiationtechniques includingflowsheets,flotation,andleachingreagents.ThechapterdiscussesionadsorptionandfocusesonthelargestactivereservesoftheworldinChina,amongwhichistheBayanObo REE-Nb-FeoreinInnerMongolia. Chapter10 dealswiththeroleofrareearthsupplyrisksin low-carbontechnologiesinnovation.Itanalyzesoffshorewindturbinesandelectricallypoweredvehiclestodetermineactualquantitiesofrareearthsusedwithintheirgenerators,electricmotors,andbatteries.Thechaptercontestsprevalentviewsandallegationsthatapaucityofpotentialsupplywould disruptthefurtherdevelopmentoftheautomotiveindustry,forinstance. Chapter11 studiestheeffects ofhigh-pressureacidleachingbehaviorofscandiumtogetherwithnickelandcobaltfromarefractory nickellateriteore.Itseekstodeterminetheprocessparametersandoptimumprocessconditionsover finerparticlesizesandlongerleachingduration. Chapter12 investigatesleachingREEsfrombauxite residueusingBronstedacidicionicliquids.Itappliesinnovativesolventscalledionicliquidsinrare earthexploitationbyleavinglower-valuemetalssuchasironundissolved. Chapter13 brieflyreviews therecentliteratureonionicliquidsinREMelectrodepositionandsystematicallypresentsthemain electrochemicalpropertiesofionicliquidsandapplications.Asanoutcome,thechapterpresents theresultsofapreliminaryinvestigationforthesuitabilityofapyrrolidinium-basedionicliquidfor theelectrodepositionoflanthanum,thusaddingsignificantlytotheliteratureonREEs. Chapter14 describesdifferentoptionsofprocessingforpolishingglasssubstratesorwafersandtheuseof fine-grainedparticlesbasedontheoxidesofthelanthanidesceriumandlanthanum.Itexamines differenthydrometallurgicalmethodsincludingmineralacidsforextraction.Italsoinvestigatesprecipitationmethods,bycarbonateoroxalatecarriers,asthemeanstoproducearareearthconcentrate requiredforreuseinfabricatingnewpolishingpowders. Chapter15 offersacriticalevaluationofthe solubilityofrareearthoxides(REOs)inmoltenfluorides.Itpresentsacomprehensiveanalysisof availabledatafrompreviouspublicationswithafocusonthelimitedsolubilityofREOsasanobstacle topreparingREMs. Chapter16 providesahyperspectralREEmappingofthreeoutcropsattheFen Complex,Norway:calcitic,dolomitic,andankeriticcarbonatites.Thenewapproachallowsacharacterizationoftheoutcropmineralogyinarapidandrobustmannerbecauseofnewspatiotemporal hyperspectralmethods. Chapter17 providesageneraldescriptionofsomeenvironmentalimpacts oftheexploitationofREMsandoutlinesareaswhereattentionisneeded,suchasecosystemalteration

PREFACE xxvii

andenvironmentalrisksofgroundandsurfacewatercontamination,forexample.Aparticularreview isdoneofwaste,radioactivewaste,thegenerationoftailing ahazardouswastematerial andits particulates,andfugitivedustfromtailingsimpoundmenttransportedbywindthatmayaccumulate indownwindareas.Thechapterdiscussesthetopicbyoutliningtreatmentanddisposalsolutions. Chapter18 appraisesenvironmentallegislationandbestpracticeintheemergingEuropeanREE industrywithregardtoquantitiesofwasteandtonontargettoxicmetals,fluorine,andradionuclides. PastREEminingandprocessingresultedinsignificantenvironmentalimpactsinseveralcountries,and thechapterassessestheEU’sexistingenvironmentallegislation,comparingitwithregulationswith otherREE-producingcountries. Chapter19 reviewsthemainrecyclingaspectsofREEelements byofferinganoverviewofongoingpossibilitiesandadvancesworldwide.CurrentREErecyclingprojectsandprospectivefieldsareidentifiedintheliteratureandnewsreports.Recyclingistakenasone solutiontothelikelyscarcityofrareearthsupplies,besidesbeingecologicallydesirabletoalleviatethe pressuretoopennewminesorincreasecurrentproduction.Notwithstanding,economicandcostaspectsandfeasibilitiesareexaminedinthereview. Chapter20 investigatesthesystemicneedfor andapproachestoneodymiumuseandrecyclingpotential.Consequently,thestudyaimstodetermine andevaluatethequantitativerecyclingpotentialwithafocusonneodymiumusedinNdFeBmagnets inwindturbines,electriccars,andcomputerharddrivesatalocallevelinthedomainsoftimeand space. Chapter21 examinestheleachingofREEsbyreviewingpastandpresenttechnologiesinprimaryREEproductionandincurrentREErecyclingascriticaltohydrometallurgicalREEprocessing. ThechapterprovidesacomprehensiveunderstandingoftheseprocessesasfundamentaltoREErecyclingfromsecondaryresources. Chapter22 providesatheoreticalanalysisofsimultaneouselectrochemicalrecoveryofREEsandironfrommagnetscrap.Itreviewstheroleofthemicrostructureofthe alloyanddifferentelementsinthedissolutionmechanismoftheREEmagnet.ThefocusisonunderstandingtheelectrochemicalbehaviorofdifferentcomponentsintheNdFeBmagnetalloyaswellasa selectiveextractofREEsintoaqueoussolutions. Chapter23 contributestotheliteraturewithscientificadvancesbyprovidingmetal-organicframeworksinthefieldofliquidadsorptionforrecovering rareearths.Selectivitytestsdemonstratedveryhighselectivityforeuropiumoverthetransitionmetal zincandgoodselectivitybetweentherareearthseuropiumandyttrium. Chapter24 examinesrare earthextractionfromNdFeBmagnetsandREOsusingaluminumchloride–fluoridemoltensaltprocesses.ThechapterpointsoutthatthemethodiswellsuitedforrecoveringREMsfrommagneticscrap containingthesemetals.Themajorfieldknowledgeadvanceslieinthemoltensaltandelectrodepositionwithregardtotherecoveryofneodymiumanddysprosiumfromusedmagnets. Chapter25 dealswiththemineralogyandbeneficiationofREEintheMushgiaKhudagore,SouthGobi,in Mongolia,asinvestigatedduringajointresearchanddevelopmentprojectofGTKFinlandand CGLinMongoliain2012–2014.SampleswereexaminedbyMLA,XRD,EMPA,XRF,andICP–MS. Inadditiontoapatiteveins,thedepositalsocontainscarbonatite;bothrocktypesareassociatedwith Mesozoic,c.140Ma,syenitemagmatism.Thischaptercontributestoknowledgeofprocessingan extremelyREE-enrichedigneous-hydrothermaloretype. Chapter26 summarizesthemajorkeyfindings,outcomes,innovativeapproaches,andpertinentmethodspresentedinthechaptersasthemeans topromotetheoretical-conceptualadvancesintheliteratureandtheapplicabilityofinnovativeprocesseswithregardtorareearths.Thechapterisasynthesisofthepreviouschapterswithacompilation ofthekeycontributionsoftheauthorsinacademic,scientific,andtechnologicalterms.

WehopethisbookwillserveasareferencesourceforthoseworkingwithREMsorforthosewho areinterestedintheirvariousapplications.

Enjoyyourreading! TheEditors.

xxviii PREFACE

ANOVERVIEWOFTHE USEFULNESSANDSTRATEGIC VALUEOFRAREEARTHMETALS 1

VolkerZepf

ScientistattheChairofResourceStrategy,UniversityofAugsburg,Germany

1. CRITICALRAREEARTHS

Therareearthelements(REEs),alsocalledrareearthmetalsorjustrareearths(REs),havebeenthe mostprominentanddiscussedrawmaterialssinceabout2009.Inthatyear,Chinaannounceda reductioninREEexportquotasofnearly50%to30,000tons(t)1 rareearthoxides(REOs)(theusual measurefortradedREmaterials)(Zepf,2013).Thus,asupplyriskwasfearedbecauseChinahasade factoproductionmonopoly.Atthesametime,theeconomicimportanceoftheREEsemergedbecause ofimportantfunctionsinenvironmentallyfriendlyproductssuchasenergy-savinglamps,electriccars, and(sometypesof)windturbinegenerators(WTGs).Consequently,REEshaverepeatedlybeen identifiedassomeoftoday’smostcriticalelements.

ThesupplyriskissuegainedfurtherweightwhensomeobviousenvironmentalproblemsinREE miningwerereported(Bradsher,2009).Toovercometheseriskysituations,newREEminesoutside Chinawereplannedandsetup.Researchforbettermaterialsefficiencyandsubstitutionswaspushed. Eventually,theformermineatMountainPass,California,andtheMountWeldmineinsouthwestern Australiawentintocommissionaround2012.There,newmining,separation,andrefiningtechnology wasinstalledtoallowenvironmentallysoundproduction.Yettoday,bothcompaniesstrugglewithlow pricesforREEs,whichcausehugefinancialdeficitssothatevenbankruptcyisimminent.Despite theseproblems,thecompaniestrytokeepoperationsrunning.Nevertheless,REEshaveinherent specialchemicalandphysicalcharacteristicsthatallowextraordinaryfunctionalities,andthusREEs areidealingredientsforahugevarietyofapplications.

Thisintroductorychapterwillexplaintheseissuesbrieflytoshowthewholecomplexityofthe productionanduseoftheREEs.Theintroductiongivesanoverviewwithouttoomuchdetail,because thefollowingchapterswillprovidetheseanalyses.

1.1 WHATREEsARE

TheInternationalUnionofPureandAppliedChemistryclassifiesREEsasagroupof17elementsin thethirdgroupoftheperiodictableofelements(Connelly,2005).TheREEsthusincludescandium

1Note:Commashavebeenusedas1000dividers;pointsindicatedecimals.

RareEarthsIndustry. http://dx.doi.org/10.1016/B978-0-12-802328-0.00001-2 Copyright © 2016ElsevierInc.Allrightsreserved.

CHAPTER
3

(Sc,atomicnumber21),yttrium(Y,39),andthelanthanides,whicharelanthanum(La,57),cerium (Ce,58),praseodymium(Pr,59),neodymium(Nd,60),promethium(Pm,61),samarium(Sm,62), europium(Eu,63),gadolinium(Gd,64),terbium(Tb,65),dysprosium(Dy,66),holmium(Ho,67), erbium(Er,68),thulium(Tm,69),ytterbium(Yb,70),andlutetium(Lu,71).Promethiumisnot usuallyincludedinthediscussionbecauseitistheonlyradioactiveREEandprincipallyitdoesnot occurinnature.Nexttotheumbrellaterm“REE,”theelementsarefurthergroupedintolightREEs (LREEs)andheavyREEs(HREEs),andsomeauthorssuchas Kingsnorth(2010) addamediumclass ofREEs(MREEs).Theattributionstothesegroupsarenotdistinct:theUnitedStates(US)Geological Survey(USGS)callsLatoGdtheLREEsandTbtoLuandYtheHREEs(USGS,2014).Kingsnorth, however,usesLatoNdasLREEs,PmtoGdasMREEs,andTbtoLuplusYasHREEs(Kingsnorth, 2010).IntroductionofthethreegroupsmaybecomecommonbecausethenewChinesetaxrates differentiateamongLRE,MRE,andHRE,i.e.,light,medium,andhighrareearth–richconcentrates (Argus,2015).

Theterm“rareearth”tracesbacktothetimeofdiscoveryoftheelements,ataround1800.The originandreasonforcallingthematerials“rare”arenotexplicit,buttheetymologicalexplanation givenby Reiners(2001) ishelpful.Shearguesthattheadjective“rare”wasusedfromthefifteenth centuryonwardforsomethingstrange,extraordinary,andastonishing(Reiners,2001).Thus,“rare” doesnotrefertoarareoccurrencebuttoastrangehabitusofthematerials.Today,thelowconcentrationsofREEsinorebodiesmaybeconsideredasbeingrare.“Earth,”however,isclearlyacommon wordforoxidicmaterialsinthenineteenthcentury.

1.2 CHEMICALANDPHYSICALPROPERTIES

Muchinformationaboutspecialchemicalandphysicalpropertiesisprovidedinstandardscientific encyclopediasandschoolbooks.Therefore,hereonlyafewspecialtieswillbediscussedbecause theyexplainbothchallengesduringseparationandrefiningandpotentialapplicationareasfor REEs.Ingeneral,withincreasingatomicnumbers,atomsattachonemoreelectron,whichaddsto theouterelectronorbitalandtheatomradiibecomelarger.Forthelanthanidesnotonlytheouter shellbutalsothelower-lying4f-orbitalisbeingfilledwithelectrons.Thisresultsinasimilarouter (electron)appearanceofalllanthanidesbutalsostrongerforcesinsidetheatoms.Asaconsequence, theatomicradiiaredecreasingwithincreasingatomicnumber,aphenomenonknownaslanthanide contraction.SomeREEatomshaveatomicradiisimilartorock-formingelements,whichexplains whyREEsareoftenfoundinrocksthatcontaincalcium,thorium,uranium,andstrontium(formore informationsee Zepf,2013 ).However,thephysicalpropertieshavenosuchsimilaritiesbutrather differences.SomeREEshaveidealmagneticbehavior,suchasGd,Dy,Nd,andSm,whereasothers suchasErandTbinheritsharplydefinedenergystatesthatcanbeusedefficientlyinlightingand laserapplications.

2. THECRITICALITYISSUE

ThecriticalityoftheREEshasbeendeterminedinnumerousstudies.Oneofthefirstarticles addressingREEsas“criticalresourcesforhightechnology”wastheUSGSinaFactSheetpublishedin 2002(USGS,2002).Afurtherremarkablestudy, Minerals,CriticalMinerals,andtheUSEconomy, publishedin2008bytheNationalResearchCouncil(NRC),developedthewell-knowncriticality

4 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

matrixintroducingasmainindicators“supplyri sk”andthe“impacttosupplyrestriction”;the latterindicatorisaboutequivalenttotheterm economicimportance.ThegroupoftheREEswas identifiedashighlycriticalinsupplyriskandnearlyhighconcerningtheimpactofsupplyrestriction( NRC,2008).

In2009,Angereretal.conductedaprofoundstudyonrawmaterialsforemergingtechnologiesin whichneodymiumwasrankedthesecondmostcriticalelement(Angereretal.,2009).In2010,the EuropeanCommissionissuedthe CriticalRawMaterialsfortheEU,areportoftheadhocworking groupthatpinpointedthegroupoftheREEsascriticalwiththehighestsupplyriskandmedium economicimportance(EuropeanCommission,2010).

AsequeltotheNRCworkwasthe CriticalMaterialsStrategy publishedin2010bytheUS DepartmentofEnergyinwhichinthematrixasdevelopedbytheNRCindividualREEswereidentifiedasbeingthemostcriticalelementsunderinvestigation(USDOE,2010).Theupdate1yearlater confirmedthestatus(USDOE,2011).Consultantsandpressmediajoinedthepublicationcircle,e.g., Reuters’analysisofthe“FightforRareEarths”(Reuters,2010). Hurst(2010) reportedontheChinese REEindustryandexplainedlessonstobelearned.

In2011, ErnstandYoung(2011) reportedonREEsastechnologymineralsforwhichdeficitsin supplywereidentified.Thefocuswasmoreonminingventuresratherthanongeneralcriticality.Inthe sameyear,theEuropeanJointResearchCenterdealtwith“CriticalMetalsinStrategicEnergy Technologies”andattributedtodysprosiumandneodymiumanoverallhighriskbasedonmarketand politicalfactors(JRC,2011).In2014,theUnitedNationsConferenceonTradeandDevelopment producedaspecialreportonREsthatdiscussedglobalhighdependencyonChineseREEproduction andtheimportanceofREEsfordefenseapplications(UNCTAD,2014).Sinceabout2010,manymore suchstudiesandsequelswithmoreorlessthesameassessmentshowedup,sothatfromthis perspectivetheextraordinaryimportanceandcriticalityofREEswereunderlined.

3. OCCURRENCES,MINING,ANDPRODUCTION

3.1 ABUNDANCEANDGEOLOGY

Theattributeofrarityinthenameof“REEs”requiresacloserlook.Thereare12elementsinthe earth’scrust,whichtogethercomprisemorethan99%ofthemass(O,Si,Al,Fe,Ca,Mg,Na,K,Ti,H, Mn,andP)(Skinner,1976).Allotherelementssharetheremaining1%.AmongthemaretheREEs. Withinthisgroupofrelativelyrareelements,theREEsrangeinthelowerhalf,whereasseveral elementsseemfairlyabundant.Accordingtotheresearchof RudnickandGao(2003),yttriuminthe uppercontinentalcrustisaboutasabundantaslithium;ceriumisaboutasabundantaszinc;neodymiumandlanthanumareaboutasabundantascopper,andevendysprosiumisabouttwiceas abundantasgoldoreighttimesasabundantasplatinum.However,thesecitationsofabundancegive onlyaverageconcentrationsandmassvalues.Thenumbersdonotreflecttypicalconcentrationsof elementsinrocksthatdevelopduringpetrogenesis.Goldandcopper,forexample,occurinnative states;i.e.,theseelementsaggregate(sometimes)tonuggettypes,whereasREEsneveroccurinsuch nativestates.Aninterestinginsightgivestheannualminingproductionquantitiesofyttriumatan estimated7000tandlithiumat36,000t;copper18.7milliont;lanthanum2 about25,300tand 2Assuminganaverageoreconcentrationof23%Laand18%Nd;calculatedwithanannualproductionof110,000t.

3. OCCURRENCES,MINING,ANDPRODUCTION 5

neodymium1 19,800t;andcerium1 55,000tandzinc13.3milliont(USGS,2015b).Thus,themessage ofthetabledescribingabundanceisofnorealhelpwhentalkingaboutactualextractionpotential. ThemajororesfromwhichREEsarebeingproducedarebastnaesite,monazite,xenotime,andionadsorptionclays.Bastnaesiteisafluorocarbonatemineralwiththebasicformula3 [(Ln)(CO3)F] composedofvariousadditionsofLREEandafewHREEs(Zepf,2013).Thisoreistheprimary feedstockoftheChineseBayanOboandtheCaliforniaMountainPassMine.Monazite,aphosphate mineralwiththetypicalformula[(Ce,La,Y,Th)PO4],cancontainadditionsofotherLREEsandafew HREEs.Amajorproblemwhenprocessingmonazitesisradioactiveresidues,whichhavetobetreated accordingly.MonaziteisthemainoreoftheAustralianMountWeldmine.Xenotimesandion-adsorption clayscontainrelativelyhighpercentagesofHREE,butthesemineralsthemselvesarerareorhavean overalllowREEconcentration.MainextractionareasofthesemineralsareinsoutheasternChinese provinces.

3.2 MININGANDPRODUCTION

3.2.1HistoricalDevelopment

ThefirstcommercialuseofREEswasprobablytheinventionofAuer-LightandAuermetalusedfor lighterflints;bothproductswerediscoveredandmerchandizedbyAustrianchemistCarlAuervon Welsbacharoundtheyear1900(Zepf,2013).Therawmaterialswereheavysandthatservedasballast inships.Overthecourseoftheworldwarsheavysandminingwaspushedinasearchforradioactive materialsfornuclearresearchmainlyintheUS.ThisfirstphaseofREEminingiscalledtheMonazite Placerera(USGS,2002).

Withtheinventionofcolortelevision,theneedforeuropiumincreasedrapidly,andthediscoveryof theREEdepositatMountainPassinCaliforniainthemid-1960scanbeconsideredthebreakthroughof REEmining;thissecondphaseiscalledtheMountainPassera,whichendedinthemid-1980s.Inthe 1950s,theironoredepositinBayanObowasdiscovered,whichsoonshowedconsiderableREEcontent. MajorproductionoftheseREEsbeganinthemid-1980sandbecametheprimaryproducerofREOs intheworld.WithclosureofthemineatMountainPassaroundtheyear2000,monopolyoverproduction ultimatelywenttoChina.ThisthirdphaseiscalledtheChineseera(USGS,2002).

3.2.2GlobalProductionandReserves

Figure1 showsthedevelopmentofglobalREEproductionfromthe1950sto2014.Inthe1950sthe globalproductionofREOsreachedabout1000tanditdoubledin1960.In1970productiongrewto 16,000t;in1980to27,000t;in1990to53,000t;andin2000to90,000t,reachingtwopeaksin2006 and2009at137,000and135,000t,respectively.Since2009,globalproductiondeclinedforthree yearsto110,000tin2014(USGS,2015a).Inadditiontothesenumbers,considerableillegalminingis probablypresent.

Annualillegalproductionisestimatedtobe40,000t(Xinhua,2014).Atthefinalconferenceofthe EuropeanRareEarthsCompetencyNetwork,KingsnorthstatedthatChinaadmitteda40%shareof illegalmagneticREsupply(Moores,2014).Bothnumbersreferringtoillegalproductionare emphasizedonlytobeestimates.Itisalsouncertainwhatthesenumbersactuallytell:Does40,000t refertoREOsanddoesithavetobeaddedtoofficialproductionvalues?Whatelementsbelongtothe

3Lnstandsforlanthanides.

6 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

Rareearthelementproduction,1950–2014.Notes:Theproductiondatarefertothelanthanides, i.e.,excludingyttriumandscandiumproduction.Datagiveninmetrictons(1t=1000kg).

Sources:USGSMineralsYearbooks1994–2012;USGSMineralCommoditySummarises2015.

magneticREsupply?Itislikelythatconsiderableillegalminingandtradearepresent,butactualdata remainobscure.

Annualglobalproductionnumbersareknown;quantitativesharesoftheindividualREEsarenot available,however.Thenumberscanandhavetobeinterpolatedfromknownconcentrationsofsingle elementsintheminedores.OftheREEscontainedinthebastnaesiteoftheBayanOboorebody,50% iscerium(CeO2),lanthanumcomprisesabout25%(La2O3),andtheneodymiumcontentisabout17% (Nd2O3)(ZhiLiandYang,2014).Usingasimplifiedassumptionthattheentireglobalproductionis derivedfromsuchores,theindividualsharecanbededucedwithreasonablereliabilityforLREEs:In 2014,withanannualproductionof110,000tREOs,ceriumcontainedis55,000t,lanthanumis 27,500t,andneodymium18,700t.

Variousseparationandrefiningtechniquesareexplained,e.g.,by GuptaandKrishnamurthy (2005),sojustonemajoraspectneedsrecognition:thatduringseparationandrefininginafirststep, ceriumandlanthanumalwayshavetobeseparatedbeforeotherREEscanbeextracted.Thismeans thattheseparationofthecheapestREEs,ceriumandlanthanum,requiresalotofbeneficiationcost. Thesupplyofthesetwoelementsislikelyhigherthandemand.Forlanthanum,thesystemicsubstitute oflithiumionbatterytechnologyalsoreducesdemand.

3.2.3Reserves

GlobalREEreservesin2014aregivenas130milliontREO.Until2008,globalreserveswere 88milliont(USGS,2009),sothattoday’sreservesaretheresultofrecentexplorationsuccesses.From thesereserves,55milliontbelongtoChina(42%),22milliontareBrazilian(17%),andAustraliaand theUStogetherown5milliont,whichislessthan5%ofglobalreserves(USGS,2015b).Itispossible

FIGURE1
3. OCCURRENCES,MINING,ANDPRODUCTION 7

thatsomeofthecurrentexplorationprojectswilldetectevenmoredepositssothatreservefigures couldincreaseevenmore.Basedoncurrentannualproductionof110,000tREOandsome 130milliontofreserves,areserves-over-production(R/P)valueofnearly1200yearsresults,arange thatisoneofthelongestofallelementsknown.Thisfactshouldhaveacomfortingeffect,butREEs arestillconsideredcriticalelements,becausethetopicofreservesisnocriterionfordetermining criticality.Also,R/Pvaluesareonlyoftheoreticalqualitybecausesomebodyhastostartamining project,whichrequireslargeinvestmentsforseveralyearsbeforesomecashbackcanbeexpected. Obviouslyonlylong-termconsiderationsbasedonpositivefutureearnings,i.e.,highpricesforraw materials,maypushsuchprojects.However,recentminingprojectsshowedthatpredictionshavebeen toooptimistic.

3.2.4MajorMines

Today,themajoractiveREEminesarelocatedinChina,theUS,andAustralia,withseveralglobal projectshavingreachedmaturestatesofdevelopment.InChina,theworld’slargestREEmineis locatedinBayanObo,InnerMongolia,withseparationandrefiningfacilitiessome150kmsouthin Baotou.FurtherminingareasareinSichuanandinthesoutheasternprovinces,wheremainlyHREEs arebeingproduced.IntheUS,theformerMountainPassminewasreopenedin2012andwasplanned toproduceabout20,000tREOsperyearwiththeoptiontorampupproductionto40,000tREOs.In the2014annualreport,however,thecompanyreportedproductionofabout5000tREO,butalso considerablerisksandproblems,sothatprolongedoperationisnotguaranteed.Currentproduction willincreaseonlywhenmarketconditionsimprove(Molycorp,2015c).

TheAustralianLynasCorp.openedtheMountWeldmineinsouthwesternAustralia,whereREEs areminedfromphosphateoresandthecompanyproducednearly4000tREOin2014(Lynas,2015). Plansdated2010talkedabouttheproductionof22,000tREOsin2014(Lynas,2010),whichshows theerrorofthisprediction.Numerousotherexplorationprojectswereorareongoingandafewhave reachedmatureplanningstages. Elsner(2011) reported381knownREprojectsworldwide(Elsner, 2011)atdifferentprogressstages,andTechnologyMetalsResearch(TMR)providedanupdatedlistof advancedREprojects,theTMRAdvancedRare-EarthProjectsIndex,whichcurrentlycontains53in anadvancedstate.Amongthemareprojectswithhugeorebodies,e.g.,inGreenland,Canada,theUS, Kenya,Australia,Brazil,SouthAfrica,andRussia(Hatch,2015).

PredictionsforfutureREEminingwereandarecontroversial.Basically,allfuturedemandpredictions,aspresentedbyminingcompanies,weretoooptimistic.In2010,LynasCorporationestimatedglobaldemandtoreach182,000tin2014(Lynas,2010).Consultantsestimateddemandfor 2015toreach185,000tgivenadatauncertaintyof 15%(ChegwiddenandKingsnorth,2010). Factually,productionin2014was110,000tREO(USGS,2015b);thefirstpredictionwasoffbyabout 50%;howaccuratethesecondestimatewashasyettobeseen.Itis,ofcourse,extremelydifficultto predictmarketdevelopment,especiallyinthecaseofREEs,whensupplyrisksleadtoincreased researchformaterialefficiencyandsubstitutesandthuschangedemand.

3.2.5Ecology

In2009,journalistsreportedondamagingeffectstohumansandtheenvironmentfromREEmining andseparation.HilsumreportedfromBaotou,wheretailingpondswerefullofacidandchemicals (Hilsum,2009),andBradsheraddressedsoutheastChineseminingofionicclaysinwhichREEswere

8 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

minedwithprimitiveandnonsustainingextractionmethodsbydrainingacidsonsoiltodissolveREEs. Theacidsarethenwashedintogroundwaterandriversandpoisonsoils(Bradsher,2009).TheUS EnvironmentalProtectionAgencydealtwiththenegativeenvironmentalimpactsofREEminingin bothChinaandtheUSandconfirmedreporteddamage(EPA,2012).However,thenegativeeffectsto naturearenotsolelyassociatedwithREEminingbutaccompanyallmining,beneficiation,separation, andrefiningactivitiesirrespectiveoftherawmaterial.Miningleadstoencroachmentsonnatureand requiresenergy,fuels,andchemicals,whichhavetoberemediatedaccordingly.Ifthisisnotdone properly,environmentaldamageisinevitable.

ForREEs,environmentaldamagehascertainlyoccurred,buttosolvetheproblem,onemoreaspect hastobeconsidered:Whatcausedtheimpact?Wasitduetononexistingenvironmentalproceduresin legalminingortoinadequateadherencetoexistingregulations,orcandamagebetracedbacktoillegal andprohibitedactivities?

3.3 RECYCLING

RecyclingofseveralREEshasbeendemonstratedatleastinresearchandatlaboratorylevels. Binnemansetal.discussedvariousapproachesinacomprehensivemeta-studywithdisappointing resultsthatin2011onlyabout1%ofREEshadbeenrecycled(Binnemansetal.,2013).Research aboutin-usestocksofREEswasprovidedby DuandGraedel(2011);oneresultfor2007wasthatthe stockofLa,Ce,Nd,andPrequaledfourtimesannualproduction.Incaseofnorecycling,thesheer amountofcurrentdissipativeusebecomesapparent.IfproductsthatcontainREEsarerecycledtoday, usuallybaseandnoblemetalsareregainedbuttheREEsarelostanddisappearinslagsorresiduesor getstoredinlandfillsites.Infact,considerabledissipationhastobeassumedformostREEs.

Nevertheless,recyclingoftheseapplicationareaswasinvestigatedandbasicallyvalidated:the recyclingofphosphorsfromenergy-savinglampsandlight-emittingdiodes(LEDs)toobtainmainly europium,terbium,andyttrium;therecyclingofbatteriesofthenickelmetalhydridetype(NiMH), fromwhichmainlylanthanum,butalsocerium,praseodymium,andneodymiumcanbeextracted;and therecyclingofneodymium-iron-boron(NdFeB)permanentmagnetstoregainneodymium,praseodymium,anddysprosium.Inthelattercase,theMotorRecyclingprojectinGermanyin2011–2014led by Siemens(2011) showedpromisingresultsforfuturerecycling.

3.4 SUBSTITUTION

ThespecialcharacteristicsoftheREEspredisposethemforahugevarietyofapplicationsandfunctions. Formost,nodirectsubstitutesareavailable,i.e.,elementforelement,butseveralsystemicsubstitutesare onthemarket.InthecaseofNdFeBmagnets,nodirectreplacementofNdorPrisknown.Onasystems levelothermagnettypesareavailablebutmostdonotreachthestrengthofNdFeB-typemagnetsor cannotbeproducedsmallenoughwiththesameperformance;directorsystemicsubstitutionsareonly partiallypossible.

OnedisadvantageofNdFeBmagnetsistheirsusceptibilitytooperatingtemperaturesaboveabout 100 C.Oncethesearereached,themagnetsbegintolosetheirremanence(magneticcharacteristics). Theadditionofabout3–6%dysprosiumenhancestheCurietemperature(theresistancetohigher temperatures)sothatthemagnetsaresuitableforapplicationinautomotivetractionmotors.Toreduce

3. OCCURRENCES,MINING,ANDPRODUCTION 9

theneedfordysprosium,whichisoneoftherareREEs,intensiveresearchhasbeguntoidentify substitutesfordysprosiumorevenformagnetswithnoREEs(ARPA-E,2015;ArnoldMagnetics, 2013).

Inthecaseofwindturbines,thosebasedonREEmagnetsdonothaveadirectionsubstitution material;onthesystemiclevel,however,thereareotherefficienttechnologiesinoperationsuchas asynchronousdriveturbinesorelectricallyexciteddirectdriveWTGs.

Forphosphorsinlightingapplications,nopotentialsubstitutesarecurrentlyavailable,butthe inventionofLEDsledtoonewaytoreducephosphorquantities.BatteriesoftheNiMHtypereceived competitionbylithium-iontechnology,whichhasbetterenergydensitiesandthussmallersizes,faster recharging,nomemoryeffect,lessdischarging,andlongerpoweravailability(Bosch,2015).

Insummary,thesearchforsubstitutessoundsambiguousbecauseforseveralapplicationssystemic alternativesareavailable(e.g.,windturbines);theR/Pismorethan1200years,andresearchon recyclingispushedforward.

4. APPLICATIONS

TheREEsareagroupof17elementsthathavesomesimilaritiesbutalsoindividualcharacteristicsso thateachelementhasavarietyofapplications,summarizedin Table1

ItshouldbenotedthatthislistdoesnotshowwhichquantitiesofREEsarerequiredinthevarious applications,nordoesitsaywhetherdemandandsupplyarebalancedorifthereexistsurplusesor deficitsofsupply.

Anotherdepictionofapplicationsisoftenusedalongapplicationareassuchaspermanentmagnets, phosphors,batteryalloys,fluidcatalyticcracking(FCC),ceramics,glassadditives,polishingpowders, autocatalysts,andmetallurgy. Table2 showstheuseofselectedREEsinvariousapplications.

AdominantargumentisoftencitedthatREEsareindispensableoratleastnecessaryforhightechnologyapplications,lifestyleproducts,andproductsandsystemsthatguaranteethechangeover toalow-carbonenergysociety.TheconsiderationthatREEsarerequiredforhigh-technologyproducts iscorrect,butthismessagedoesnotsaywhichelementisrequiredforwhichapplicationinwhat quantity.Cerium,forexample,isrequiredtoproduceautomotivecatalyststoenable,togetherwith noblemetalsplatinumorpalladium,anefficientexhaustemissioncontrol.Thisapplicationiscertainly ahigh-techoneandservestheenvironment.CeriumiscurrentlythemostavailableREEandthusisnot criticalwithrespecttogeneralphysicalexistence,noristhereasupplyriskexpected,becauseChina itselfprobablyisinterestedinsellinghugeamountsof(cheap)ceriumtoobtainatleastsomecashback tosupportoperations.

ThestatementthatwindturbinesrequireREEsisoftenheard,butagainthisdogmatic-sounding “fact”usuallyimpliesawrongperception,that all windturbinesrequireREEs.Thisdefinitelyis notthecase.TheshareofasynchronouswindtechnologythatdoesnotcontainREE-basedgenerators wasatabout82%attheendof2013(Smith,2014),with318GWofwindenergyinstalledglobally (GWEC,2014).Theremaining18%weredirectdrivesystems,ofwhichabouthalfwereENERCON turbinesthatuseseparatelyexcitedmagnetsusingcopperwiring(Zepf,2015).Infact,about9%or about30GWofinstalledWTGsarebasedonREEmagnets.Directdrivesystemsincorporatefeatures andcharacteristicsthatmakethemmoresuitableoradvantageousforlocationssuchasoffshore windparks.

10 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

Table1Listof(Selected)REEApplications

La · Nickelmetalhydridebatteries(Prius,forklifts)

· HydrogenstoragealloysLaNi3

· Alloyingagent

· Sputteringtargets

· Opticallenses

· Hostforphosphors

· Petroleumfluidcatalyticcracking(FCC)

· Cathodematerialinsolidoxidefuelcell

Ce · Catalystforautomotivethree-way-emission catalysts

· Petroleumfluidcatalyticcracking(FCC)

· Glassadditives

· Decolorizer,opacifier

· Ultravioletlightabsorption

· Polishingmediaforglass,lenses, semiconductors

· Phosphors

Pr · AdditivetoNd2Fe14B

· Pr-stabilizedZrO2

· Coloringagents

· Glassblower’sandwelder’sgoggles(withNd)

· Telecommunicationsystemsasdopantin fluoridefibers

Nd · Nd2Fe14Bpermanentmagnets

· AlloyingagentforMgalloys

· Lasers

· Metalhalidelamps

· Nd-stabilizedZrO2 syntheticgems

Sm · SmCopermanentmagnets

· Coloringagent

· Phosphors

· Nuclearindustry radiationshielding

Eu

· Phosphors(redcolors)

· Nuclearindustry radiationshielding

Gd · Hostforphosphors

· Magneticresonanceimagingcontrastagents

· Nuclearfuelrodaddition,safety

· X-rayintensifyingscreen

· LaserYGG(yttrium-gadolinium-garnet)

Tb · Phosphors(green)

· X-rayintensifyingscreens

· Terfenol-D(TbxDyy)Fe2

· Magneto-restrictivealloy

Note:Thisislistisnotall-inclusive.

Source: Gschneidner(2011) and GuptaandKrishnamurthy(2005)

Dy

· AdditivetoNd2Fe14Bpermanent magnetstoimprovehigh-temperature performance,increasecoercivity

· Phosphors

· Nuclearindustry radiationshielding

Ho

· Research

· Metalhalidelamps

· YIG(yttrium-iron-garnet)lasers

· YAGandYLFsolid-statelasers

Er

· Fiberoptics signalamplifiers

· Lasers(mainlymedical/surgicaland dentaluse)

· Coloringagent

Tm

· X-rayintensifyingscreens

· Metalhalidelamps

· Research

Yb

· Opticallenses

· Pressuresensors(metal)

· Research

Lu

Sc

Y

· Research

· HostforscintillatordetectorsandX-ray phosphors

· High-performancealloys

· Lasers

· Phosphors

· Ceramics

· Hostforphosphors

· YAGlaserhostmaterial

· Y-stabilizedZrO2

· YIG(yttrium-iron-garnet) communications,radars,phaseshifters

· YBa2CuO2 high-temperature superconductor

· Alloyingagent

4. APPLICATIONS 11

Notes:PercentagesshowtheshareofthesingleREEsintheapplicationarea.Forexample,FCCmeansthatfromallREEsused,90%isLaand10%isCe.Thesevalueshaveno connectionwithactualquantitativenumbers,nordotheyhintofsupply demand(im)balances. Actualproductionin2010was126,000tREO,asreportedbythe USGS(2015b),p.2012,MineralsYearbookRareEarths.AdvancedreleaseasofFebruary2015. aLynas(2010):InvestorPresentation,March2010. bCalculatedusingdemandestimatepercentageswithestimatedproductionfor2010.

La (%)a Ce (%)a Pr (%)a Nd (%)a Sm (%)a Eu (%)a Gd (%)a Tb (%)a Dy (%)a Y (%)a Check Sum Demand Estimate (2010)a (%)a Production Estimate: 134,000t REO (2010)a (tREO)b Permanent magnets 23692151002432,160 Phosphors9105256910068040 Battery alloy 503431031001216,080 Fluid catalytic cracking 9010 10016 21,440 Ceramics1712612 531001 1340 Glass additives 246613 2968 10,720 Polishing powders 31654 10015 20,100 Auto catalysts 59023 1007 9380 Metallurgy2652517 1009 12,060
Table2ShareofREEsinVariousApplicationAreas
12 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

5. PRICEDEVELOPMENTANDCONSEQUENCES

Untilabout2008to2009,theprices4 forREEs,whicharenottradedonthestockexchanges,were relativelystableandmoderate.In2010,pricesforbasicallyallREEsincreasedmoderately,andin early2011pricessoaredtoanunprecedentedpricepeakinJuly2011.Thispriceexaggerationstruck allREEswithsomevariations.Sharesofstockmarketsofnon-Chineseminingcompaniesclimbedin parallel,pushingtheiroperationalstatus.AwaytobreaktheChineseproductionmonopolywasin sight.FromtheendofJulyonward,however,pricesdeclinedandthetrendcontinuedinprincipleuntil mid-2015,withafewvariationsforsomeREEsinbetween.

Theexpectationofhighmarketpricesforcriticalelementsisnolongervalid.Deceasingprices causedthesharesofnewminestodeclineaswell,sothattodaythesecompaniesfaceseverefinancial problems.ThechangeintheChineseexportsystemin2015raiseddifferenthopes.InJanuary,the exportquotawasrevokedandinMay,exporttaxeswererelieved.Lowerpriceswereexpectedby customers,andhigherpricesbyproducersasaresultofnewandclearregulations.Indeed,prices declinedevenfurther,maybebecauseMolycorp,Inc.,hadfiledavoluntarypetitionforreliefunder Chapter11oftheUSBankruptcyCodeandappliedforrestructuringsupport(Molycorp,2015a).Soon, pressreleasesannouncedtheendoftheREEhype(e.g.,DPAreleasepublishedby FAZ,2015).

6. POLITICSANDPOLICIES

TheoftendeterminedcriticalityoftheREEsmainlycausedbytheChineseproductionmonopolyand theexportrestrictionsimposedonvariousREEproductsmadethetopicageopoliticalissue.The followinginformationisbasedon Zepf(2013),whodealtwithChinesepredominanceinthiscase.

AfterclosureoftheUSmineinMountainPassin2000,China’sproductionmonopolywassubstantiated.Atthesametime,thefirstexportquotasweredisseminatedbyChinabutwereneverusedto theirfullestextent.In2006and2008,Chinesecompaniesimposedproductionandprocessingquotas. Exporttaxesandthereductionofexportquotasfor2010eventuallyledtoacriticalperception regardingthefuturesupplyofREEs.Accompaniedbyunprecedentedpricehypeinmid-2011,fears existedthatthesupplyofREEscouldactuallybeatstake.

ChinaarguedthattheyhadtosolvesevereenvironmentalproblemsthatoccurredduringREE miningandprocessing.DisputesettlementsbroughtforwardtotheWorldTradeOrganization(WTO) bytheUS,Japan,andEuropeagainstthisargumentandagainsttheChinesepracticeofexportrestrictionswerepartiallygranted(Zepf,2013).Asaconsequence,Chinawithdrewtheexportquotain thebeginningof2015andabolishedtheexporttaxesasofMay1,2015.Instead,anewREresourcetax wasintroducedtoreplacerecentpolicies.Thenewratesarestaggeredwith11.5%forLREEproducts outofInnerMongoliaand27%forMREEandHREEproducts(LOC,2015).

IntheUS,themonopolisticproductionofChinawasseentobecriticaltothedefenseindustry, whichrequiresREEsforavarietyofproductsandweaponsystems;consequently,REEswereputhigh ontheagenda(GAO,2010).TobreakChina’sdominanceoverproduction,numerousexploration projectswerestartedworldwideandafewmineshavesucceededasfarashavingstartedproduction. Lostknow-howinextractiveREEindustrieshasbeenreworked.Minersandindustriesattheendofthe

4MarketpricescanberetrievedfromInternetplatformssuchas www.metal-pages.com or www.asianmetal.com.

6. POLITICSANDPOLICIES 13

productionchainhavestartedverticalintegration-typecooperationtosupportminingandsafeguard supply.Thisisshown,forexample,bysignedcooperationbetweenMolycorp,ShinEtsu,andSiemens toprovideREEsupplyformagnetproductionandthesubsequentmanufactureofwindturbinesovera 10-yearperiod(Molycorp,2015b).Next,intensiveresearchprojectsespeciallyintheUSandEurope weresetuptoinvestigatematerialefficienciesandsearchforpartialorcompletesubstitutionofREEs inseveralapplications.Optionsforrecyclingincreasinglyimprovedandresearchisfocusedon obtainingprocedurestorunlarge-scalerecycling.

7. WHEREWEARETODAY

Withoutquestion,theREEsaresomeofthemostinterestingmaterialsthatshowimpressivecharacteristicsinahugevarietyofapplications.Theserangefromsimplelighterflintstomagnetsfor speakers,motors,generators;specialsteels;optimizedfluidcatalyticcrackingtoachievehigheryields inoilrefining;lasers;batteries;andmanymore.Theyallowtheproductionoflightweightmaterials withbetterstrengthwithafewpercentadditionsofREEs.Someoftheseproductscanhelpinlow carbontechnologiesandapplicationsandprovidenicelifestylegadgets.Otherusesarerelatively profanebutstillrequired.So,fromaneconomicimportancepointofview,theREEscancertainlybe consideredofhighvalue.

ThesupplysideisdominatedbythecurrentandperhapsfutureproductionmonopolyofChina. Supplyriskscanbeconsideredhighbecauseinprincipleonlyonesuppliercountryisavailable.Onthe otherhand,Chinaitselfisparticipatingintheglobalmarket,sotheriskmaybelowerthananticipated. RegulatoryinterventionsinChina’sexportpracticesthatwerenotaccordingtoWTOrulessucceeded atfirstbecausequotasandtaxeshavebeencanceled,butnewlyannouncedresourcetaxesmayshow thatintheendnolowerpricesinthisrespectcanbeexpected.ThismayproveadvantageousforChina, fortheenvironment(asmoremoneypotentiallyisavailable),andfornon-Chineseminers,andhigher pricesmayrendereconomicrecyclingpossible.

Rareearthelementshaveavastarrayoffunctionalitiesthatmakethesematerialsidealcandidates forapplicationsandproductsinallaspectsoflife.ThecomplexstoryoftheREEsstillneedstobe entangledtounderstandtheirrelationshipsandtoidentifysolutionsforREEuse.Thisbookaddresses thesechallengestothebenefitoffutureeconomicandecologicREEuse.

ACKNOWLEDGMENTS

Theauthor’sworkissponsoredbytheBayerischesStaatsministeriumfuerBildungundKultus,Wissenschaftund Kunst(BavarianMinistryforEducation,Culture,ScienceandArts)underthegraduateprogram“Resource strategicconceptsforsustainableenergysystems”attheUniversityofAugsburg.

REFERENCES

Angerer,G.,Marscheider-Weidemann,F.,Luellmann,A.,Erdmann,L.,Scharp,M.,Handke,V.,Marwede,M., 2009.RawMaterialsforEmergingTechnologies.TheInfluenceofSector-specificFeedstockDemandon FutureRawMaterialsConsumptioninMaterial-IntensiveEmergingTechnologies.Finalreport–Abridged. FraunhoferIRBVerlag,Stuttgart,Germany.

14 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

Argus,2015.ArgusWhitePaper:ImpactofChangestoChinesePolicyontheRareEarthMarketin2015. Retrievedfrom: https://www.argusmedia.com/Methodology-and-Reference/w/media/4EFDC00E1F484177 A8268ED9C9C95D27.ashx.

ArnoldMagnetics,2013.EnergyCriticalMagneticMaterialManufacturingProcesses.Retrievedfrom: http:// www.arnoldmagnetics.com/WorkArea/DownloadAsset.aspx?id¼5951.

ARPA-E,2015.ProgramOverviewREACT–RareEarthAlternativesinCriticalTechnologies.Retrievedfrom: http://arpa-e.energy.gov/?q¼arpa-e-site-page/view-programs

Binnemans,K.,Jones,P.T.,Blanpain,B.,VanGerven,T.,Yang,Y.,Walton,A.,Buchert,M.,2013.Recyclingof rareearths:acriticalreview.JournalofCleanerProduction51(2013),1–22. http://dx.doi.org/10.1016/ j.jclepro.2012.12.037.

Bosch,2015.VergleichmitNiCd,NiMH(ComparisonLi-IontechnologywithNiCdandNiMH(translation oftheauthor)).Retrievedfrom: http://www.bosch-professional.com/static/specials/li-ion/de/de/technologycomparison.html

Bradsher,K.,December26,2009.Earth-FriendlyElements,MinedDestructively.TheNewYorkTimes. Chegwidden,J.,Kingsnorth,D.J.,2010.Rareearths:facingtheuncertaintiesofsupply.In:Presentationatthe 6thInternationalRareEarthsConference,HongKong,November2010.Retrievedfrom: http://download .docslide.us/uploads/check_up03/192015/554c0dbeb4c905f1518b4632.pdf

Connelly,N.G.,2005.NomenclatureofInorganicChemistry:IUPACRecommendations2005.TheRedBook. RoyalSocietyofChemistry,Cambridge.

Du,X.,Graedel,T.,2011.Globalin-usestocksoftherareearthelements:afirstestimate.EnvironmentalScience andTechnology45,4096–4101. http://dx.doi.org/10.021/es102836s.

Elsner,H.,2011.KritischeVersorgungslagemitschwerenSeltenenErden–Entwicklung“GruenerTechnologien” gefaehrdet?(Criticalsupplyofheavyrareearths–developmentofgreentechnologiesatstake?(translationby theauthor))CommodityTopNews36.Retrievedfrom: http://www.bgr.bund.de/DE/Gemeinsames/Produkte/ Downloads/Commodity_Top_News/Rohstoffwirtschaft/36_kritische-versorgungslage.pdf?__blob¼publication File&v¼4

EPA,2012.RareEarthElements:AReviewofProduction,Processing,Recycling,andAssociatedEnvironmental Issues.UnitedStatesEnvironmentalProtectionAgency,OfficeofResearchandDevelopment,Washington,D.C. Ernst,Young,2011.TechnologyMinerals.TheRareEarthsRaceIsOn!Retrievedfrom: http://de.slideshare.net/ Tehama/technology-minerals-the-rare-earths-race-is-on-april-2011 . EuropeanCommission,2010.CriticalRawMaterialsfortheEU.ReportoftheAd-hocWorkingGroupon DefiningCriticalRawMaterials.

FAZ,July06,2015.LetzterUS-Fo ¨ rderepleite:HypeumSelteneErdenistvorbei(Bankruptcyoflast US-producer:hypearoundrareearthelementsisover(translationofauthor)).FrankfurterAllgemeine Zeitung,Agenturmeldung.Retrievedfrom: http://www.faz.net/agenturmeldungen/dpa/letzter-us-foerdererpleite-hype-um-seltene-erden-ist-vorbei-13687628.html.

GAO,2010.GovernmentAccountabilityOffice.Subject:RareEarthMaterialsintheDefenseSupplyChain. GAO-10–617R.Retrievedfrom: http://www.gao.gov/new.items/d10617r.pdf (07.07.15.).

GschneidnerJr.,K.A.,2011.Therareearthcrisis–thesupply/demandsituationfor2010–2015.MaterialMatters6. Article2.

Gupta,C.K.,Krishnamurthy,N.,2005.ExtractiveMetallurgyofRareEarths.CRCPress,BocaRaton. GWEC,2014.GlobalWindReport:AnnualMarketUpdate2013.GlobalWindEnergyCouncil.Retrievedfrom: http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf.

Hatch,G.,2015.TMRAdvancedRare-EarthProjectsIndex.Retrievedfrom: http://www.techmetalsresearch.com/ metrics-indices/tmr-advanced-rare-earth-projects-index/.

Hilsum,L.,2009.“RareEarth”ShortageThreatensGreenRevolution.ByChannel4News.Retrievedfrom: http:// www.channel4.com/news/articles/science_technology/rareþearthþshortageþthreatensþgreenþrevolution/ 3451837.html

REFERENCES 15

Hurst,C.,2010.China’sRareEarthElementsIndustry:WhatCantheWestLearn?InstitutefortheAnalysisof GlobalSecurity(IAGS),Washington,D.C.

JRC,2011.CriticalMetalsinStrategicEnergyTechnologies.AssessingRareMetalsasSupply-ChainBottlenecks inLow-CarbonEnergyTechnologies.EuropeanCommission,EuropeanUnion,Luxembourg. Kingsnorth,D.,2010.Rareearths:facingnewchallengesinthenewdecade.In:PresentationattheSMEAnnual Meeting2010inPhoenixArizona.Retrievedfrom: http://www.terramagnetica.com/downloads/IMCOA2010-03-SME-Presentation-Final-R2.pdf

LOC,2015.LibraryofCongress:China–ResourceTaxesAdjustedforRareEarth,Tungsten,Molybdenum. Retrievedfrom: http://www.loc.gov/lawweb/servlet/lloc_news?disp3_l205404398_text

Lynas,2010.InvestorPresentation2010.Retrievedfrom: https://www.lynascorp.com/Presentations/2010/ Investor_Presentation_March_10_823534.pdf

Lynas,2015.FromMinetoMarket.LynasCorporationAnnualReport2014.Retrievedfrom: https://www .lynascorp.com/Annual%20Reports/2014%20Annual%20Report.pdf

Molycorp,2015a.Molycorp,Inc.(15–11357).(Chapter11)case.Retrievedfrom: https://cases.primeclerk.com/ molycorp

Molycorp,2015b.NewsReleaseApril15,2015:MolycorpChosentoSupplyRareEarthsforUseinHighEfficiencySiemensWindTurbineGenerators.Retrievedfrom: http://www.molycorp.com/molycorpchosen-to-supply-rare-earths-for-use-in-high-efficiency-siemens-wind-turbine-generators/ Molycorp,2015c.Form-10k.AnnualReportfortheFiscalYearEndedonDecember31,2014.Retrievedfrom: http://phx.corporate-ir.net/External.File?item¼UGFyZW50SUQ9NTg1MDIxfENoaWxkSUQ9MjkzMTg4f FR5cGU9MQ¼¼&t¼1.

Moores,S.,2014.ChinaAdmits40%ofMagneticRareEarthsSupplyIsIllegal.Mining.com.BenchmarkMineral Intelligence,October21,2014.Retrievedfrom: http://www.mining.com/web/china-admits-40-of-magneticrare-earths-supply-is-illegal-2/ NRC,2008.Minerals,CriticalMinerals,andtheU.S.Economy.NationalResearchCounciloftheNational Academies.TheNationalAcademiesPress,Washington,D.C. Reiners,C.S.,2001.WasistdasSelteneandenSeltenenErden?EinechemiedidaktischeReflexion(Whatisthe “rare”attherareearths?Achemical-didacticalreflexion(translationoftheauthor)).ChemieinunsererZeit35 (2),110–115.

Reuters,2010.FightforRareEarth.Retrievedfrom: http://www.groenerekenkamer.nl/download/RareEarths.pdf. Rudnick,R.L.,Gao,S.,2003.Compositionofthecontinentalcrust.In:Holland,H.D.,Turekian,K.K.(Eds.), TreatiseonGeochemistry.PergamonScienceandTechnologyBooks,SanDiego,pp.1–64. Siemens,2011.RecyclingElectricMotorsasSourceofRawMaterials.Retrievedfrom: http://www.siemens.com/ innovation/en/news/2011/e_inno_1137_2.htm.

Skinner,B.J.,1976.Asecondironageahead?AmericanScientist64(3),258–269. Smith,P.,October06,2014.QuestionsoftheWeek:WillPermanentMagnetGeneratorsReplaceDFIG? WindpowerMonthly.Retrievedfrom: http://www.windpowermonthly.com/article/1315794/questionweekwill-permanent-magnet-generators-replace-dfig.

UNCTAD,2014.CommoditiesataGlance.Specialissueonrareearths.No.5.Retrievedfrom: http://unctad.org/ en/PublicationsLibrary/suc2014d1_en.pdf

USDOE,2010.CriticalMaterialsStrategy.Retrievedfrom: http://energy.gov/sites/prod/files/piprod/documents/ cms_dec_17_full_web.pdf

USDOE,December2011.CriticalMaterialsStrategy.Retrievedfrom: http://energy.gov/sites/prod/files/DOE_ CMS2011_FINAL_Full.pdf

USGS,2002.RareEarthElements–CriticalResourcesforHighTechnology.USGSFactSheet087-02.Retrieved from: http://pubs.usgs.gov/fs/2002/fs087-02/

USGS,2009.MineralCommoditySummaries,January2009.RareEarths.Retrievedfrom: http://minerals.usgs .gov/minerals/pubs/commodity/rare_earths/mcs-2009-raree.pdf

16 CHAPTER1 ANOVERVIEWOFTHEUSEFULNESSANDSTRATEGICVALUE

USGS,November2014.TheRare-earthElements–VitaltoModernTechnologiesandLifestyles.FactSheet 2014-3078.Retrievedfrom: http://pubs.usgs.gov/fs/2014/3078/pdf/fs2014-3078.pdf

USGS,2015a.HistoricalData.DS140,RareEarthsStatistics.AsofJanuary30,2015.XLS-spreadsheet. Retrievedfrom: http://minerals.usgs.gov/minerals/pubs/historical-statistics/ds140-raree.xlsx

USGS,2015b.MineralCommoditySummaries2015.Retrievedfrom: http://minerals.usgs.gov/minerals/pubs/ mcs/2015/mcs2015.pdf.

Xinhua,2014.ChinaIllegalRareEarthMiningHit40,000TonnesEachYear,Expert.Retrievedfrom: http://en .xinhua08.com/a/20141103/1406631.shtml.

Zepf,V.,2013.RareEarthElements.ANewApproachtotheNexusofSupply,DemandandUse.Exemplified alongtheUseofNeodymiuminPermanentMagnets.Springer,Berlin,Heidelberg.

Zepf,V.,2015.DasverkannteRecyclingpotentialderSeltenenErden–quantitativeErgebnissefurNeodymin Deutschand(TheunknownrecyclingpotentialofREEs–quantitatieresultsfurneodymiuminGermany. (translationoftheauthor)).In:Thome ´ -Kozmiensky,K.J.,Goldmann,D.(Eds.),RecyclingundRohstoffe, Band8.TKVerlagKarlThome ´ -Kozmiensky,Neuruppin,pp.463–476.

ZhiLi,L.,Yang,X.,2014.China’sRareEarthOreDepositsandBeneficiationTechniques.Retrievedfrom: http:// www.eurare.eu/docs/eres2014/firstSession/XiaoshengYang.pdf.

REFERENCES 17

ANOVERVIEWOFCHINESERARE EARTHEXPORTRESTRICTIONS ANDIMPLICATIONS 2

InstituteofSocialScience,UniversityofTokyo,Tokyo,Japan

1. INTRODUCTION

Theconcentrationofrareearthelement(REE)productioninChinaandChineseexportrestrictions haveraisedconcernsinindustrializedcountriesaboutthecriticalnatureofthesematerials.Rareearth elementsareanindispensablecriticalcomponentofmanyhigh-technologygoodssuchasmobile telephones,computers,televisions,energy-efficientlights,andwindenergyturbines.Rareearth elementsareimportantcomponentsinlasers,superconductingmagnets,andbatteriesforhybrid automobiles.DespitetheChinesemonopoly,therewasstillenoughsupplytoreachothermarketsuntil thepastcoupleofyears.ThegrowingeconomyofChinaiscreatingaworldwiderisktosupply, becauseChina’sgrowingconsumptionlimitsitsexports,makingrareearthsmorecritical.

Exportrestrictionsonmetalsandmineralproductshavebeenbroadlyappliedbymanycountries withaviewtosecuringdomesticsupplyandtoaddressingtheproblemofresourcedepletion.Export restrictionsaredesignedtomeetdiversepolicyobjectivesrangingfromenvironmentalprotectionand increasingfiscalrevenuetodevelopingprocessingsectors.Restrictionstotradeincludetaxesandother legislationsuchastariffandnontarifftradebarrierssuchasquotas.

ThereisnosingleGeneralAgreementonTariffsandTrade(GATT)/WorldTradeOrganization (WTO)articledealingexclusivelywithexportrestrictions.Still,ArticleXIoftheGATT1994isthe keyprovisionregardingexportrestrictions.Itprohibitstheuseofquantitativerestrictionsonboth importsandexports.ExportdutiesareinprinciplenotsubjecttoArticleXIandthusarenotprohibited underthisarticle,whereasquantitativerestrictionsare.Regardingquantitativerestrictionsthatare generallyprohibited,theissueiswhetherthesemeasurescanbeexceptionallyallowedunderArticle XI:2(a)(criticalshortageoffoodstuffs),ArticleXX(GeneralExceptions),andArticleXXI(Security Exceptions).ArticleXI:2(a)allowseachmembertoapplyexportrestrictions“temporarily”toprevent orrelieve“critical”shortageoffoodstuffsorotherproductsessentialtotheexportingcountry.Article XXallowsexceptionalquantitativerestrictionsforpolicyobjectivessuchasconservationof exhaustiblenaturalresources,andensuringessentialmaterialsfordomesticprocessingindustryunder “certainqualifications”(OECD,2010).

Beforetheglobalfinancialcrisisof2008,exportrestrictionshadbeenusedbymanycountriesto achievediversepolicyobjectives. Piermartini(2004) notedthatapproximatelyone-thirdofWTO membersimposedexporttaxes.Economicanalysisprovidesseveralmotivationsforusingthese instruments.(1)Exporttaxescanraisetheworldpriceofexportedproductsandthereforeimprove

RareEarthsIndustry. http://dx.doi.org/10.1016/B978-0-12-802328-0.00002-4 Copyright © 2016ElsevierInc.Allrightsreserved.

CHAPTER
21

termsoftrade;(2)exporttaxescanreducethedomesticpriceofthetaxedcommodityandthusbenefit finalconsumersofthiscommodity;thiselementisespeciallyimportantwhenfoodsecurityisatstake; (3)exporttaxescanreducethedomesticpriceofthetaxedcommodityandbenefitconsumersofthis commodityasinputs;and(4)exporttaxesincreasepublicrevenue,whichisbeneficialinacountry wherefiscalreceiptsondomesticbasearelimited(BouetandDebucquet,2010).Thestudyfindsthat allofthesereasonsexceptthefourthonemayhavepromptedChinatoimposerestrictionsonthe exportofrareearthminerals,althoughChinaclaimsenvironmentaldegradationasthemainreason.

Anumberofscientificarticlesandpolicyreportsbothfromgovernmentalandprivateorganizations havebeenpublishedontheseminerals,particularlyafterthe2010incidentofChineseexport restrictionstoJapanoveraterritorialdispute.Thesearticlesandreportshavedealtwithawiderangeof aspectsconcerningrareearthsfromassessingcriticalityofindividualmineralstothepossibleeffects offuturescarcity(Hedrick,2010;Hurst,2010;Hoenderdaaletal.,2013;Wubbeke,2013).Mostof thesereportsintroduceaframeworkformeasuringthecriticalityofrawmaterials.Keyfactors consideredaretheireconomicimportance,theirsubstitutability,thediversityofsupply,thesizeof knownresourcesandreserves,andthepotentialforrecycling(Kleijn,2012).Assumingtheseminerals arecriticalbasedonthepreviousstudies,thecurrentstudyevaluatesChina’smonopolyoverthe industryandprovidesinsightsintohowwidelytradedthesemineralsareandChina’spositionsinthe internationaltradeintermsofbothvolumeandvalue.Thestudyinvestigatesthevarioustrade restrictionsimposedbyChinaanditsimplicationsincludingtheavailabilityofmaterialstoWestern companies.Someindividualrareearthsmineralsaremorecriticalfromthedemandandsupplyside. AlthoughChinahasbeenrestrictingtheexportofhighrareearthsmore,thestudydoesnotattemptto evaluatethecriticalityofindividualelementsanddoesnotdifferentiateamongthem;rather,ithas takenthemasatotal,largelybecauseofthenonavailabilityofdataonindividualrareearths.

Metalsandmineralsaccountforarelativelysmallshareoftheworldindustrialoutput,buttheir supplyisessentialforlargevalue-addingactivitiesinanyeconomy.Thedemandforrawmaterialshas beenincreasingasgreaternumbersofcountriesmoveupinthedevelopmentalstage.Thegreater demandfromoutsideusuallypromptsresource-endowedcountriestoimposerestrictionsonminerals thatareconsideredcritical.Therehavebeenseveralsuchrestrictionsimposedbyvariouscountries. Researchershavealreadyconductedstudieswithdifferentbackgroundsusingdifferenttechniqueson thesetraderestrictions.Restrictionstotradeincludequotas,taxes,andotherlegislationsuchastariff andnontarifftradebarriers.Forexample, Peelingetal.(2010) providedaneconomiccontextofexport restrictionswithparticularfocusonthemetalandmineralsector.Therecouldbevariouspolicy objectivesinimposingtheserestrictions,andmanyarguethatChineseexporttaxesontheseminerals areimposedtomaintainmineralsecurityinthedomesticindustries. Kim(2010) examinedtheuseof exportrestrictionsonrawmaterialsandanalyzedthepolicyobjectivesofexportrestrictionsandtheir effectivenessinachievingtheirstatedgoals.Thisstudyfoundthatbyaffectingthepriceandquantity oftrade,exportrestrictionsproducetrade-distortingeffectsinthesamewayasimportrestrictionsand mayresultinefficiencylosses.

Exportrestrictionsofonecountrymayinduceotherexportingcountriestotakesimilarmeasures. Onceanexportrestrictionisapplied,itislikelythatimportingcountrieswillshifttheirsourceof importstoothercountries.Theotherexportingcountriesmaythenbeforcedtoapplysimilarmeasures tomeetdomesticdemandbylimitingtheirexports(Dollive,2008).Risingglobalfoodpricesduring 2006–2008contributedtohighfoodpriceinflationthatcreatedseriousconcerninseveralcountries.In response,severalgovernmentsappliedexporttaxestolimitexportsandthusincreasedomestic

22 CHAPTER2 CHINESEREEEXPORTRESTRICTIONSANDIMPLICATIONS

suppliesatlowprices.However,inthecaseofrareearths,theexportrestrictionsofChinaactually resultedinincreasedpricesthateventuallypromptedothercountriestoenterthemarkettosupplythese minerals.Somestudiessuchasthatby Fabiosaetal.(2003) and FabiosaandBeghin(2002) examined theeffectofremovingallbordertaxes,includingexporttaxes,domesticsubsidies,andotherdistortionstoworldcommoditymarkets. BouetandDebucquet(2010) providedatheoreticalbackgroundto usingexporttaxestomaintainingfoodsecurity.Theiranalysisemphasizedthenegativeimpactofsuch measuresonthewelfareoftradepartnersandtheeffectsofnoncooperativetradepolicies. Tarr(2010) analyzedexportrestraintsbyRussiaonnaturalgasandtimber,whichsharedthedualeffectof decreasingdomesticpriceswhileincreasingexportprices.Theanalysisfocusedonadevelopment perspectiveofexportrestrictions,inthattherestrictionsareappliedtoimprovetheexporter’stermsof trade.OurstudydoesnotfindthatChinahadtheintentionofimprovingitstermsoftradebyapplying exporttaxesanddutiesonrareearths.Thismaybetrueinthecaseoftradeinhydrocarbons,because bothexportersandimportersimposeseveraltaxesanddutiestoincreasegovernmentrevenueor improvethetermsoftrade.

Chinaclaimsthatitsexportrestrictionsareimp osedtoprotecttheenvironmentandconserveits rapidlydepletingresourcebase.However,astudyby KorinekandKim(2010) foundthattheexport restrictionsputinplacedidnotfulfilltheirobjectiveofenvironmentalprotectionandthepresenceof exportrestrictionsinonecountryputpressureonotherexporterstoapplyrestrictions,whichsuggeststhepotentialforcompetitivepolicypracticesin restrictingexports.Anotherimportantquestion raisedintheliteratureiswhetherweakenvironmentallawsattractforeignfirmsintomining.This maybetruefordomesticfirms,becauseweakenvironmentalregulationmaypromptprivatecompaniestoentertheminingbusiness,whichhashappenedintheChineserareearthminingbusiness foralongtime.However, ToleandKoop(2010) foundthatstringentenvironmentalregulationshave noeffectonforminginvestmentlocationdecisio nsbyminingfirms.Regar dlessofanyshort-term costsavingsfromlowerenvironmentalstandards,mostmultinationalminingfirmsnowviewtheir presenceinenvironmentally“dirty”partsofth eworldaspotentiallydamagingtotheircorporate reputation,eventhoughtheymayadoptinternationalbestpracticestandards.InChina’scase, althoughenvironmentalregulationswereweak,exceptforinternationalfirms,theregulatory frameworkforthemineralssectorwascomplex.T heframeworkmanifestsitselfintermsofbotha complexapprovalprocessandinconsistentregulationsandpolicyamongcentral,provincial,and locallevelsofgovernment( Penneyetal.,2007).

2. CASEAGAINSTCHINAINWTOONREEEXPORTRESTRICTIONS

InJune2009,theissueofdwindlingsupplyofrareearthmineralsandChineseexportrestrictionscame totheforewhentheUnitedStates(US)andtheEuropeanUnion(EU)(laterjoinedbyMexico,India, Brazil,Japan,andKoreaasthirdparties)lodgedacomplaintagainstChinatotheWTO,claimingthat exportrestraints(includingquotasandexporttaxes)imposedbyChinaonanumberofrawmaterials violatedWTOrules.AlthoughitiswellknownthatWTOrulesaimtoreduceprotectionismonthe importside,therulesconcerningexportrestrictionsarelessknownandvague.Again,inMarch2012, theUS,theEU,andJapanfiledcoordinatedcomplaintsagainstChinatotheWTOregardingChina’s exportcontrolsonrareearthandnon–rareearthmetalssuchastungstenandmolybdenum.Theyalso challengedaspectsoftheallocationandadministrationofexportquotas,exportlicenses,andminimum exportprices,andtheallegednonpublicationofcertainmeasures.TheyfurthercontendedthatChinese

2. CASEAGAINSTCHINAINWTOONREEEXPORTRESTRICTIONS 23

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.