prob theory & stochastic3

Page 1

Exam zone


E x a mc py lc l o s t a t i o n a Consider

X ( t ) that X ( t, ) = A ( ω) cos(ωo t ) + B ( ω) sin ωo t ) , t 2 R , ω 2 R ,

where A _ N ( µ1 , at to 2 R w

2 1)

2 2)

and B _ N ( µ2 ,

and

If

X ( t o , ) = X ( ω) = A ( ω) cos(ωo t o ) + B ( ω) sin(ωo t o ) . Since a

X ( ω) ha

A and B are µx ( t ) = µ1 cos ωo t ) + µ2 sin(ωo t ) .

The

X ( t ) is σx2 ( t ) = E _( A cos ωo t ) + B sin(ωo t )) 2

Using

( µ1 cos(ωo t ) + µ 2 sin(ωo t )) 2 .

A and B are σx2 ( t ) = σ12 cos2 ( ωo t ) + σ22 sin2 ( ωo t )

Since this w

To = 2ωπo t1, 2 2 R

t v If X 1 and X 2 defin _ X1 _ _ cos ωo t 1 ) sin(ωo t 1 ) _ _ A _ = . X2 cos ωo t 2 ) sin(ωo t 2 ) B | {z } M

The µx = M The auto-co co

fu C xx :

ass

Cxx ( t 1 , 2 ) = Substitu

t 1 = t and t 2 = t

with this p σ12 + σ22 cos ωc ( t 2 2

is p

i obtai

t 1 )) +

σ12

σ22 2

2 2)

M T. as th

o_-diagonal elemen of the

cos ωc ( t 1 + t 2 )) .

τ w

Cxx ( t, ) = This expre other p pro The is

_ µ1 _ , C xx = M diag σ12 , µ2

σ12 + σ22 σ2 σ22 cos ωc τ ) + 1 cos ωc t 2 2

in the t v X ( t ) is

ωc τ ) .

with a fu p of To R xx ( t, ) and ρxx ( t, ) are The

=

2π 2 ωo

. Cons

all

tv Z C˜ xx ( τ ) =

To

/2

Cxx ( t, ) dt = To

/2

σ12 + σ22 cos(ωc τ ) . 2

W will re thi sp form again when w lo at the Rice repr for b pro It su_ces to s that in general the pro X ( t ) is not s but cyclostation F the sp cas where µ1 = µ2 = 0 and σ22 = σ22 = σ2 w ob the sp cas where µx ( t ) = 0, σx2 ( t ) = σ2 and 2 R xx ( τ ) = σ cos ωo τ ). In X (t ) b is 1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.