Chapter 15

Page 1

January 27, 2005 11:55

L24-CH15

Sheet number 1 Page number 655

black

CHAPTER 15

Multiple Integrals EXERCISE SET 15.1

1

2

1.

1

(x + 3)dy dx = 0

(2x + 6)dx = 7

0 4

0

1

4

2

0

2

ln 3

ln 2

0

2

1

0

2

0

5

1

1

0

π

1

2

0 4

2

ln 2

1 1

2

1

−2

1

0 1

−3

10dx = 20 4

dx = 1 − ln 2

3

1 1 − x+1 x+2

dx = ln(25/24)

0 dx = 0 −1

2 π/2

2 x 1 − x dy dx =

3

15. 0

4

xy dy dx = x2 + y 2 + 1

14. 0

6

dy dx =

1

4xy 3 dy dx =

13. −1

1 1− x+1

7

1 x (e − 1)dx = (1 − ln 2)/2 2

0

1 dy dx = (x + y)2

12. 3

π

xy ey x dy dx =

(3 + 3y 2 )dy = 14 −2

π/2

11. 0

0

(sin 2x − sin x)dx = −2

1

ln 2

1

x cos xy dy dx =

6

8.

0

2

10. π/2

−1

4

x dy dx = (xy + 1)2

9. 0

3 dy = 3

−1

2

2

(x2 + y 2 )dx dy = −2

0

dx dy = −1

4.

1 sin x dx = (1 − cos 2)/2 2

0

7.

0

4x dx = 16 1

0

y sin x dy dx = 0

−1

3

(2x − 4y)dy dx =

ex dx = 2

0

6.

1

ln 3

ex+y dy dx =

5.

1

1 y dy = 2 3

x2 y dx dy =

3.

3

2.

1

√ √ [x(x2 + 2)1/2 − x(x2 + 1)1/2 ]dx = (3 3 − 4 2 + 1)/3

0

1

x(1 − x2 )1/2 dx = 1/3

0

π/3

(x sin y − y sin x)dy dx =

16. 0

0

0

π/2

x π2 − sin x dx = π 2 /144 2 18

17. (a) x∗k = k/2 − 1/4, k = 1, 2, 3, 4; yl∗ = l/2 − 1/4, l = 1, 2, 3, 4, 4 4 4 4 f (x, y) dxdy ≈ f (x∗k , yl∗ )∆Akl = [(k/2−1/4)2 +(l/2−1/4)](1/2)2 = 37/4

R

2

k=1 l=1

k=1 l=1

2

(x2 + y) dxdy = 28/3; the error is |37/4 − 28/3| = 1/12

(b) 0

0

655


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.