January 27, 2005 11:55
L24-CH15
Sheet number 1 Page number 655
black
CHAPTER 15
Multiple Integrals EXERCISE SET 15.1
1
2
1.
1
(x + 3)dy dx = 0
(2x + 6)dx = 7
0 4
0
1
4
2
0
2
ln 3
ln 2
0
2
1
0
2
0
5
1
1
0
π
1
2
0 4
2
ln 2
1 1
2
1
−2
1
0 1
−3
10dx = 20 4
dx = 1 − ln 2
3
1 1 − x+1 x+2
dx = ln(25/24)
0 dx = 0 −1
2 π/2
2 x 1 − x dy dx =
3
15. 0
4
xy dy dx = x2 + y 2 + 1
14. 0
6
dy dx =
1
4xy 3 dy dx =
13. −1
1 1− x+1
7
1 x (e − 1)dx = (1 − ln 2)/2 2
0
1 dy dx = (x + y)2
12. 3
π
xy ey x dy dx =
(3 + 3y 2 )dy = 14 −2
π/2
11. 0
0
(sin 2x − sin x)dx = −2
1
ln 2
1
x cos xy dy dx =
6
8.
0
2
10. π/2
−1
4
x dy dx = (xy + 1)2
9. 0
3 dy = 3
−1
2
2
(x2 + y 2 )dx dy = −2
0
dx dy = −1
4.
1 sin x dx = (1 − cos 2)/2 2
0
7.
0
4x dx = 16 1
0
y sin x dy dx = 0
−1
3
(2x − 4y)dy dx =
ex dx = 2
0
6.
1
ln 3
ex+y dy dx =
5.
1
1 y dy = 2 3
x2 y dx dy =
3.
3
2.
1
√ √ [x(x2 + 2)1/2 − x(x2 + 1)1/2 ]dx = (3 3 − 4 2 + 1)/3
0
1
x(1 − x2 )1/2 dx = 1/3
0
π/3
(x sin y − y sin x)dy dx =
16. 0
0
0
π/2
x π2 − sin x dx = π 2 /144 2 18
17. (a) x∗k = k/2 − 1/4, k = 1, 2, 3, 4; yl∗ = l/2 − 1/4, l = 1, 2, 3, 4, 4 4 4 4 f (x, y) dxdy ≈ f (x∗k , yl∗ )∆Akl = [(k/2−1/4)2 +(l/2−1/4)](1/2)2 = 37/4
R
2
k=1 l=1
k=1 l=1
2
(x2 + y) dxdy = 28/3; the error is |37/4 − 28/3| = 1/12
(b) 0
0
655
January 27, 2005 11:55
L24-CH15
Sheet number 2 Page number 656
black
656
Chapter 15
18. (a) x∗k = k/2 − 1/4, k = 1, 2, 3, 4; yl∗ = l/2 − 1/4, l = 1, 2, 3, 4, 4 4 4 4 f (x, y) dxdy ≈ f (x∗k , yl∗ )∆Akl = [(k/2 − 1/4) − 2(l/2 − 1/4)](1/2)2 = −4 R
2
k=1 l=1
k=1 l=1
2
(x − 2y) dxdy = −4; the error is zero
(b) 0
0
z
19. (a)
z
(b)
(0, 0, 5)
(1, 0, 4)
(0, 4, 3) y
y (2, 5, 0)
(3, 4, 0) x
x
z
20. (a)
z
(b)
(2, 2, 8)
(0, 0, 2)
y
y (2, 2, 0)
(1, 1, 0) x
x
5
(2x + y)dy dx = 3
1
3
5
(2x + 3/2)dx = 19 3
2
3
(3x3 + 3x2 y)dy dx =
22. V = 1
2
1
3 2
0
0
3
0
4
3
5(1 − x/3)dy dx =
24. V = 0
1/2
2
3x2 dx = 8
x dy dx =
(6x3 + 6x2 )dx = 172
0
23. V =
2
21. V =
0
5(4 − 4x/3)dx = 30 0
π
1/2
2
25.
x cos(xy) cos πx dy dx = 0
0
0
0
π cos2 πx sin(xy) dx
1/2
cos2 πx sin πx dx = −
= 0
1/2 1 1 cos3 πx = 3π 3π 0
January 27, 2005 11:55
L24-CH15
Sheet number 3 Page number 657
black
Exercise Set 15.2
657
z
26. (a)
(b)
5
5
3
y dy dx + 0
(0, 2, 2)
2
V = 0
(−2y + 6) dy dx 0
2
π/2
= 10 + 5 = 15 y
3
5
(5, 3, 0)
x
2 π
27. fave =
π/2
1 2
30. fave
1
y sin xy dx dy = 0
0
1 28. average = 3 29. Tave =
1
0
3
0
1 = A(R)
b
3
dx dy = 0
d
dy = x=0
2 π
(1 − cos y) dy = 1 − 0
2 π
√ 1 [(1 + y)3/2 − y 3/2 ]dy = 2(31 − 9 3)/45 9
1
0
44 − 16x2 3
dx =
14 3
◦ C
1 (b − a)(d − c)k = k A(R)
k dy dx = c
31. 1.381737122
32. 2.230985141
33.
x=1
0
1 10 − 8x2 − 2y 2 dy dx = 2
a
− cos xy
0 2
π/2
1/2
x(x + y)
1 2
0
2 π
b
f (x, y)dA =
c
b
=
g(x)dx
d
b
g(x)h(y)dy dx = a
R
d
g(x) a
d
h(y)dy dx
c
h(y)dy
a
c
34. The integral of tan x (an odd function) over the interval [−1, 1] is zero. 35. The first integral equals 1/2, the second equals −1/2. No, because the integrand is not continuous.
EXERCISE SET 15.2
1
x
1
1 4 (x − x7 )dx = 1/40 3
2
1.
xy dy dx = x2
0
3/2
0
3−y
2.
3/2
(3y − 2y 2 )dy = 7/24
y dx dy = 1
y 3
1
√9−y2
3.
3
y dx dy = 0
x
4. 1/4
9 − y 2 dy = 9
0
0 1
y
x2
1
x
x/y dy dx = 1/4
x2
x1/2 y −1/2 dy dx =
1
2(x − x3/2 )dx = 13/80 1/4
January 27, 2005 11:55
L24-CH15
Sheet number 4 Page number 658
black
658
Chapter 15
5.
√ 2π
sin(y/x)dy dx =
√ π
1
x2
−1
1
−x2
x
8.
(x2 − y)dy dx =
x2
0 2
2x4 dx = 4/5 −1
1
y2
x/y 2
e
π
π/2
x2
x
9.
1 cos(y/x)dy dx = x
0
1
0
x2
7.
0
10. 1
1
xe dx = (e − 1)/2
e dy dx = 0
[−x cos(x2 ) + x]dx = π/2
√ π
0
6.
√ 2π
x3
sin x dx = 1 π/2
2 2 y x − y dy dx =
0
π
1
0
1 3 x dx = 1/12 3
2
(e − 1)y 2 dy = 7(e − 1)/3
dx dy = 1
0
2
x2
11. (a)
f (x, y) dydx 0
√ x
12. (a)
f (x, y) dydx
2
3
4
f (x, y) dydx +
f (x, y) dxdy
3
5
3
f (x, y) dydx +
−2x+5
3
√ y
y2
0
13. (a) 1
1
f (x, y) dxdy
(b)
x2
0
2
√ y
0
0 1
4
(b)
2
f (x, y) dydx
1
4
2x−7
(y+7)/2
f (x, y) dxdy
(b) 1
(5−y)/2 1
14. (a)
√ − 1−x2
−1
2
√ 1−x2
f (x, y) dydx
√1−y2
1
√
(b) −1
x2
15. (a)
−
f (x, y) dxdy 1−y 2
2
1 5 16 x dx = 3 0 2 3 xy dx dy = (3y 2 + 3y)dy = 38
xy dy dx = 0
0
3
(y+7)/2
(b) −(y−5)/2
1
1
1
√ x
16. (a)
1
(x3/2 + x/2 − x3 − x4 /2)dx = 3/10
(x + y)dy dx = x2
0
1
(b)
√ − 1−x2
−1
8
√ 1−x2
−1
4
16/x
4
4 8
2
(b)
−1
8
2
4
y
8
x dx dy =
16/y
y
4
=
1
y dy dx =
2
x dxdy + 2
√ − 1−x2
2x 1 − x2 dx + 0 = 0
(x3 − 16x)dx = 576
8
√ 1−x2
8
x2 dy dx =
1
x dy dx +
x
17. (a)
0
8 512 4096 512 − y 3 − dy dy + 3 3y 3 3 4
640 1088 + = 576 3 3
2
1 4 y dy = 31/10 1 0 1 2 1 2 2 2 (b) xy 2 dydx + xy 2 dydx = xy 2 dx dy =
18. (a)
0
1
1
x
0
1
7x/3 dx + 1
2
8x − x4 dx = 7/6 + 29/15 = 31/10 3
January 27, 2005 11:55
L24-CH15
Sheet number 5 Page number 659
black
Exercise Set 15.2
659
1
19. (a)
√ − 1−x2
−1
1
√
−1 5
(3x − 2y)dy dx =
√1−y2
(b)
√ 1−x2
−
(3x − 2y) dxdy = 1−y 2
√ 25−x2
(b)
4
√ y
Ï€
x
22. 0
6−y
2
y2
0 √ 1/ 2
24.
Ï€/4
1 cos 2y dy = 1/8 4
x dx dy = 0
sin y 1
0
x
1
(x − 1)dy dx =
25.
(−x4 + x3 + x2 − x)dx = −7/60
x3
0
√ 1 y(1 + y 2 )−1/2 dy = ( 17 − 1)/2 2
1 (36y − 12y 2 + y 3 − y 5 )dy = 50/3 2
xy dx dy =
Ï€/4
4
0
23. 0
25 − y 2 − 5 + y dy = 125/6
x sin x dx = π
0 2
Ï€
x cos y dy dx =
x(1 + y 2 )−1/2 dx dy =
0
1 − y 2 dy = 0
0
0
0
y
5−y
21.
5
y dxdy =
−1
−4y
0
√25−y2
0
1
(5x − x2 )dx = 125/6
5−x
5
6x 1 − x2 dx = 0
5
y dy dx =
−1
20. (a) 0
1
√ 1/ 2
0
2x 2
x dy dx +
26. 0
x
1
1/x
√ 1/ 2
2
x dy dx =
√ 1/ 2
x dx + 0
x
3
1
√ (x 1/ 2
− x3 )dx = 1/8
y
27. (a) 4 3 2 1
x
–2
–1
0.5
1.5
(b) x = (−1.8414, 0.1586), (1.1462, 3.1462)
x dA ≈
(c) R
1.1462
R
1.1462
x dydx = −1.8414
3.1462
−1.8414
ex
ln y
x dA ≈
(d)
x+2
3.1462
x dxdy = 0.1586
y−2
0.1586
x(x + 2 − ex ) dx ≈ −0.4044 ln2 y (y − 2)2 − 2 2
dy ≈ −0.4044
January 27, 2005 11:55
L24-CH15
Sheet number 6 Page number 660
black
660
Chapter 15
y
28. (a)
(b)
(1, 3), (3, 27)
25 R
15
5
x 1
3
2
4x3 −x4
(c) 1
3−4x+4x2
π/4
x[(4x3 − x4 ) − (3 − 4x + 4x2 )] dx = 1
cos x
π/4
(cos x − sin x)dx =
dy dx = 0
sin x
1
−4
3y−4
3
(−y 2 − 3y + 4)dy = 125/6
9−y 2
31. A =
3
8(1 − y 2 /9)dy = 32
dx dy = −3
1
−3
1−y 2 /9
cosh x
32. A =
1
dy dx = 0
sinh x
(cosh x − sinh x)dx = 1 − e−1
0
6−3x/2
4
(3 − 3x/4 − y/2) dy dx =
33. 0
[(3 − 3x/4)(6 − 3x/2) − (6 − 3x/2)2 /4] dx = 12
0 2
0 √ 4−x2
34. 0
2−1
1
dx dy = −4
√
224 15
0
−y 2
30. A =
4
3
x dy dx =
29. A =
3
2
4 − x2 dy dx =
(4 − x2 ) dx = 16/3 0
0
3
35. V =
√ − 9−x2
−3
1
√ 9−x2
(3 − x)dy dx =
−3
x
(2x3 − x4 − x6 )dx = 11/70
x2
0
3
0
2 2
37. V =
3
2
(18x2 + 8/3)dx = 170
(9x + y )dy dx = 0
0
1
0
(1 − x)dx dy = y2
3/2
39. V = 3
1
(1/2 − y 2 + y 4 /2)dy = 8/15
−1
√ 9−4x2
(y √ − 9−4x2
−3/2
1
38. V = −1
(9 − x )dx dy =
40. V = y 2 /3
5
41. V = 8 0
0
√ 25−x2
6 −3/2
3
3/2
+ 3)dy dx =
9 − 4x2 dx = 27π/2
3
(18 − 3y 2 + y 6 /81)dy = 216/7
2
0
(6 9 − x2 − 2x 9 − x2 )dx = 27π
1
(x2 + 3y 2 )dy dx =
36. V =
3
0
25 − x2 dy dx = 8
5
(25 − x2 )dx = 2000/3 0
January 27, 2005 11:55
L24-CH15
Sheet number 7 Page number 661
black
Exercise Set 15.2
661
√1−(y−1)2
1 [1 − (y − 1)2 ]3/2 + y 2 [1 − (y − 1)2 ]1/2 dy, 3 0 0 0
π/2 1 3 2 let y − 1 = sin θ to get V = 2 cos θ + (1 + sin θ) cos θ cos θ dθ which eventually yields −π/2 3 V = 3π/2
2
√ 1−x2
1
0
0 √ 4−x2
2
2
44. V =
0
0
2
45.
f (x, y)dx dy 1
f (x, y)dx dy
0
e−y dx dy = 2
0 1
4
0
x2
x3
2
3
54.
1 2
x dx dy = ey
0
2
ln 3
(9 − e2y )dy = 0
e
56.
2
1
(ex − xex )dx = e/2 − 1
x dy dx = ex
0
1 (9 ln 3 − 4) 2
0
0 1
f (x, y)dy dx x2
0
y 2 sin(y 3 )dy = (1 − cos 8)/3
sin(y 3 )dx dy = 0
50.
0
3
y2
55.
√ x
0
0 ln 3
x2 ex dx = (e8 − 1)/3
e dy dx =
f (x, y)dy dx
1
0
53. 0
sin x
2x cos(x2 )dx = sin 1
0 2
f (x, y)dy dx ln x
1
2
1
cos(x2 )dy dx =
1 −y2 ye dy = (1 − e−16 )/8 4
2x
52. 0
π/2
e2
47.
0
0
y/4
x/2
49.
ey 4
8
0
51.
(1 − x2 )3/2 dx = π/2 0
f (x, y)dy dx
e
48. 0
1
46.
y2
0
1 2 2 3/2 2 x 4 − x + (4 − x ) dx = 2π 3
2
2
(x + y )dy dx = 0
√ 2
2
8 3
(1 − x2 − y 2 )dy dx =
43. V = 4
(x2 + y 2 )dx dy = 2
42. V = 2
0
4
57. (a)
2
√ x
0
2
0
y2
sin πy 3 dy dx; the inner integral is non-elementary. sin πy 3 dx dy =
0
0
1
2
1 y 2 sin πy 3 dy = − cos πy 3 3π
2 =0 0
π/2
sec2 (cos x)dx dy ; the inner integral is non-elementary.
(b) sin−1
0
π/2
y
sin x
π/2
2
sec2 (cos x) sin x dx = tan 1
sec (cos x)dy dx = 0
0
2
0
√ 4−x2
2
(x2 + y 2 ) dy dx = 4
58. V = 4 = 0
0 π/2
0
x2
0
64 64 128 + sin2 θ − sin4 θ 3 3 3
dθ =
1 4 − x2 + (4 − x2 )3/2 3
dx
64 π 64 π 128 π 1 · 3 + − = 8π 3 2 3 4 3 2 2·4
(x = 2 sin θ)
January 27, 2005 11:55
L24-CH15
Sheet number 8 Page number 662
black
662
Chapter 15
59. The region is symmetric with respect to the y-axis, and the integrand is an odd function of x, hence the answer is zero. 60. This is the volume in the first octant under the surface z = π the sphere of radius 1, thus . 6
1
1
61. Area of triangle is 1/2, so f¯ = 2 0
0
1
1 − x2 − y 2 , so 1/8 of the volume of
1 π x dx = − ln 2 − 1 + x2 1 + x2 2
2
(3x − x2 − x) dx = 4/3, so
62. Area = 3 f¯ = 4
x
1 dy dx = 2 1 + x2
0
2
3x−x2
(x2 − xy)dy dx = 0
x
1 A(R)
63. Tave =
3 4
2
(−2x3 + 2x4 − x5 /2)dx = − 0
2 3 8 =− 4 15 5
(5xy + x2 ) dA. The diamond has corners (±2, 0), (0, ±4) and thus has area R
1 A(R) = 4 2(4) = 16m2 . Since 5xy is an odd function of x (as well as y), 2
5xy dA = 0. Since R
x2 is an even function of both x and y, 2 4 1 2 4−2x 2 1 2 1 4 3 1 4 2◦ 2 2 x dA = st0 x dydx = (4 − 2x)x dx = = C Tave = x − x 16 4 4 0 4 3 2 3 0 0 R x,y>0
64. The area of the lens is πR2 = 4π and the average thickness Tave is 2 √4−x2 4 1 21 (4 − x2 )3/2 dx 1 − (x2 + y 2 )/4 dydx = Tave = 4π 0 0 π 0 6 π 1 8 8 1·3π = in = sin4 θ dθ = 3π 0 3π 2 · 4 2 2 65. y = sin x and y = x/2 intersect at x = 0 and x = a = 1.895494, so a sin x V = 1 + x + y dy dx = 0.676089 0
x/2
EXERCISE SET 15.3
π/2
1.
sin θ
π/2
r cos θdr dθ = 0
0 π
0
1+cos θ
2.
π
r dr dθ = 0
0 π/2
0
a sin θ
1 (1 + cos θ)2 dθ = 3π/4 2 π/2
2
3.
r dr dθ = 0
0 π/6
4.
0
cos 3θ
r dr dθ = 0
0
0
1 sin2 θ cos θ dθ = 1/6 2
π/6
a3 2 sin3 θ dθ = a3 3 9
1 cos2 3θ dθ = π/24 2
(x = 2 cos θ)
January 27, 2005 11:55
L24-CH15
Sheet number 9 Page number 663
black
Exercise Set 15.3
π
663
1−sin θ
π
1 (1 − sin θ)3 cos θ dθ = 0 3
r2 cos θ dr dθ =
5. 0
0 π/2
0
cos θ
π/2
1 cos4 θ dθ = 3π/64 4
3
6.
r dr dθ = 0
0
0
2π
1−cos θ
7. A = 0
0
π/2
sin 2θ
sin2 2θ dθ = π/2
0
π/2
0
1
9. A =
π/2
r dr dθ = π/4
sin 2θ
π/3
π/4
2
10. A = 2
4 sin θ
f (r, θ) r dr dθ 2
π/2
3
r
9 − r2 dr dθ
π/2
r 0
π/2
2 sin θ
r2 dr dθ = 0
128 √ 2 3
9 − r2 dr dθ =
1
18. V = 2 0
π/2
cos θ
16 3
0
0
π/2
dr dθ = 8
1
π/2
π/2
(2 cos2 θ − cos4 θ)dθ = 5π/32
π/2
dθ = 4π
3 sin θ
π/2
sin4 θ dθ =
0 π/2
0
2
22. V = 2
0 π/2
= 0
23. 0
1
π
4 − r2 r drdθ + 2
2 cos θ
16 (1 − cos2 θ)3/2 θ dθ + 3
e−r r dr dθ = 2
0
64 √ 2π 3
0
r sin θ drdθ = 9
dθ =
1 (1 − e−1 ) 2
1
sin3 θ dθ = 32/9
2
0
π/2
3
dr dθ
0
21. V =
0
1 (1 − r )r dr dθ = 2
3
20. V = 4 0
π/2
π/2
2
19. V = 2
2 sin θ
0
0 3
16. V = 4
0
17. V = 8
1+cos θ
r2 dr dθ
cos θ
(1 − r )r dr dθ
π/2
0
15. V = 2
1
14. V = 2
2
0
f (r, θ)r dr dθ
1 π/2
3π/2
12. A = π/2
13. V = 8 0
3
0
11. A = π/6
√
(4 − sec2 θ)dθ = 4π/3 −
sec θ
5π/6
1 (1 − sin2 2θ)dθ = π/16 2
π/3
r dr dθ = 0
0
π/2
r dr dθ = 2 0
2π
1 (1 − cos θ)2 dθ = 3π/2 2
0
8. A = 4
2π
r dr dθ =
π
0
2π
4 − r2 r drdθ
π/2
π/2
2
27 π 16
0
16 32 8 dθ = + π 3 9 3
dθ = (1 − e−1 )π
January 27, 2005 11:55
L24-CH15
Sheet number 10 Page number 664
black
664
Chapter 15
Ď€/2
3
24.
r 0
9−
r2
Ď€/4
0
dθ = 9π/2 0
2
0 π/2
Ď€/2
dr dθ = 9
0
25.
1 1 r dr dθ = ln 5 1 + r2 2
2 cos θ
Ď€/4
dθ = 0
16 2r sin θ dr dθ = 3
Ď€/2
2
26. π/4
0
Ď€/2
1
r3 dr dθ =
27. 0
0 2Ď€
2
0 π/2
Ď€/2
dθ = π/8
2
1 (1 − e−4 ) 2
2 cos θ
0
0 π/2
8 3
r2 dr dθ =
29.
0 π/4
sec θ tan θ
1 r dr dθ = 3
Ď€/4
2
32. 0
0 π/4
2
33. 0
√
0
5
1 r dr dθ = 2 3 csc θ
34. tan−1 (3/4)
= 2Ď€
a
hr dr dθ =
35. V = 0
0 π/2
36. (a) V = 8 0
(b) V ≈
0
√ sec3 θ tan3 θ dθ = 2( 2 + 1)/45
a
Ď€/2
tan−1 (3/4)
Ď€/2
0
a sin θ
Ď€/4
0
25 25 Ď€ − tan−1 (3/4) − 6 = tan−1 (4/3) − 6 2 2 2
2Ď€
a2 dθ = πa2 h 2
c 2 4c (a − r2 )1/2 r dr dθ = − Ď€(a2 − r2 )3/2 a 3a
c 2 2 (a − r2 )1/2 r dr dθ = a2 c a 3
√ a 2 cos 2θ
r dr dθ = 4a2
38. A = 4 0
(25 − 9 csc2 θ)dθ
a = 0
4 2 πa c 3
4 Ď€(6378.1370)2 6356.5231 ≈ 1,083,168,200,000 km3 3
37. V = 2
0
Ď€ sin 1 4
0
h 0
dθ =
r Ď€ √ dr dθ = ( 5 − 1) 2 4 1+r
Ď€/2
Ď€/2
r Ď€ 1 − 1/ 1 + a2 dr dθ = 2 3/2 2 (1 + r )
a
31. 0
dθ = (1 − e−4 )Ď€
0
Ď€/2
1 sin 1 2
0 π/2
2Ď€
0
cos(r2 )r dr dθ = 0
cos3 θ dθ = 16/9
1
30.
cos3 θ sin θ dθ = 1/3 π/4
0
e−r r dr dθ =
28. 0
1 4
Ď€ ln 5 8
0
Ď€/2
(1 − cos3 θ)dθ = (3Ď€ − 4)a2 c/9 0
Ď€/4
cos 2θ dθ = 2a2 0
January 27, 2005 11:55
L24-CH15
Sheet number 11 Page number 665
black
Exercise Set 15.4
665
π/4
39. A =
√ 8 cos 2θ
π/6
4 sin θ
π/2
4 sin θ
r dr dθ +
r dr dθ π/4
0
π/4
π/2
(8 sin2 θ − 4 cos 2θ)dθ +
= π/6
φ
√ 8 sin2 θ dθ = 4π/3 + 2 3 − 2
π/4
2a sin θ
φ
1 sin2 θ dθ = a2 φ − a2 sin 2φ 2 0 0 0 +∞
+∞
+∞ +∞
2 2 2 2 41. (a) I 2 = e−x dx e−y dy = e−x dx e−y dy r dr dθ = 2a2
40. A =
0 +∞
0
+∞
= 0
e−x e−y dx dy = 2
2
0
π/2
+∞
(b) I 2 = 0
e−r r dr dθ = 2
0
1 2
0
+∞
0
0
+∞
e−(x
2
+y 2 )
dx dy
0
√
π/2
dθ = π/4
(c)
I=
π/2
0
√ 42. The two quarter-circles with center at the origin and of radius A and 2A lie inside and outside of the square with corners (0, 0), (A, 0), (A, A), (0, A), so the following inequalities hold: π/2 A A A π/2 √2A 1 1 1 rdr dθ ≤ dx dy ≤ rdr dθ 2 2 2 2 2 (1 + r2 )2 0 0 0 (1 + r ) 0 0 (1 + x + y ) 0 πA2 and the integral on the right equals 4(1 + A2 ) 2 2πA π . Since both of these quantities tend to as A → +∞, it follows by sandwiching that 2 4(1 + 2A ) 4 +∞ +∞ 1 π dx dy = . 2 + y 2 )2 (1 + x 4 0 0
The integral on the left can be evaluated as
43. (a) 1.173108605
0 2π
R
D(r)r dr dθ = 0
2π
R
44. V = tan−1 (2)
0
0
tan−1 (1/3)
2
re−r dr dθ = π 4
0
1
re−r dr ≈ 1.173108605 4
0
ke−r r dr dθ = −2πk(1 + r)e−r
R
= 2πk[1 − (R + 1)e−R ]
0
tan−1 (2)
tan−1 (2)
cos2 θ dθ = 2 tan−1 (1/3)
0
1
0
r3 cos2 θ dr dθ = 4
45.
π
(b)
(1 + cos(2θ)) dθ tan−1 (1/3)
√ √ = 2(tan−1 2 − tan−1 (1/3)) + 2/ 5 − 1/ 10
EXERCISE SET 15.4 z
1. (a)
z
(b)
z
(c)
y x x
y
x y
January 27, 2005 11:55
L24-CH15
Sheet number 12 Page number 666
black
666
Chapter 15
z
2. (a)
z
(b)
x y y
x z
(c)
y
x
3. (a) x = u, y = v, z =
5 3 + u − 2v 2 2
(b) x = u, y = v, z = u2
4. (a) x = u, y = v, z =
v 1 + u2
(b) x = u, y = v, z =
1 2 5 v − 3 3
5. (a) x = 5 cos u, y = 5 sin u, z = v; 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1 (b) x = 2 cos u, y = v, z = 2 sin u; 0 ≤ u ≤ 2π, 1 ≤ v ≤ 3 6. (a) x = u, y = 1 − u, z = v; −1 ≤ v ≤ 1
(b) x = u, y = 5 + 2v, z = v; 0 ≤ u ≤ 3 8. x = u, y = eu cos v, z = eu sin v
7. x = u, y = sin u cos v, z = sin u sin v 9. x = r cos θ, y = r sin θ, z =
1 1 + r2
10. x = r cos θ, y = r sin θ, z = e−r
2
11. x = r cos θ, y = r sin θ, z = 2r2 cos θ sin θ 12. x = r cos θ, y = r sin θ, z = r2 (cos2 θ − sin2 θ) 13. x = r cos θ, y = r sin θ, z =
√
9 − r2 ; r ≤
√
5
14. x = r cos θ, y = r sin θ, z = r; r ≤ 3
√ 1 3 1 ρ 15. x = ρ cos θ, y = ρ sin θ, z = 2 2 2
16. x = 3 cos θ, y = 3 sin θ, z = 3 cot φ
17. z = x − 2y; a plane
18. y = x2 + z 2 , 0 ≤ y ≤ 4; part of a circular paraboloid 19. (x/3)2 + (y/2)2 = 1; 2 ≤ z ≤ 4; part of an elliptic cylinder
January 27, 2005 11:55
L24-CH15
Sheet number 13 Page number 667
black
Exercise Set 15.4
667
20. z = x2 + y 2 ; 0 ≤ z ≤ 4; part of a circular paraboloid 21. (x/3)2 + (y/4)2 = z 2 ; 0 ≤ z ≤ 1; part of an elliptic cone 22. x2 + (y/2)2 + (z/3)2 = 1; an ellipsoid 23. (a) x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 2; x = u, y = v, z = 24. (a) I: x = r cos θ, y = r sin θ, z = r2 , 0 ≤ r ≤
√
√
u2 + v 2 ; 0 ≤ u2 + v 2 ≤ 4
2; II: x = u, y = v, z = u2 + v 2 ; u2 + v 2 ≤ 2
25. (a) 0 ≤ u ≤ 3, 0 ≤ v ≤ π
(b) 0 ≤ u ≤ 4, −π/2 ≤ v ≤ π/2
26. (a) 0 ≤ u ≤ 6, −π ≤ v ≤ 0
(b) 0 ≤ u ≤ 5, π/2 ≤ v ≤ 3π/2
27. (a) 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π
(b) 0 ≤ φ ≤ π, 0 ≤ θ ≤ π
28. (a) π/2 ≤ φ ≤ π, 0 ≤ θ ≤ 2π
(b) 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2
29. u = 1, v = 2, ru × rv = −2i − 4j + k; 2x + 4y − z = 5 30. u = 1, v = 2, ru × rv = −4i − 2j + 8k; 2x + y − 4z = −6 31. u = 0, v = 1, ru × rv = 6k; z = 0
32. ru × rv = 2i − j − 3k; 2x − y − 3z = −4
√ √ 33. ru × rv = ( 2/2)i − ( 2/2)j + (1/2)k; x − y +
√ π 2 2 z= 2 8
√
34. ru × rv = 2i − ln 2k; 2x − (ln 2)z = 0
9 − y 2 , zx = 0, zy = −y/ 9 − y 2 , zx2 + zy2 + 1 = 9/(9 − y 2 ), 2 3 2 3 S= dy dx = 3π dx = 6π 9 − y2 0 −3 0
35. z =
4
36. z = 8 − 2x − 2y, zx2 + zy2 + 1 = 4 + 4 + 1 = 9, S =
4−x
0
0
4
3(4 − x)dx = 24
3 dy dx = 0
37. z 2 = 4x2 + 4y 2 , 2zzx = 8x so zx = 4x/z, similarly zy = 4y/z thus 1 x√ √ 1 √ zx2 + zy2 + 1 = (16x2 + 16y 2 )/z 2 + 1 = 5, S = 5 dy dx = 5 (x − x2 )dx = 5/6 0
x2
0
38. z 2 = x2 + y 2 , zx = x/z, zy = y/z, zx2 + zy2 + 1 = (z 2 + y 2 )/z 2 + 1 = 2, √ π/2 2 cos θ √ √ π/2 √ S= 2 dA = 2 2 r dr dθ = 4 2 cos2 θ dθ = 2π R
0
0
0
39. zx = −2x, zy = −2y, zx2 + zy2 + 1 = 4x2 + 4y 2 + 1, 2π 1 S= 4x2 + 4y 2 + 1 dA = r 4r2 + 1 dr dθ R
0
0
2π √ 1 √ = (5 5 − 1) dθ = (5 5 − 1)π/6 12 0
January 27, 2005 11:55
L24-CH15
Sheet number 14 Page number 668
black
668
Chapter 15
40. zx = 2, zy = 2y, zx2 + zy2 + 1 = 5 + 4y 2 , 1 y 1 √ S= 5 + 4y 2 dx dy = y 5 + 4y 2 dy = (27 − 5 5)/12 0
0
0
41. ∂r/∂u = cos vi + sin vj + 2uk, ∂r/∂v = −u sin vi + u cos vj, 2π 2 √ √ √ ∂r/∂u × ∂r/∂v = u 4u2 + 1; S = u 4u2 + 1 du dv = (17 17 − 5 5)π/6 0
1
42. ∂r/∂u = cos vi + sin vj + k, ∂r/∂v = −u sin vi + u cos vj, √ π/2 2v √ √ 2 3 ∂r/∂u × ∂r/∂v = 2u; S = 2 u du dv = π 12 0 0 43. zx = y, zy = x, zx2 + zy2 + 1 = x2 + y 2 + 1, π/6 3 π/6 √ √ 1 S= x2 + y 2 + 1 dA = r r2 + 1 dr dθ = (10 10 − 1) dθ = (10 10 − 1)π/18 3 0 0 0 R
44. zx = x, zy = y, zx2 + zy2 + 1 = x2 + y 2 + 1, 2π √8 26 2π 2 2 x + y + 1 dA = r r2 + 1 dr dθ = dθ = 52π/3 S= 3 0 0 0 R
45. On the sphere, zx = −x/z and zy = −y/z so zx2 + zy2 + 1 = (x2 + y 2 + z 2 )/z 2 = 16/(16 − x2 − y 2 ); the planes z = 1 and z = 2 intersect the sphere along the circles x2 + y 2 = 15 and x2 + y 2 = 12; 2π √15 2π 4 4r √ S= dA = dr dθ = 4 dθ = 8π √ 16 − r2 16 − x2 − y 2 0 0 12 R
46. On the sphere, zx = −x/z and zy = −y/z so zx2 + zy2 + 1 = (x2 + y 2 + z 2 )/z 2 = 8/(8 − x2 − y 2 ); the cone cuts the sphere in the circle x2 + y 2 = 4; 2π 2 √ √ 2π √ 2 2r √ dr dθ = (8 − 4 2) dθ = 8(2 − 2)π S= 2 8−r 0 0 0 47. r(u, v) = a cos u sin vi + a sin u sin vj + a cos vk, ru × rv = a2 sin v, π π 2π 2 2 S= a sin v du dv = 2πa sin v dv = 4πa2 0
0
0
h
48. r = r cos ui + r sin uj + vk, ru × rv = r; S =
2π
r du dv = 2πrh 0
0
x y h h h2 x2 + h2 y 2 , zy = , zx2 + zy2 + 1 = 2 2 + 1 = (a2 + h2 )/a2 , a x2 + y 2 a x2 + y 2 a (x + y 2 ) 2π a √ 2 2π a + h2 1 2 2 S= dθ = πa a2 + h2 r dr dθ = a a + h a 2 0 0 0
49. zx =
January 27, 2005 11:55
L24-CH15
Sheet number 15 Page number 669
black
Exercise Set 15.4
669
50. (a) Revolving a point (a0 , 0, b0 ) of the xz-plane around the z-axis generates a circle, an equation of which is r = a0 cos ui + a0 sin uj + b0 k, 0 ≤ u ≤ 2Ď€. A point on the circle (x − a)2 + z 2 = b2 which generates the torus can be written r = (a + b cos v)i + b sin vk, 0 ≤ v ≤ 2Ď€. Set a0 = a + b cos v and b0 = a + b sin v and use the ďŹ rst result: any point on the torus can thus be written in the form r = (a + b cos v) cos ui + (a + b cos v) sin uj + b sin vk, which yields the result. 51. ∂r/∂u = −(a + b cos v) sin ui + (a + b cos v) cos uj, ∂r/∂v = −b sin v cos ui − b sin v sin uj + b cos vk, ∂r/∂u Ă— ∂r/∂v = b(a + b cos v); 2Ď€ 2Ď€ S= b(a + b cos v)du dv = 4Ď€ 2 ab 0
0
52. ru Ă— rv =
√
u2
4Ď€
+ 1; S = 0
5
0
u2
+ 1 du dv = 4Ď€
5
u2 + 1 du = 174.7199011
0
53. z = −1 when v ≈ 0.27955, z = 1 when v ≈ 2.86204, ru Ă— rv = | cos v|; 2Ď€ 2.86204 S= | cos v| dv du ≈ 9.099 0
0.27955
54. (a) Let S1 be the set of points (x, y, z) which satisfy the equation x2/3 + y 2/3 + z 2/3 = a2/3 , and let S2 be the set of points (x, y, z) where x = a(sin Ď&#x2020; cos θ)3 , y = a(sin Ď&#x2020; sin θ)3 , z = a cos3 Ď&#x2020;, 0 â&#x2030;¤ Ď&#x2020; â&#x2030;¤ Ď&#x20AC;, 0 â&#x2030;¤ θ < 2Ď&#x20AC;. If (x, y, z) is a point of S2 then x2/3 + y 2/3 + z 2/3 = a2/3 [(sin Ď&#x2020; cos θ)3 + (sin Ď&#x2020; sin θ)3 + cos3 Ď&#x2020;] = a2/3 so (x, y, z) belongs to S1 . If (x, y, z) is a point of S1 then x2/3 + y 2/3 + z 2/3 = a2/3 . Let x1 = x1/3 , y1 = y 1/3 , z1 = z 1/3 , a1 = a1/3 . Then x21 + y12 + z12 = a21 , so in spherical coordinates x1 = a1 sin Ď&#x2020; cos θ, y1 = a1 sin Ď&#x2020; sin θ, z1 = a1 cos Ď&#x2020;, with y 1/3 z 1/3 y1 z1 â&#x2C6;&#x2019;1 = tanâ&#x2C6;&#x2019;1 , Ď&#x2020; = cosâ&#x2C6;&#x2019;1 = cosâ&#x2C6;&#x2019;1 . Then θ = tan x1 x a1 a x = x31 = a31 (sin Ď&#x2020; cos θ)3 = a(sin Ď&#x2020; cos θ)3 , similarly y = a(sin Ď&#x2020; sin θ)3 , z = a cos Ď&#x2020; so (x, y, z) belongs to S2 . Thus S1 = S2 (b) Let a = 1 and r = (cos θ sin Ď&#x2020;)3 i + (sin θ sin Ď&#x2020;)3 j + cos3 Ď&#x2020;k, then Ď&#x20AC;/2 Ď&#x20AC;/2 S=8 rθ Ă&#x2014; rĎ&#x2020; dĎ&#x2020; dθ 0
0
Ď&#x20AC;/2
= 72 0
Ď&#x20AC;/2
sin θ cos θ sin4 Ď&#x2020; cos Ď&#x2020; cos2 Ď&#x2020; + sin2 Ď&#x2020; sin2 θ cos2 θ dθ dĎ&#x2020; â&#x2030;&#x2C6; 4.4506
0
55. (a) (x/a)2 +(y/b)2 +(z/c)2 = sin2 Ď&#x2020; cos2 θ+sin2 Ď&#x2020; sin2 θ+cos2 Ď&#x2020; = sin2 Ď&#x2020;+cos2 Ď&#x2020; = 1, an ellipsoid (b) r(Ď&#x2020;, θ) = 2 sin Ď&#x2020; cos θ, 3 sin Ď&#x2020; sin θ, 4 cos Ď&#x2020; ; rĎ&#x2020; Ă&#x2014;rθ = 2 6 sin2 Ď&#x2020; cos θ, 4 sin2 Ď&#x2020; sin θ, 3 cos Ď&#x2020; sin Ď&#x2020; , rĎ&#x2020; Ă&#x2014; rθ = 2 16 sin4 Ď&#x2020; + 20 sin4 Ď&#x2020; cos2 θ + 9 sin2 Ď&#x2020; cos2 Ď&#x2020;, 2Ď&#x20AC; Ď&#x20AC; S= 2 16 sin4 Ď&#x2020; + 20 sin4 Ď&#x2020; cos2 θ + 9 sin2 Ď&#x2020; cos2 Ď&#x2020; dĎ&#x2020; dθ â&#x2030;&#x2C6; 111.5457699 0
0
January 27, 2005 11:55
L24-CH15
Sheet number 16 Page number 670
black
670
Chapter 15
56. (a) x = v cos u, y = v sin u, z = f (v), for example z
(c)
x
57. 58.
x 2
y
+
a x 2
+
a
59. â&#x2C6;&#x2019;
x = v cos u, y = v sin u, z = 1/v 2
(b)
x 2
y 2 b y 2
â&#x2C6;&#x2019;
b â&#x2C6;&#x2019;
a
+
y 2 b
z 2 c z 2 c +
= 1, ellipsoid = 1, hyperboloid of one sheet
z 2 c
= 1, hyperboloid of two sheets
EXERCISE SET 15.5
1
2
1
1
â&#x2C6;&#x2019;1
0
1/2
Ï&#x20AC;
â&#x2C6;&#x2019;1
1
1/2
Ï&#x20AC;
2
0
y2
0
1/3
z
2
â&#x2C6;&#x2019;1
â&#x2C6;&#x2019;1
0
Ï&#x20AC;/4
1
0
0
x2
Ï&#x20AC;/4
3
x
3
0
0
â&#x2C6;&#x161; 9â&#x2C6;&#x2019;z 2
xy dy dx dz = 0
0
0 3
x2
0
ln z
3
0
1
0
x 2
â&#x2C6;&#x161; 4â&#x2C6;&#x2019;x2
1
x
3â&#x2C6;&#x2019;x2 â&#x2C6;&#x2019;y 2
2
0
0
0
0
2
2
8. 1
z
0
y dx dy dz = x2 + y 2
1
â&#x2C6;&#x161; 1 cos y dy = 2/8 4
1 (81 â&#x2C6;&#x2019; 18z 2 + z 4 )dz = 81/5 8
1 5 3 3 x â&#x2C6;&#x2019; x + x2 dx = 118/3 2 2
â&#x2C6;&#x161; 4â&#x2C6;&#x2019;x2
0 2
= â&#x2C6;&#x161; 3y
3
1/3
1 1 (1 â&#x2C6;&#x2019; cos Ï&#x20AC;x)dx = + 2 12
[2x(4 â&#x2C6;&#x2019; x2 ) â&#x2C6;&#x2019; 2xy 2 ]dy dx
x dz dy dx = â&#x2C6;&#x2019;5+x2 +y 2
3
0
(xz â&#x2C6;&#x2019; x)dz dx = 1
7.
x2
xey dy dz dx =
6.
1 3 x dx dz = 2
1/2
Ï&#x20AC;/4
x cos y dx dy = 0
5.
1
47 1 7 1 5 1 y + y â&#x2C6;&#x2019; y dy = 3 2 6 3
3
0
â&#x2C6;&#x161; 9â&#x2C6;&#x2019;z 2
(yz + yz)dz dy = â&#x2C6;&#x2019;1
x cos y dz dx dy = 0
2
2
0
4.
1 x sin xy dy dx = 2
y2
yz dx dz dy =
3.
0
(10/3 + 2z 2 )dz = 8 â&#x2C6;&#x2019;1
0
zx sin xy dz dy dx = 1/3
1
(1/3 + y 2 + z 2 )dy dz =
0
2.
2
(x2 + y 2 + z 2 )dx dy dz =
1.
2
z
2
4 x(4 â&#x2C6;&#x2019; x2 )3/2 dx = 128/15 3 Ï&#x20AC; dy dz = 3
1
2
Ï&#x20AC; (2 â&#x2C6;&#x2019; z)dz = Ï&#x20AC;/6 3
â&#x2C6;&#x161;
3â&#x2C6;&#x2019;2 4Ï&#x20AC;
January 27, 2005 11:55
L24-CH15
Sheet number 17 Page number 671
black
Exercise Set 15.5
π
671
1
π/6
9.
π
0
0
1
0
1−x2
y
10.
1
0
0
√ 2
x
−1
−1
0 √ 2
2−x2
11.
x
π/2
0
0
π/2
0
0
xy
12.
π/2
3
y
2
√
1
13. 0
−2
1
1
√ 1−x2
π/6
√1−x2 −y2
0
e−x
2
−y 2 −z 2
4
y
0
(4−x)/2
0 4
dz dy dx ≈ 2.381
(12−3x−6y)/4
4
(4−x)/2
0 1
0
0
1−x
√ y
1
1−x
dz dy dx =
16. V = 0
0
2
4
0
0
4−y
17. V = 2
y
2
0
2 (1 − x)3/2 dx = 4/15 3
4
x2
1
y
dz dx dy = 0
1
0
0
18. V =
y dy dx =
2
(4 − y)dy dx = 2
0
√1−y2
√
0
dz dy dx = 2 x2
0
1
0
1 (12 − 3x − 6y)dy dx 4
3 (4 − x)2 dx = 4 16
=
√ y cos y dy = (5π − 6 3)/12
π/6
dz dy dx =
π/2
0
15. V =
0
1 3 x (2 − x2 )2 dx = 1/6 4
x + z2 dz dy dx ≈ 9.425 y
14. 8 0
√ 2
y sin x dx dy =
0
π/2
cos(z/y)dz dx dy = π/6
1 (1 − x2 )3 dx = 32/105 3
1 xy(2 − x2 )2 dy dx = 2
xyz dz dy dx = 0
1
y 2 dy dx =
0
(1 − 3/π)x dx = π(π − 3)/2 0
1−x2
y dz dy dx = −1
π
x[1 − cos(πy/6)]dy dx =
xy sin yz dz dy dx = 0
1
0
0
0
1 − y 2 dx dy =
0
1 4 8 − 4x + x dx = 256/15 2 2
1
y
1 − y 2 dy = 1/3
0
19. The projection of the curve of intersection onto the xy-plane is x2 + y 2 = 1, 1 √1−x2 4−3y2 (a) V = f (x, y, z)dz dy dx √ −1
1
− 1−x2
4x2 +y 2
√1−y2 √
(b) V = −1
−
4−3y 2
f (x, y, z)dz dx dy 1−y 2
4x2 +y 2
20. The projection of the curve of intersection onto the xy-plane is 2x2 + y 2 = 4, √2 √4−2x2 8−x2 −y2 f (x, y, z)dz dy dx (a) V = √ √ − 2
2
(b) V = −2
− 4−2x2
3x2 +y 2
√(4−y2 )/2 √
−
8−x2 −y 2
f (x, y, z)dz dx dy (4−y 2 )/2
3x2 +y 2
January 27, 2005 11:55
L24-CH15
Sheet number 18 Page number 672
black
672
Chapter 15
21. The projection of the curve of intersection onto the xy-plane is x2 + y 2 = 1, 1 √1−x2 4−3y2 V =4 dz dy dx 0
4x2 +y 2
0
22. The projection of the curve of intersection onto the xy-plane is 2x2 + y 2 = 4, √2 √4−2x2 8−x2 −y2 V =4 dz dy dx 0
3x2 +y 2
0
3
√ 9−x2 /3
x+3
dz dy dx
23. V = 2 −3
0
√ 1−x2
√ 1−x2
dz dy dx 0
z
24. V = 8
0
25. (a)
1
0
0
z
(b)
z
(c) (0, 9, 9)
(0, 0, 1)
(0, 0, 1)
y y (0, –1, 0)
x
(1, 0, 0)
(3, 9, 0)
(1, 2, 0)
y x
x
z
26. (a)
z
(b)
(0, 0, 2)
(0, 0, 2) (0, 2, 0)
y
y
(3, 9, 0) (2, 0, 0) x
x z
(c)
(0, 0, 4)
y (2, 2, 0)
x
1
1−x
1−x−y
1
1−x
dz dy dx = 1/6, fave = 6
27. V = 0
0
0
1−x−y
(x + y + z) dz dy dx = 0
0
0
28. The integrand is an odd function of each of x, y, and z, so the answer is zero.
3 4
January 27, 2005 11:55
L24-CH15
Sheet number 19 Page number 673
black
Exercise Set 15.5
673
3Ď&#x20AC; 29. The volume V = â&#x2C6;&#x161; , and thus 2 â&#x2C6;&#x161; 2 x2 + y 2 + z 2 dV rave = 3Ď&#x20AC; G
â&#x2C6;&#x161; 1/â&#x2C6;&#x161;2 â&#x2C6;&#x161;1â&#x2C6;&#x2019;2x2 6â&#x2C6;&#x2019;7x2 â&#x2C6;&#x2019;y2 2 x2 + y 2 + z 2 dz dy dx â&#x2030;&#x2C6; 3.291 = â&#x2C6;&#x161; â&#x2C6;&#x161; 3Ď&#x20AC; â&#x2C6;&#x2019;1/ 2 â&#x2C6;&#x2019; 1â&#x2C6;&#x2019;2x2 5x2 +5y2 30. V = 1, dave =
a
1 V
1
0
1
0
b(1â&#x2C6;&#x2019;x/a)
1
(x â&#x2C6;&#x2019; z)2 + (y â&#x2C6;&#x2019; z)2 + z 2 dx dy dz â&#x2030;&#x2C6; 0.771
0
c(1â&#x2C6;&#x2019;x/aâ&#x2C6;&#x2019;y/b)
b
a(1â&#x2C6;&#x2019;y/b)
c(1â&#x2C6;&#x2019;x/aâ&#x2C6;&#x2019;y/b)
dz dy dx,
31. (a) 0
c
0
a(1â&#x2C6;&#x2019;z/c)
0
dz dx dy,
b(1â&#x2C6;&#x2019;x/aâ&#x2C6;&#x2019;z/c)
0
a
0
c(1â&#x2C6;&#x2019;x/a)
0 b(1â&#x2C6;&#x2019;x/aâ&#x2C6;&#x2019;z/c)
dy dx dz, 0
0
c
b(1â&#x2C6;&#x2019;z/c)
0
dy dz dx,
a(1â&#x2C6;&#x2019;y/bâ&#x2C6;&#x2019;z/c)
0
b
0 c(1â&#x2C6;&#x2019;y/b)
0
a(1â&#x2C6;&#x2019;y/bâ&#x2C6;&#x2019;z/c)
dx dy dz, 0
0
0
dx dz dy 0
0
0
(b) Use the ďŹ rst integral in Part (a) to get a b(1â&#x2C6;&#x2019;x/a) a x 2 1 x y 1 dy dx = bc 1 â&#x2C6;&#x2019; c 1â&#x2C6;&#x2019; â&#x2C6;&#x2019; dx = abc a b 2 a 6 0 0 0 â&#x2C6;&#x161; â&#x2C6;&#x161; 2 2 2 2 2 2 a
b
1â&#x2C6;&#x2019;x /a
c
1â&#x2C6;&#x2019;x /a â&#x2C6;&#x2019;y /b
32. V = 8
dz dy dx 0
2
0
0
â&#x2C6;&#x161; 4â&#x2C6;&#x2019;x2
5
33. (a)
f (x, y, z) dz dy dx
0 9
0
â&#x2C6;&#x161; 3â&#x2C6;&#x2019; x
0
â&#x2C6;&#x161; 3â&#x2C6;&#x2019; x
(b)
f (x, y, z) dz dy dx 0
0 3
8â&#x2C6;&#x2019;y
f (x, y, z) dz dy dx 0
â&#x2C6;&#x161;9â&#x2C6;&#x2019;x2 â&#x2C6;&#x2019;y2
34. (a)
4â&#x2C6;&#x2019;x2
(c)
y
â&#x2C6;&#x161; 9â&#x2C6;&#x2019;x2
2
y
0
f (x, y, z)dz dy dx
0 4
0 x/2
(b)
0
2
f (x, y, z)dz dy dx 0
0
2
4â&#x2C6;&#x2019;x2
4â&#x2C6;&#x2019;y
(c)
f (x, y, z)dz dy dx
0
0
x2
0
35. (a) At any point outside the closed sphere {x2 + y 2 + z 2 â&#x2030;¤ 1} the integrand is negative, so to maximize the integral it suďŹ&#x192;ces to include all points inside the sphere; hence the maximum value is taken on the region G = {x2 + y 2 + z 2 â&#x2030;¤ 1}. 2Ď&#x20AC; Ď&#x20AC; 1 Ď&#x20AC;2 (b) 4.934802202 (c) (1 â&#x2C6;&#x2019; Ď 2 )Ď dĎ dĎ&#x2020; dθ = 2 0 0 0
b
d
36.
b
d
f (x)g(y)h(z)dz dy dx = a
c
k
f (x)g(y) a
h(z)dz dy dx
c
b
=
k
f (x)
=
k
b
h(z)dz
c
f (x)dx a
g(y)dy dx
a
d
d
g(y)dy c
h(z)dz k
January 27, 2005 11:55
L24-CH15
Sheet number 20 Page number 674
black
674
Chapter 15
x dx
1
37. (a) −1
1
y dy 0
ln 3
2x
(b)
sin z dz = (0)(1/3)(1) = 0
0
1
π/2
2
e dx
e dy
0
ln 2
y
−z
e
0
dz = [(e2 − 1)/2](2)(1/2) = (e2 − 1)/2
0
EXERCISE SET 15.6 1. (a) m1 and m3 are equidistant from x = 5, but m3 has a greater mass, so the sum is positive. (b) Let a be the unknown coordinate of the fulcrum; then the total moment about the fulcrum is 5(0 − a) + 10(5 − a) + 20(10 − a) = 0 for equilibrium, so 250 − 35a = 0, a = 50/7. The fulcrum should be placed 50/7 units to the right of m1 . 2. (a) The sum must be negative, since m1 , m2 and m3 are all to the left of the fulcrum, and the magnitude of the moment of m1 about x = 4 is by itself greater than the moment of m about x = 4 (i.e. 40 > 28), so even if we replace the masses of m2 and m3 with 0, the sum is negative. (b) At equilibrium, 10(0 − 4) + 3(2 − 4) + 4(3 − 4) + m(6 − 4) = 0, m = 25
1
1
1 x dy dx = , y = 2
3. A = 1, x = 0
1
1
y dy dx = 0
0
1 2
1 2
4. A = 2, x =
0
x dy dx, and the region of integration is symmetric with respect to the x-axes G
and the integrand is an odd function of x, so x = 0. Likewise, y = 0.
5. A = 1/2,
1
x
x dA =
x dy dx = 1/3, 0
R
1
y dA =
0
y dy dx = 1/6; 0
R
x
0
centroid (2/3, 1/3)
1
x2
6. A =
dy dx = 1/3, 0
0
1
1
R
2−x2
dy dx = 7/6, x
1
π 8. A = , 4
0
1
2−x2
x dA =
x dy dx = 5/12, 0
R
x
2−x2
y dA =
y dy dx = 19/15; centroid (5/14, 38/35) 0
R
x dy dx = 1/4, 0
0
7. A = 0
x2
y dy dx = 1/10; centroid (3/4, 3/10) 0
1
x2
y dA = R
x dA =
x
1
x dA =
x dy dx = 0
R
√ 1−x2
0
1 4 4 ,x= , y= by symmetry 3 3π 3π
9. x = 0 from the symmetry of the region, π b 2 4(b3 − a3 ) 1 . y dA = r2 sin θ dr dθ = (b3 − a3 ); centroid x = 0, y = A = π(b2 − a2 ), 2 3 3π(b2 − a2 ) 0 a R
January 27, 2005 11:55
L24-CH15
Sheet number 21 Page number 675
black
Exercise Set 15.6
675
10. y = 0 from the symmetry of the region, A = πa2 /2, π/2 a 4a ,0 x dA = r2 cos θ dr dθ = 2a3 /3; centroid 3π −π/2 0 R
11. M =
1
0
R
1
1
|x + y − 1| dx dy
δ(x, y)dA = 0
1−x
(1 − x − y) dy +
= 0
0
1
(x + y − 1) dy dx =
1
1
1−x 1
1−x
0
0
1 x(x + y − 1) dy dx = 2 1−x
x(1 − x − y) dy +
xδ(x, y) dy dx = 3
x=3
1 3
0
0
1
1 By symmetry, y = as well; center of gravity (1/2, 1/2) 2 1 12. x = xδ(x, y) dA, and the integrand is an odd function of x while the region is symmetric M G
with respect to the y-axis, thus x = 0; likewise y = 0.
1
√ x
13. M =
1
(x + y)dy dx = 13/20, Mx = 0
0
1
(x + y)y dy dx = 3/10, 0
√ x
My =
√ x
0
(x + y)x dy dx = 19/42, x = My /M = 190/273, y = Mx /M = 6/13; 0
0
the mass is 13/20 and the center of gravity is at (190/273, 6/13).
π
sin x
14. M =
y dy dx = π/4, x = π/2 from the symmetry of the density and the region, 0
0
π
sin x
16 y dy dx = 4/9, y = Mx /M = ; mass π/4, center of gravity 9π
2
Mx = 0
0
π/2
π 16 . , 2 9π
a
r3 sin θ cos θ dr dθ = a4 /8, x = y from the symmetry of the density and the 0 π/2 a = r4 sin θ cos2 θ dr dθ = a5 /15, x = 8a/15; mass a4 /8, center of gravity
15. M = 0
region, My
0
0
(8a/15, 8a/15).
π
1
r3 dr dθ = π/4, x = 0 from the symmetry of density and region,
16. M = 0
0
π
1
0
8 ; mass π/4, center of gravity r sin θ dr dθ = 2/5, y = 5π
1
4
Mx = 0
1
17. V = 1, x = 0
0
0
1
1 1 x dz dy dx = , similarly y = z = ; centroid 2 2
2
18. V = πr h = 2π, x = y = 0 by symmetry,
2
2π
1 1 1 , , 2 2 2
z dz dy dx = G
= (0, 0, 1)
8 0, . 5π
1
rz dr dθ dz = 2π, centroid 0
0
0
January 27, 2005 11:55
L24-CH15
Sheet number 22 Page number 676
black
676
Chapter 15
19. x = y = z from the symmetry of the region, V = 1/6, 1 1 1−x 1−x−y x= x dz dy dx = (6)(1/24) = 1/4; centroid (1/4, 1/4, 1/4) V 0 0 0 20. The solid is described by −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y 2 , 0 ≤ x ≤ 1 − z; 2 1 1−y2 1−z 1−z 4 1 1 1−y 5 V = dx dz dy = , x = x dx dz dy = , y = 0 by symmetry, 5 V 14 −1 0 0 −1 0 0 2 1−z 5 2 1 1 1−y 2 , 0, . z= z dx dz dy = ; the centroid is V −1 0 7 14 7 0 21. x = 1/2 and y = 0 from the symmetry of the region, 1 1 1 1 V = dz dy dx = 4/3, z = z dV = (3/4)(4/5) = 3/5; centroid (1/2, 0, 3/5) V 0 −1 y 2 G
22. x = y from the symmetry of the region, 2 2 xy 1 dz dy dx = 4, x = x dV = (1/4)(16/3) = 4/3, V = V 0 0 0 G 1 z= z dV = (1/4)(32/9) = 8/9; centroid (4/3, 4/3, 8/9) V G
23. x = y = z from the symmetry of the region, V = πa3 /6, √a2 −x2 √a2 −x2 −y2 √a2 −x2 1 a 1 a x= x dz dy dx = x a2 − x2 − y 2 dy dx V 0 0 V 0 0 0 1 π/2 a 2 2 6 = r a − r2 cos θ dr dθ = (πa4 /16) = 3a/8; centroid (3a/8, 3a/8, 3a/8) V 0 πa3 0 24. x = y = 0 from the symmetry of the region, V = 2πa3 /3 √a2 −x2 √a2 −x2 √a2 −x2 −y2 1 2 1 a 1 a (a − x2 − y 2 )dy dx z dz dy dx = z= V −a −√a2 −x2 2 V −a −√a2 −x2 0 1 2π a 1 2 3 (a − r2 )r dr dθ = = (πa4 /4) = 3a/8; centroid (0, 0, 3a/8) V 0 2πa3 0 2
a
a
a
(a − x)dz dy dx = a4 /2, y = z = a/2 from the symmetry of density and
25. M = 0
0
region, x =
0
1 M
a
a
a
x(a − x)dz dy dx = (2/a4 )(a5 /6) = a/3; 0
0
0
mass a4 /2, center of gravity (a/3, a/2, a/2)
January 27, 2005 11:55
L24-CH15
Sheet number 23 Page number 677
black
Exercise Set 15.6
a
677 √ a2 −x2
26. M =
√ − a2 −x2
−a
1 M
and region, z =
h
(h − z)dz dy dx = 0
z(h − z)dV =
1 2 2 πa h , x = y = 0 from the symmetry of density 2
2 (πa2 h3 /6) = h/3; πa2 h2
G 2 2
mass πa h /2, center of gravity (0, 0, h/3)
1
1
1−y 2
27. M =
yz dz dy dx = 1/6, x = 0 by the symmetry of density and region, −1
y=
0
0
1 M
y 2 z dV = (6)(8/105) = 16/35, z =
1 M
yz 2 dV = (6)(1/12) = 1/2;
G
G
mass 1/6, center of gravity (0, 16/35, 1/2)
3
9−x2
1
28. M =
xz dz dy dx = 81/8, x = 0
1 y= M
0
0
1 M
x2 z dV = (8/81)(81/5) = 8/5,
G
1 xyz dV = (8/81)(243/8) = 3, z = M
G
xz 2 dV = (8/81)(27/4) = 2/3; G
mass 81/8, center of gravity (8/5, 3, 2/3)
1
1
k(x2 + y 2 )dy dx = 2k/3, x = y from the symmetry of density and region,
29. (a) M = 0
x=
1 M
0
kx(x2 + y 2 )dA =
3 (5k/12) = 5/8; center of gravity (5/8, 5/8) 2k
R
(b) y = 1/2 from the symmetry of density and region, 1 1 1 M= kx dy dx = k/2, x = kx2 dA = (2/k)(k/3) = 2/3, M 0 0 center of gravity (2/3, 1/2)
R
30. (a) x = y = z from the symmetry of density and region, 1 1 1 M= k(x2 + y 2 + z 2 )dz dy dx = k, 0
x=
1 M
0
0
kx(x2 + y 2 + z 2 )dV = (1/k)(7k/12) = 7/12; center of gravity (7/12, 7/12, 7/12) G
(b) x = y = z from the symmetry of density and region, 1 1 1 M= k(x + y + z)dz dy dx = 3k/2, 0
1 x= M
0
0
kx(x + y + z)dV = G
2 (5k/6) = 5/9; center of gravity (5/9, 5/9, 5/9) 3k
January 27, 2005 11:55
L24-CH15
Sheet number 24 Page number 678
black
678
Chapter 15
31. V =
π
sin x
1/(1+x2 +y 2 )
dV = G
1 x= V
dz dy dx = 0.666633, 0
0
0
xdV = 1.177406, y =
1 V
G
ydV = 0.353554, z =
1 V
G
zdV = 0.231557 G
32. (b) Use polar coordinates for x and y to get 2π a 1/(1+r2 ) V = dV = r dz dr dθ = π ln(1 + a2 ), 0
G
z=
0
0
1 V
zdV =
a2 2(1 +
a2 ) ln(1
+ a2 )
G
Thus lim z = a→0+
lim z =
a→0+
1 ; lim z = 0. 2 a→+∞
1 ; lim z = 0 2 a→+∞
(c) Solve z = 1/4 for a to obtain a ≈ 1.980291. 33. Let x = r cos θ, y = r sin θ, and dA = r dr dθ in formulas (11) and (12).
2π
a(1+sin θ)
r dr dθ = 3πa2 /2,
34. x = 0 from the symmetry of the region, A = y=
1 A
2π
0 a(1+sin θ)
r2 sin θ dr dθ = 0
0
0
2 (5πa3 /4) = 5a/6; centroid (0, 5a/6) 3πa2
π/2
sin 2θ
35. x = y from the symmetry of the region, A = x=
1 A
π/2
r dr dθ = π/8, 0
sin 2θ
r2 cos θ dr dθ = (8/π)(16/105) = 0
0
0
128 ; centroid 105π
128 128 , 105π 105π
36. x = 3/2 and y = 1 from the symmetry of the region, x dA = xA = (3/2)(6) = 9, y dA = yA = (1)(6) = 6 R
R
37. x = 0 from the symmetry of the region, πa2 /2 is the area of the semicircle, 2πy is the distance traveled by the centroid to generate the sphere so 4πa3 /3 = (πa2 /2)(2πy), y = 4a/(3π)
1 2 38. (a) V = πa 2
1 4a = π(3π + 4)a3 2π a + 3π 3
√ 4a 2 a+ so (b) the distance between the centroid and the line is 2 3π
√ 1 2 4a 1√ 2 V = a+ = 2π 2π(3π + 4)a3 πa 2 2 3π 6
January 27, 2005 11:55
L24-CH15
Sheet number 25 Page number 679
black
Exercise Set 15.7
679
39. x = k so V = (πab)(2πk) = 2π 2 abk 40. y = 4 from the symmetry of the region, 2 8−x2 A= dy dx = 64/3 so V = (64/3)[2π(4)] = 512π/3 −2
x2
1 41. The region generates a cone of volume πab2 when it is revolved about the x-axis, the area of the 3 1 1 1 1 2 ab (2πy), y = b/3. A cone of volume πa2 b is generated when the region is ab so πab = 2 3 2 3 1 2 1 region is revolved about the y-axis so πa b = ab (2πx), x = a/3. The centroid is (a/3, b/3). 2 3 42. The centroid of the circle which generates the tube travels a distance 4π √ √ √ sin2 t + cos2 t + 1/16 dt = 17π, so V = π(1/2)2 17π = 17π 2 /4. s= 0
a
b
y 2 δ dy dx =
43. Ix =
0 a
0 b
(x2 + y 2 )δ dy dx =
Iz = 0
0
2π
1 δab3 , Iy = 3
a
b
x2 δ dy dx = 0
0
1 δab(a2 + b2 ) 3
a 2
3
44. Ix =
2π
a
4
r3 cos2 θ δ dr dθ = δπa4 /4 = Ix ;
r sin θ δ dr dθ = δπa /4; Iy = 0
1 3 δa b, 3
0
0
0
4
Iz = Ix + Iy = δπa /2
EXERCISE SET 15.7
2π
1
√ 1−r 2
1.
2π
1
0
1 (1 − r2 )r dr dθ = 2
π/2
zr dz dr dθ = 0
π/2
0
0
0
cos θ
r2
2.
0 π/2
π/2
0
0 2π
π/4
0
π/2
0
π/2
a sec φ
2π
0
2
ρ sin φ dρ dφ dθ =
4. 0
0
0
0
5. f (r, θ, z) = z
π/2
0
ρ3 sin φ cos φ dρ dφ dθ = 0
0
r sin θ dr dθ =
1
3.
1 dθ = π/4 8
3
0
0
2π
cos θ
r sin θ dz dr dθ = 0
0
π/4
1 cos4 θ sin θ dθ = 1/20 4
1 sin φ cos φ dφ dθ = 4
1 3 a sec3 φ sin φ dφ dθ = 3 6. f (r, θ, z) = sin θ z
z
y x x
y
π/2
0
0
2π
1 dθ = π/16 8 1 3 a dθ = πa3 /3 6
January 27, 2005 11:55
L24-CH15
Sheet number 26 Page number 680
black
680
Chapter 15
7. f (Ď , Ď&#x2020;, θ) = Ď cos Ď&#x2020;
8. f (Ď , Ď&#x2020;, θ) = 1 z
z
a
y x x
2Ď&#x20AC;
3
9
2Ď&#x20AC;
0
r2
0
2Ď&#x20AC;
0
â&#x2C6;&#x161; 9â&#x2C6;&#x2019;r 2
10. V = 2
0
2Ď&#x20AC;
2
r dz dr dθ = 2 0
0
2Ď&#x20AC;
r(9 â&#x2C6;&#x2019; r2 )dr dθ = 0
2
3
r dz dr dθ =
9. V =
y
r 0
0
=
0
9 â&#x2C6;&#x2019; r2 dr dθ
â&#x2C6;&#x161; 2 (27 â&#x2C6;&#x2019; 5 5) 3
81 dθ = 81Ď&#x20AC;/2 4
2Ď&#x20AC;
â&#x2C6;&#x161; dθ = 4(27 â&#x2C6;&#x2019; 5 5)Ď&#x20AC;/3
0
11. r2 + z 2 = 20 intersects z = r2 in a circle of radius 2; the volume consists of two portions, one inside â&#x2C6;&#x161; the cylinder r = 20 and one outside that cylinder: 2Ď&#x20AC; 2 r2 2Ď&#x20AC; â&#x2C6;&#x161;20 â&#x2C6;&#x161;20â&#x2C6;&#x2019;r2 V= r dz dr dθ + r dz dr dθ â&#x2C6;&#x161; â&#x2C6;&#x161; 0
â&#x2C6;&#x2019; 20â&#x2C6;&#x2019;r 2
0
2Ď&#x20AC;
2
r r2 +
= 0
=
0
2
2Ď&#x20AC;
20 â&#x2C6;&#x2019; r2 dr dθ +
0
â&#x2C6;&#x2019; 20â&#x2C6;&#x2019;r 2 â&#x2C6;&#x161; 20
2r
0
20 â&#x2C6;&#x2019; r2 dr dθ
2
2Ď&#x20AC; â&#x2C6;&#x161; 80 â&#x2C6;&#x161; 4 128 2Ď&#x20AC; 152 (10 5 â&#x2C6;&#x2019; 13) Ď&#x20AC;+ Ď&#x20AC; 5 dθ + dθ = 3 3 0 3 3 0
12. z = hr/a intersects z = h in a circle of radius a, 2Ď&#x20AC; a h 2Ď&#x20AC; a 2Ď&#x20AC; h 1 2 (ar â&#x2C6;&#x2019; r2 )dr dθ = a h dθ = Ď&#x20AC;a2 h/3 V = r dz dr dθ = a 6 0 0 hr/a 0 0 0
2Ď&#x20AC;
Ď&#x20AC;/3
4
2Ď&#x20AC;
Ď&#x20AC;/3
Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ =
13. V = 0
0 2Ď&#x20AC;
0 Ď&#x20AC;/4
0
2
0 2Ď&#x20AC;
Ď&#x20AC;/4
Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ =
14. V = 0
0
1
0
0
64 32 sin Ď&#x2020; dĎ&#x2020; dθ = 3 3
2Ď&#x20AC;
dθ = 64Ď&#x20AC;/3 0
â&#x2C6;&#x161; 7 7 sin Ď&#x2020; dĎ&#x2020; dθ = (2 â&#x2C6;&#x2019; 2) 3 6
2Ď&#x20AC;
â&#x2C6;&#x161; dθ = 7(2 â&#x2C6;&#x2019; 2)Ď&#x20AC;/3
0
15. In spherical coordinates the sphere and the plane z = a are Ď = 2a and Ď = a sec Ď&#x2020;, respectively. They intersect at Ď&#x2020; = Ď&#x20AC;/3, 2Ď&#x20AC; Ď&#x20AC;/3 a sec Ď&#x2020; 2Ď&#x20AC; Ď&#x20AC;/2 2a V= Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ + Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ 0
0
2Ď&#x20AC;
0 Ď&#x20AC;/3
0 2Ď&#x20AC;
1 3 a sec3 Ď&#x2020; sin Ď&#x2020; dĎ&#x2020; dθ + 3 0 0 0 2Ď&#x20AC; 2Ď&#x20AC; 1 4 = a3 dθ + a3 dθ = 11Ď&#x20AC;a3 /3 2 3 0 0
Ď&#x20AC;/3 Ď&#x20AC;/2
=
Ď&#x20AC;/3
0
8 3 a sin Ď&#x2020; dĎ&#x2020; dθ 3
January 27, 2005 11:55
L24-CH15
Sheet number 27 Page number 681
black
Exercise Set 15.7
2Ď&#x20AC;
681
Ď&#x20AC;/2
Ď&#x20AC;/2
Ď&#x20AC;/4
a
0
0
0
0
a2 â&#x2C6;&#x2019;r 2
Ď&#x20AC;
Ď&#x20AC;/2
1
eâ&#x2C6;&#x2019;Ď Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ = 3
18. 0
0
Ď&#x20AC;/2
â&#x2C6;&#x161; 8
Ď&#x20AC;/4
0
0 2Ď&#x20AC;
Ď&#x20AC;/4
â&#x2C6;&#x161; â&#x2C6;&#x161; 9 2 2Ď&#x20AC; 9 sin Ď&#x2020; dĎ&#x2020; dθ = dθ = 9 2Ď&#x20AC; 2 0
a
(a2 r3 â&#x2C6;&#x2019; r5 ) cos2 θ dr dθ 1 6 a 12
0 Ď&#x20AC;/2
cos2 θ dθ = Ď&#x20AC;a6 /48 0
1 (1 â&#x2C6;&#x2019; eâ&#x2C6;&#x2019;1 ) 3
Ď&#x20AC;
0
Ď&#x20AC;/2
sin Ď&#x2020; dĎ&#x2020; dθ = (1 â&#x2C6;&#x2019; eâ&#x2C6;&#x2019;1 )Ď&#x20AC;/3
0
â&#x2C6;&#x161; Ď 4 cos2 Ď&#x2020; sin Ď&#x2020; dĎ dĎ&#x2020; dθ = 32(2 2 â&#x2C6;&#x2019; 1)Ď&#x20AC;/15
19.
Ď&#x20AC;/2
0
0
=
0
Ď&#x20AC;/2
r3 cos2 θ dz dr dθ =
17.
Ď sin Ď&#x2020; dĎ dĎ&#x2020; dθ = 0
2Ď&#x20AC;
2
16. V =
3
0
Ď&#x20AC;
3
Ď 3 sin Ď&#x2020; dĎ dĎ&#x2020; dθ = 81Ď&#x20AC;
20. 0
0
0
2
4
4 Ď&#x20AC;/3 1 3 â&#x2C6;&#x161; dz r dr tan θ dθ 1 + z2 â&#x2C6;&#x2019;2 1 Ď&#x20AC;/6 15 4 1 â&#x2C6;&#x161; â&#x2C6;&#x2019; ln 3 â&#x2030;&#x2C6; 16.97774196 = â&#x2C6;&#x2019;2 ln( 5 â&#x2C6;&#x2019; 2) 2 3 2
Ď&#x20AC;/3
r tan3 θ â&#x2C6;&#x161; dθ dr dz = 1 + z2
21. (a) â&#x2C6;&#x2019;2
1
Ď&#x20AC;/6
2
The region is a cylindrical wedge. (b) To convert to rectangular â&#x2C6;&#x161; â&#x2C6;&#x161; coordinates observe that the rays θ = Ď&#x20AC;/6, θ = Ď&#x20AC;/3 correspond to the lines y = x/ 3, y = 3x. Then dx dy dz = r dr dθ dz and tan θ = y/x, hence 4 â&#x2C6;&#x161;3x 2 (y/x)3 y3 â&#x2C6;&#x161; â&#x2C6;&#x161; dz dy dx, so f (x, y, z) = . Integral = â&#x2C6;&#x161; 1 + z2 x3 1 + z 2 x/ 3 â&#x2C6;&#x2019;2 1
Ď&#x20AC;/2
â&#x2C6;&#x161; Ď&#x20AC;/2 1 2 4,294,967,296 â&#x2C6;&#x161; cos37 θ cos Ď&#x2020; dĎ&#x2020; dθ = cos37 θ dθ = 2 â&#x2030;&#x2C6; 0.008040 18 36 0 755,505,013,725
Ď&#x20AC;/4
22. 0
0
2Ď&#x20AC;
a
â&#x2C6;&#x161; a2 â&#x2C6;&#x2019;r 2
23. (a) V = 2 0
2Ď&#x20AC;
0
Ď&#x20AC;
a
Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ = 4Ď&#x20AC;a3 /3
(b) V = 0
2
r dz dr dθ = 4Ď&#x20AC;a3 /3
0
0
â&#x2C6;&#x161; 4â&#x2C6;&#x2019;x2
0
â&#x2C6;&#x161;4â&#x2C6;&#x2019;x2 â&#x2C6;&#x2019;y2 xyz dz dy dx
24. (a) 0
0
0
2
â&#x2C6;&#x161; 4â&#x2C6;&#x2019;x2
=
Ď&#x20AC;/2
2
â&#x2C6;&#x161; 4â&#x2C6;&#x2019;r 2
0
0
1 1 xy(4 â&#x2C6;&#x2019; x2 â&#x2C6;&#x2019; y 2 )dy dx = 2 8
2
x(4 â&#x2C6;&#x2019; x2 )2 dx = 4/3 0
r3 z sin θ cos θ dz dr dθ
(b) 0
0
0
Ď&#x20AC;/2
=
Ď&#x20AC;/2
Ď&#x20AC;/2
0
0
2
1 3 8 (4r â&#x2C6;&#x2019; r5 ) sin θ cos θ dr dθ = 2 3
Ď&#x20AC;/2
sin θ cos θ dθ = 4/3 0
2
Ď 5 sin3 Ď&#x2020; cos Ď&#x2020; sin θ cos θ dĎ dĎ&#x2020; dθ
(c) 0
0
0
Ď&#x20AC;/2
= 0
0
Ď&#x20AC;/2
32 8 sin3 Ď&#x2020; cos Ď&#x2020; sin θ cos θ dĎ&#x2020; dθ = 3 3
Ď&#x20AC;/2
sin θ cos θ dθ = 4/3 0
January 27, 2005 11:55
L24-CH15
Sheet number 28 Page number 682
black
682
Chapter 15
2π
3
3
2π
3
(3 − z)r dz dr dθ =
25. M = 0
0
0
0
a
h
26. M =
2π
dθ = 27π/4 0
2π 1 2 1 dθ = πka2 h2 /2 kh r dr dθ = ka2 h2 2 4 0 0 0 0 0 0 2π 2π π 2π π a 1 4 1 ka sin φ dφ dθ = ka4 kρ3 sin φ dρ dφ dθ = dθ = πka4 27. M = 2 0 0 0 0 0 4 0 2π 2π π 2 2π π 3 sin φ dφ dθ = 3 28. M = ρ sin φ dρ dφ dθ = dθ = 6π 0 0 1 0 0 2 0 2π
r
1 27 r(3 − r)2 dr dθ = 2 8
2π
a
k zr dz dr dθ =
29. x ¯ = y¯ = 0 from the symmetry of the region, 2π 1 2π 1 √2−r2 √ r dz dr dθ = (r 2 − r2 − r3 )dr dθ = (8 2 − 7)π/6, V = 0
z¯ =
1 V
r2
0
2π
0
√ 2−r 2
1
zr dz dr dθ = 0
centroid
r2
0
7 0, 0, √ 16 2 − 14
0
√ 6 √ (7π/12) = 7/(16 2 − 14); (8 2 − 7)π
30. x ¯ = y¯ = 0 from the symmetry of the region, V = 8π/3, 1 2π 2 2 3 z¯ = zr dz dr dθ = (4π) = 3/2; centroid (0, 0, 3/2) V 0 8π 0 r 31. x ¯ = y¯ = z¯ from the symmetry of the region, V = πa3 /6, 1 π/2 π/2 a 3 6 z¯ = ρ cos φ sin φ dρ dφ dθ = (πa4 /16) = 3a/8; 3 V 0 πa 0 0 centroid (3a/8, 3a/8, 3a/8)
2π
π/3
4
ρ2 sin φ dρ dφ dθ = 64π/3,
32. x ¯ = y¯ = 0 from the symmetry of the region, V = z¯ =
1 V
2π
π/3
0 4
ρ3 cos φ sin φ dρ dφ dθ = 0
0
0
0
0
3 (48π) = 9/4; centroid (0, 0, 9/4) 64π
π/2
2 cos θ
33. y¯ = 0 from the symmetry of the region, V = 2
2 x ¯= V
π/2
2 cos θ
2 z¯ = V
0
π/2
0
2 cos θ
0 r2
rz dz dr dθ = 0
0
π/2
0
2 cos θ
16 3
0
π/2
0
0
2 cos θ
0
1 r(4 − r2 )2 dr dθ 2
π/2
(1 − sin6 θ)dθ = (16/3)(11π/32) = 11π/6 0
π/2
π/3
2
π/2
π/3
ρ2 sin φ dρ dφ dθ =
35. V = 0
0
4 (π) = 4/3, 3π
zr dz dr dθ = 0
0
4 (5π/6) = 10/9; centroid (4/3, 0, 10/9) 3π
4−r 2
34. M =
=
r2
r2 cos θ dz dr dθ =
r dz dr dθ = 3π/2, 0
r2
π/6
0
√ = 2( 3 − 1)π/3
0
π/6
π/2 4 √ 8 sin φ dφ dθ = ( 3 − 1) dθ 3 3 0
January 27, 2005 11:55
L24-CH15
Sheet number 29 Page number 683
black
Exercise Set 15.7
683
2π
π/4
1
2π
√ 1 1 sin φ dφ dθ = (2 − 2) 4 8
π/4
3
36. M =
ρ sin φ dρ dφ dθ = 0
0
0
0
0
2π
dθ = (2 −
√
2)π/4
0
37. x ¯ = y¯ = 0 from the symmetry of density and region, 2π 1 1−r2 M= (r2 + z 2 )r dz dr dθ = π/4, 0
0
1 z¯ = M
2π
0
1
1−r 2
z(r2 +z 2 )r dz dr dθ = (4/π)(11π/120) = 11/30; center of gravity (0, 0, 11/30) 0
0
0
2π
1
38. x ¯ = y¯ = 0 from the symmetry of density and region, M =
1 z¯ = M
2π
1
zr dz dr dθ = π/4, 0
r
0
0
r
z 2 r dz dr dθ = (4/π)(2π/15) = 8/15; center of gravity (0, 0, 8/15) 0
0
0
39. x ¯ = y¯ = 0 from the symmetry of density and region, 2π π/2 a M= kρ3 sin φ dρ dφ dθ = πka4 /2, 0
z¯ =
0
1 M
2π
0
π/2
a
kρ4 sin φ cos φ dρ dφ dθ = 0
0
0
2 (πka5 /5) = 2a/5; center of gravity (0, 0, 2a/5) πka4
40. x ¯ = z¯ = 0 from the symmetry of the region, V = 54π/3 − 16π/3 = 38π/3, 1 π π 3 3 2 1 π π 65 y¯ = sin2 φ sin θ dφ dθ ρ sin φ sin θ dρ dφ dθ = V 0 0 2 V 0 0 4 1 π 65π 3 = sin θ dθ = (65π/4) = 195/152; centroid (0, 195/152, 0) V 0 8 38π
2π
π
R
−(ρ/R)3 2
δ0 e
41. M = 0
0
2π
ρ sin φ dρ dφ dθ =
0
0
0
π
1 (1 − e−1 )R3 δ0 sin φ dφ dθ 3
4 = π(1 − e−1 )δ0 R3 3 42. (a) The sphere and cone intersect in a circle of radius ρ0 sin φ0 , θ2 ρ0 sin φ0 √ρ20 −r2 θ2 ρ0 sin φ0 2 2 2 r ρ0 − r − r cot φ0 dr dθ V= r dz dr dθ = θ1
θ2
= θ1
0
r cot φ0
θ1
0
1 3 1 ρ0 (1 − cos3 φ0 − sin3 φ0 cot φ0 )dθ = ρ30 (1 − cos3 φ0 − sin2 φ0 cos φ0 )(θ2 − θ1 ) 3 3
1 3 ρ (1 − cos φ0 )(θ2 − θ1 ). 3 0 (b) From Part (a), the volume of the solid bounded by θ = θ1 , θ = θ2 , φ = φ1 , φ = φ2 , and 1 1 1 ρ = ρ0 is ρ30 (1 − cos φ2 )(θ2 − θ1 ) − ρ30 (1 − cos φ1 )(θ2 − θ1 ) = ρ30 (cos φ1 − cos φ2 )(θ2 − θ1 ) 3 3 3 so the volume of the spherical wedge between ρ = ρ1 and ρ = ρ2 is 1 1 ∆V = ρ32 (cos φ1 − cos φ2 )(θ2 − θ1 ) − ρ31 (cos φ1 − cos φ2 )(θ2 − θ1 ) 3 3 =
=
1 3 (ρ − ρ31 )(cos φ1 − cos φ2 )(θ2 − θ1 ) 3 2
January 27, 2005 11:55
L24-CH15
Sheet number 30 Page number 684
black
684
Chapter 15
(c)
d cos Ď&#x2020; = â&#x2C6;&#x2019; sin Ď&#x2020; so from the Mean-Value Theorem cos Ď&#x2020;2 â&#x2C6;&#x2019;cos Ď&#x2020;1 = â&#x2C6;&#x2019;(Ď&#x2020;2 â&#x2C6;&#x2019;Ď&#x2020;1 ) sin Ď&#x2020;â&#x2C6;&#x2014; where dĎ&#x2020; d 3 Ď&#x2020;â&#x2C6;&#x2014; is between Ď&#x2020;1 and Ď&#x2020;2 . Similarly Ď = 3Ď 2 so Ď 32 â&#x2C6;&#x2019;Ď 31 = 3Ď â&#x2C6;&#x2014;2 (Ď 2 â&#x2C6;&#x2019;Ď 1 ) where Ď â&#x2C6;&#x2014; is between dĎ Ď 1 and Ď 2 . Thus cos Ď&#x2020;1 â&#x2C6;&#x2019;cos Ď&#x2020;2 = sin Ď&#x2020;â&#x2C6;&#x2014; â&#x2C6;&#x2020;Ď&#x2020; and Ď 32 â&#x2C6;&#x2019;Ď 31 = 3Ď â&#x2C6;&#x2014;2 â&#x2C6;&#x2020;Ď so â&#x2C6;&#x2020;V = Ď â&#x2C6;&#x2014;2 sin Ď&#x2020;â&#x2C6;&#x2014; â&#x2C6;&#x2020;Ď â&#x2C6;&#x2020;Ď&#x2020;â&#x2C6;&#x2020;θ.
2Ď&#x20AC;
a
h
2Ď&#x20AC;
a
h
2
43. Iz =
r3 dz dr dθ =
r δ r dz dr dθ = δ 0
0
2Ď&#x20AC;
0
a
0
0
0
h
2Ď&#x20AC;
0
0
0
2Ď&#x20AC;
=δ 0
2Ď&#x20AC;
0
a2
h
0
a1 2Ď&#x20AC;
Ď&#x20AC;
2Ď&#x20AC;
a2
0
h
r3 dz dr dθ = 0
a1
0
a
2Ď&#x20AC;
Ď&#x20AC;
0
0
0
1 δĎ&#x20AC;h(a42 â&#x2C6;&#x2019; a41 ) 2
a
(Ď 2 sin2 Ď&#x2020;)δ Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ = δ
46. Iz =
Ď 4 sin3 Ď&#x2020; dĎ dĎ&#x2020; dθ = 0
EXERCISE SET 15.8
4.
1 (hr3 cos2 θ + h3 r)dr dθ 3
Ď&#x20AC; 1 4 1 Ď&#x20AC; a h cos2 θ + a2 h3 dθ = δ a4 h + a2 h3 4 6 4 3 r2 δ r dz dr dθ = δ
0
3.
a
45. Iz =
1.
(r2 cos2 θ + z 2 )δr dz dr dθ = δ
44. Iy =
1 δĎ&#x20AC;a4 h 2
0
0
â&#x2C6;&#x201A;(x, y) 1 4 = â&#x2C6;&#x201A;(u, v) 3 â&#x2C6;&#x2019;5
= â&#x2C6;&#x2019;17
â&#x2C6;&#x201A;(x, y) cos u = â&#x2C6;&#x201A;(u, v) sin u
â&#x2C6;&#x2019; sin v = cos u cos v + sin u sin v = cos(u â&#x2C6;&#x2019; v) cos v
2(v 2 â&#x2C6;&#x2019; u2 ) â&#x2C6;&#x201A;(x, y) (u2 + v 2 )2 = â&#x2C6;&#x201A;(u, v) 4uv (u2 + v 2 )2
â&#x2C6;&#x2019;
2.
4v = â&#x2C6;&#x2019;1 â&#x2C6;&#x2019; 16uv â&#x2C6;&#x2019;1
= 4/(u2 + v 2 )2 2(v 2 â&#x2C6;&#x2019; u2 ) (u2 + v 2 )2 4uv (u2 + v 2 )2
5 1 2 â&#x2C6;&#x201A;(x, y) 2/9 2 = 5. x = u + v, y = â&#x2C6;&#x2019; u + v; 9 9 9 9 â&#x2C6;&#x201A;(u, v) â&#x2C6;&#x2019;1/9 6. x = ln u, y = uv;
â&#x2C6;&#x201A;(x, y) 1 = â&#x2C6;&#x201A;(u, v) 4u
8 δĎ&#x20AC;a5 15
â&#x2C6;&#x201A;(x, y) 1/u = v â&#x2C6;&#x201A;(u, v)
5/9 1 = 2/9 9
0 =1 u
1 â&#x2C6;&#x161; â&#x2C6;&#x161; â&#x2C6;&#x161; â&#x2C6;&#x161; â&#x2C6;&#x161; â&#x2C6;&#x161; â&#x2C6;&#x201A;(x, y) 2 2 u + v = 7. x = u + v/ 2, y = v â&#x2C6;&#x2019; u/ 2; 1 â&#x2C6;&#x201A;(u, v) â&#x2C6;&#x2019; â&#x2C6;&#x161; â&#x2C6;&#x161; 2 2 vâ&#x2C6;&#x2019;u 3u1/2 â&#x2C6;&#x201A;(x, y) 2v 1/2 3/2 1/2 1/2 1/2 8. x = u /v , y = v /u ; = â&#x2C6;&#x201A;(u, v) 1/2 â&#x2C6;&#x2019;v 2u3/2
u3/2 â&#x2C6;&#x2019; 3/2 2v 1 2u1/2 v 1/2
1 â&#x2C6;&#x161; â&#x2C6;&#x161; 2 2 u+v 1 â&#x2C6;&#x161; â&#x2C6;&#x161; 2 2 vâ&#x2C6;&#x2019;u 1 = 2v
= â&#x2C6;&#x161; 1 4 v 2 â&#x2C6;&#x2019; u2
January 27, 2005 11:55
L24-CH15
Sheet number 31 Page number 685
black
Exercise Set 15.8
9.
685
3 ∂(x, y, z) = 1 ∂(u, v, w) 0
1 0 1
0 −2 1
=5
1−v ∂(x, y, z) = v − vw ∂(u, v, w) vw
10.
1/v ∂(x, y, z) 11. y = v, x = u/y = u/v, z = w − x = w − u/v; = 0 ∂(u, v, w) −1/v 0 ∂(x, y, z) 12. x = (v + w)/2, y = (u − w)/2, z = (u − v)/2, = 1/2 ∂(u, v, w) 1/2 y
13.
−u/v 2 1 u/v 2 1/2 0 −1/2
y
14.
0 0 1
0 −uv uv
= u2 v
= 1/v
1/2 −1/2 0
= −1 4
(3, 4)
4
(0, 2)
−u u − uw uw
3 2 1 x x
(0, 0) (–1, 0)
(0, 0)
2
3
(4, 0)
(1, 0) y
15.
1
3
y
16.
(0, 3)
2 (2, 0) –3
x 1
3
x –3
17. x =
1
1 2 2 1 ∂(x, y) 1 1 u + v, y = − u + v, = ; 5 5 5 5 ∂(u, v) 5 5
u 1 dAuv = v 5
1 1 1 1 ∂(x, y) 1 1 u + v, y = u − v, =− ; 2 2 2 ∂(u, v) 2 2 2
veuv dAuv = S
3
1
S
18. x =
2
1 2
4
4
1
u 3 du dv = ln 3 v 2
1
veuv du dv = 1
0
1 4 (e − e − 3) 2
∂(x, y) = −2; the boundary curves of the region S in the uv-plane are ∂(u, v) 1 u 1 v = 0, v = u, and u = 1 so 2 sin u cos vdAuv = 2 sin u cos v dv du = 1 − sin 2 2 0 0
19. x = u + v, y = u − v,
S
√ 1 ∂(x, y) = − ; the boundary curves of the region S in v/u, y = uv so, from Example 3, ∂(u, v) 2u 1 1 4 3 2 2 dAuv = the uv-plane are u = 1, u = 3, v = 1, and v = 4 so uv v du dv = 21 2u 2 1 1
20. x =
S
January 27, 2005 11:55
L24-CH15
Sheet number 32 Page number 686
black
686
Chapter 15
∂(x, y) = 12; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1. ∂(u, v) 2π 1 12 u2 + v 2 (12) dAuv = 144 r2 dr dθ = 96π Use polar coordinates to obtain
21. x = 3u, y = 4v,
0
S
0
∂(x, y) = 2; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1. Use ∂(u, v) 2π 1 2 −(4u2 +4v 2 ) e (2) dAuv = 2 re−4r dr dθ = (1 − e−4 )π/2 polar coordinates to obtain
22. x = 2u, y = v,
0
S
0
23. Let S be the region in the uv-plane bounded by u2 + v 2 = 1, so u = 2x, v = 3y, ∂(x, y) 1/2 0 x = u/2, y = v/3, = = 1/6, use polar coordinates to get 1/3 ∂(u, v) 0 1 6
sin(u2 + v 2 )du dv =
1 6
π/2
1
r sin r2 dr dθ = 0
S
0
1 π π (− cos r2 ) = (1 − cos 1) 24 24 0
∂(x, y) = ab; A = ab ∂(u, v)
24. u = x/a, v = y/b, x = au, y = bv;
25. x = u/3, y = v/2, z = w,
2π
1
r dr dθ = πab 0
0
∂(x, y, z) = 1/6; S is the region in uvw-space enclosed by the sphere ∂(u, v, w)
u2 + v 2 + w2 = 36 so
u2 1 1 dVuvw = 9 6 54
S
=
1 54
2π
π
6
(ρ sin φ cos θ)2 ρ2 sin φ dρ dφ dθ 0
0 2π
0 π
6
ρ4 sin3 φ cos2 θdρ dφ dθ = 0
0
0
192 π 5
26. Let G1 be the region u2 + v 2 + w2 ≤ 1, with x = au, y = bv, z = cw, spherical coordinates in uvw-space: Ix = (y 2 + z 2 )dx dy dz = abc (b2 v 2 + c2 w2 ) du dv dw
G 2π
π
G1 1
abc(b2 sin2 φ sin2 θ + c2 cos2 φ)ρ4 sin φ dρ dφ dθ
= 0
0 2π
= 0
0
abc 2 2 4 (4b sin θ + 2c2 )dθ = πabc(b2 + c2 ) 15 15
27. u = θ = cot−1 (x/y), v = r = 28. u = r = 29. u =
x2 + y 2
x2 + y 2 , v = (θ + π/2)/π = (1/π) tan−1 (y/x) + 1/2
2 1 3 3 x − y, v = − x + y 7 7 7 7
4 30. u = −x + y, v = y 3
∂(x, y, z) = abc; then use ∂(u, v, w)
January 27, 2005 11:55
L24-CH15
Sheet number 33 Page number 687
black
Exercise Set 15.8
687
31. Let u = y − 4x, v = y + 4x, then x =
1 8
u 1 dAuv = v 8
5
2
S
2
1 5 u du dv = ln v 4 2
0
32. Let u = y + x, v = y − x, then x = −
1 2
uv dAuv = −
1 2
1 ∂(x, y) 1 1 (v − u), y = (v + u) so =− ; 8 2 ∂(u, v) 8
2
1 ∂(x, y) 1 1 (u − v), y = (u + v) so = ; 2 2 ∂(u, v) 2
1
uv du dv = − 0
S
0
33. Let u = x − y, v = x + y, then x =
1 2
1 1 ∂(x, y) 1 (v + u), y = (v − u) so = ; the boundary curves of 2 2 ∂(u, v) 2
the region S in the uv-plane are u = 0, v = u, and v = π/4; thus √ sin u 1 π/4 v sin u 1 1 dAuv = du dv = [ln( 2 + 1) − π/4] 2 cos v 2 0 2 0 cos v S
34. Let u = y − x, v = y + x, then x =
1 ∂(x, y) 1 1 (v − u), y = (u + v) so = − ; the boundary 2 2 ∂(u, v) 2
curves of the region S in the uv-plane are v = −u, v = u, v = 1, and v = 4; thus 1 1 4 v u/v 15 eu/v dAuv = e du dv = (e − e−1 ) 2 1 −v 4 2 S
35. Let u = y/x, v = x/y 2 , then x = 1/(u2 v), y = 1/(uv) so
1 dAuv = u4 v 3
S
4
1
2
1
1 ∂(x, y) = 4 3; ∂(u, v) u v
1 du dv = 35/256 u4 v 3
∂(x, y) = 6; S is the region in the uv-plane enclosed by the circle u2 + v 2 = 1 ∂(u, v) 2π 1 (9 − x − y)dA = 6(9 − 3u − 2v)dAuv = 6 (9 − 3r cos θ − 2r sin θ)r dr dθ = 54π so
36. Let x = 3u, y = 2v,
R
0
S
37. x = u, y = w/u, z = v + w/u,
v2 w dVuvw = u
S
2
4
0
1
1
0
∂(x, y, z) 1 =− ; ∂(u, v, w) u
3
v2 w du dv dw = 2 ln 3 u
38. u = xy, v = yz, w = xz, 1 ≤ u ≤ 2, 1 ≤ v ≤ 3, 1 ≤ w ≤ 4, ∂(x, y, z) 1 x = uw/v, y = uv/w, z = vw/u, = √ ∂(u, v, w) 2 uvw 2 3 4 √ √ 1 √ dw dv du = 4( 2 − 1)( 3 − 1) V = dV = 1 1 1 2 uvw G
January 27, 2005 11:55
L24-CH15
Sheet number 34 Page number 688
black
688
39.
Chapter 15
sin3 φ cos3 θ 3ρ sin2 φ cos φ cos3 θ −3ρ sin3 φ cos2 θ sin θ ∂(x, y, z) = 3ρ sin3 φ sin2 θ cos θ sin3 φ sin3 θ 3ρ sin2 φ cos φ sin3 θ ∂(ρ, φ, θ) 3 2 cos φ −3ρ cos φ sin φ 0
= 9ρ2 cos2 θ sin2 θ cos2 φ sin5 φ, 2π π a 4 πa3 V =9 ρ2 cos2 θ sin2 θ cos2 φ sin5 φ dρ dφ dθ = 35 0 0 0 40. (b) If x = x(u, v), y = y(u, v) where u = u(x, y), v = v(x, y), then by the chain rule ∂x ∂u ∂x ∂v ∂x ∂x ∂u ∂x ∂v ∂x + = = 1, + = =0 ∂x ∂u ∂y ∂v ∂y ∂y ∂u ∂x ∂v ∂x ∂y ∂y ∂u ∂y ∂v ∂y ∂y ∂u ∂y ∂v + = = 0, + = =1 ∂x ∂u ∂y ∂v ∂y ∂y ∂u ∂x ∂v ∂x 41. (a)
∂(x, y) 1 − v −u y = = u; u = x + y, v = , v u ∂(u, v) x+y 1 x y 1 ∂(u, v) 1 1 = = ; + = 2 2 = −y/(x + y) x/(x + y) ∂(x, y) (x + y)2 (x + y)2 x+y u ∂(u, v) ∂(x, y) =1 ∂(x, y) ∂(u, v)
∂(x, y) v u (b) = ∂(u, v) 0 2v √ ∂(u, v) 1/ y = 0 ∂(x, y) (c)
42.
∂(x, y) = ∂(u, v) ∂(u, v) = ∂(x, y)
= 2v 2 ; u = x/√y, v = √y, 1 1 ∂(u, v) ∂(x, y) −x/(2y 3/2 ) √ = = 2; =1 1/(2 y) 2y 2v ∂(x, y) ∂(u, v)
√ √ v = −2uv; u = x + y, v = x − y, −v √ √ 1/(2 x + y) 1/(2 x + y) 1 1 ∂(u, v) ∂(x, y) ; =1 =− =− √ √ 2 2 2uv ∂(x, y) ∂(u, v) 1/(2 x − y) −1/(2 x − y) 2 x −y u u
1 1 ∂(u, v) ∂(x, y) = 3xy 4 = 3v so = ; ∂(x, y) ∂(u, v) 3v 3
S
43.
sin u 1 dAuv = v 3
1
2
2π
π
∂(x, y) ∂(u, v) 1 1 ∂(x, y) 1 = xy = so = 8xy so = ; xy ∂(x, y) ∂(u, v) 8xy ∂(u, v) 8xy 8 16 4 1 1 dAuv = du dv = 21/8 8 8 9 1 S
44.
1 ∂(u, v) ∂(x, y) = −2(x2 + y 2 ) so =− ; 2 ∂(x, y) ∂(u, v) 2(x + y 2 ) x4 − y 4 xy 1 1 4 4 xy ∂(x, y) = e = (x2 − y 2 )exy = veu so (x − y )e 2 2 ∂(u, v) 2(x + y ) 2 2 4 3 1 1 7 veu dAuv = veu du dv = (e3 − e) 2 2 3 1 4 S
2 sin u du dv = − ln 2 v 3
January 27, 2005 11:55
L24-CH15
Sheet number 35 Page number 689
black
Review Exercises, Chapter 15
689
1 ∂(u, v, w) = 1 45. Set u = x + y + 2z, v = x − 2y + z, w = 4x + y + z, then ∂(x, y, z) 4 6 2 3 1 ∂(x, y, z) V = du dv dw = 6(4)(12) = 16 dx dy dz = ∂(u, v, w) 18 −6 −2 −3
1 −2 1
2 1 1
= 18, and
R
46. (a) Let u = x + y, v = y, then the triangle R with vertices (0, 0), (1, 0) and (0, 1) becomes the triangle in the uv-plane with vertices (0, 0), (1, 0), (1, 1), and 1 1 u ∂(x, y) dv du = f (x + y)dA = f (u) uf (u) du ∂(u, v) 0 0 0 R
1
ueu du = (u − 1)eu
(b) 0
cos θ ∂(x, y, z) = sin θ ∂(r, θ, z) 0
47. (a)
1 =1 0
−r sin θ r cos θ 0
sin φ cos θ ∂(x, y, z) (b) = sin φ sin θ ∂(ρ, φ, θ) cos φ
0 0 1
= r,
∂(x, y, z) ∂(r, θ, z) = r −ρ sin φ sin θ ρ sin φ cos θ 0
ρ cos φ cos θ ρ cos φ sin θ −ρ sin φ
= ρ2 sin φ;
∂(x, y, z) 2 ∂(ρ, φ, θ) = ρ sin φ
REVIEW EXERCISES, CHAPTER 15
3. (a)
dA
(b)
R
dV
(c)
G
1+
2
∂z ∂x
+
∂z ∂y
2 dA
R
4. (a) x = a sin φ cos θ, y = a sin φ sin θ, z = a cos φ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π (b) x = a cos θ, y = a sin θ, z = z, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h
1
1+
√
√
7. 0
1−
1−y 2
f (x, y) dx dy
2
2x
8.
3
6−x
f (x, y) dy dx +
1−y 2
0
x
f (x, y) dy dx 2
x
9. (a) (1, 2) = (b, d), (2, 1) = (a, c), so a = 2, b = 1, c = 1, d = 2 1 1 1 1 ∂(x, y) (b) dA = 3du dv = 3 du dv = 0 0 ∂(u, v) 0 0 R
√ 10. If 0 < x, y < π then 0 < sin xy ≤ 1, with equality only on the hyperbola xy = π 2 /4, so π π π π π π √ 0= 0 dy dx < sin xy dy dx < 1 dy dx = π 2 0
0
0
1
2x cos(πx2 ) dx =
11. 1/2
12. 0
2
x2 y3 e 2
x=2y
0
0
0
1 √ 1 = −1/( 2π) sin(πx2 ) π 1/2
3 dy = 2 x=−y
2
2 y3
y e 0
1 3 dy = ey 2
2 = 0
1 8 e −1 2
January 27, 2005 11:55
L24-CH15
Sheet number 36 Page number 690
black
690
Chapter 15
1
2
ex ey dx dy
13. 0
2y
0
y
15.
Ď&#x20AC;
x
sin x dy dx x
14. 0
16. p /2
1
r = a(1 + cos u)
y = sin x
y = tan (x/2)
r=a x p /6
6
8
y 1/3
2 x sin y dx dy = 3 2
17. 2 0
0
Ď&#x20AC;/2
8
2
1 y sin y dy = â&#x2C6;&#x2019; cos y 2 3
8
2
0
= 0
0
1 (1 â&#x2C6;&#x2019; cos 64) â&#x2030;&#x2C6; 0.20271 3
2
(4 â&#x2C6;&#x2019; r2 )r dr dθ = 2Ď&#x20AC;
18. 0
0
2xy , and r = 2a sin θ is the circle x2 + (y â&#x2C6;&#x2019; a)2 = a2 , so x2 + y 2 a 2xy 2 â&#x2C6;&#x2019; x2 â&#x2C6;&#x2019; ln a â&#x2C6;&#x2019; 2 â&#x2C6;&#x2019; x2 dx = a2 dy dx = x ln a + a a x2 + y 2 0
19. sin 2θ = 2 sin θ cos θ =
a
â&#x2C6;&#x161; aâ&#x2C6;&#x2019; a2 â&#x2C6;&#x2019;x2
0
â&#x2C6;&#x161; a+ a2 â&#x2C6;&#x2019;x2
Ď&#x20AC;/2
Ď&#x20AC;/2
2
4r (cos θ sin θ) r dr dθ = â&#x2C6;&#x2019;4 cos 2θ 2
20. Ď&#x20AC;/4
2
Ď&#x20AC;/4
2â&#x2C6;&#x2019;y/2
21.
2
dx dy = (y/2)1/3
0
0
Ď&#x20AC;/6
2 3 y 4/3 y y 1/3 y2 3 â&#x2C6;&#x2019; 2â&#x2C6;&#x2019; â&#x2C6;&#x2019; dy = 2y â&#x2C6;&#x2019; = 2 2 4 2 2 2 0
Ď&#x20AC;/6
cos2 3θ = Ď&#x20AC;/4
r dr dθ = 3 0
2Ď&#x20AC;
cos 3θ
22. A = 6
2
0
0
16
r2 cos2 θ r dz dr dθ =
23. 0
Ď&#x20AC;/2
0
r4
Ď&#x20AC;/2
0
0
2Ď&#x20AC;
2Ď&#x20AC;
0
1
2
r3 (16 â&#x2C6;&#x2019; r4 ) dr = 32Ď&#x20AC;
cos2 θ dθ 0
24.
0
1 Ď&#x20AC; Ď&#x20AC; Ď&#x20AC;/2 2 Ď sin Ď&#x2020; dĎ dĎ&#x2020; dθ = 1 â&#x2C6;&#x2019; sin Ď&#x2020; dĎ&#x2020; 1 + Ď 2 4 2 0 Ď&#x20AC;/2 Ď&#x20AC; Ď&#x20AC; Ď&#x20AC; Ď&#x20AC; (â&#x2C6;&#x2019; cos Ď&#x2020;) = 1â&#x2C6;&#x2019; = 1â&#x2C6;&#x2019; 4 2 4 2 0
Ď&#x20AC;/3
a
2Ď&#x20AC;
Ď&#x20AC;/3
(Ď 2 sin2 Ď&#x2020;)Ď 2 sin Ď&#x2020; dĎ dĎ&#x2020; dθ =
25. (a) 0
0 2Ď&#x20AC;
0 â&#x2C6;&#x161; â&#x2C6;&#x161; 3a/2 a2 â&#x2C6;&#x2019;r 2
(b) 0
(c)
=4
0
â&#x2C6;&#x161; r/ 3
0 â&#x2C6;&#x161; 3a/2
â&#x2C6;&#x161; â&#x2C6;&#x2019; 3a/2
â&#x2C6;&#x161;
â&#x2C6;&#x2019;
Ď 4 sin3 Ď&#x2020; dĎ dĎ&#x2020; dθ
2Ď&#x20AC;
r2 dz rdr dθ = 0
â&#x2C6;&#x161;(3a2 /4)â&#x2C6;&#x2019;x2 â&#x2C6;&#x161;a2 â&#x2C6;&#x2019;x2 â&#x2C6;&#x2019;y2 (3a2 /4)â&#x2C6;&#x2019;x2
â&#x2C6;&#x161;
â&#x2C6;&#x161; x2 +y 2 / 3
a
0
0 0 0 â&#x2C6;&#x161; â&#x2C6;&#x161; 2 3a/2 a â&#x2C6;&#x2019;r 2 â&#x2C6;&#x161; r/ 3
(x2 + y 2 ) dz dy dx
r3 dz dr dθ
January 27, 2005 11:55
L24-CH15
Sheet number 37 Page number 691
black
Review Exercises, Chapter 15
4
26. (a)
2Ď&#x20AC;
â&#x2C6;&#x161; a/ 3
27. V = 0
Ď&#x20AC;/2
4 cos θ
4r cos θ
(b)
r dz dr dθ â&#x2C6;&#x2019;Ď&#x20AC;/2
x2 +y 2 â&#x2C6;&#x161; a/ 3
a
â&#x2C6;&#x161; 3r
0
4x
dz dy dx
â&#x2C6;&#x161; â&#x2C6;&#x2019; 4xâ&#x2C6;&#x2019;x2
0
â&#x2C6;&#x161; 4xâ&#x2C6;&#x2019;x2
691
r(a â&#x2C6;&#x2019;
r dz dr dθ = 2Ď&#x20AC;
â&#x2C6;&#x161;
3r) dr =
0
0
r2
Ď&#x20AC;a3 9
28. The intersection of the two surfaces projects onto the yz-plane as 2y 2 + z 2 = 1, so 1/â&#x2C6;&#x161;2 â&#x2C6;&#x161;1â&#x2C6;&#x2019;2y2 1â&#x2C6;&#x2019;y2 dx dz dy V =4 0
0
â&#x2C6;&#x161; 1/ 2
â&#x2C6;&#x161;1â&#x2C6;&#x2019;2y2
y 2 +z 2
â&#x2C6;&#x161; 1/ 2
(1 â&#x2C6;&#x2019; 2y â&#x2C6;&#x2019; z ) dz dy = 4 2
=4 0
2
0
0
â&#x2C6;&#x161; 29. ru Ă&#x2014; rv = 2u2 + 2v 2 + 4, S= 2u2 + 2v 2 + 4 dA =
0
u2 +v 2 â&#x2030;¤4
30. ru Ă&#x2014; rv =
2Ď&#x20AC;
â&#x2C6;&#x161;
2
3u
1 + u2 , S = 0
2
0
2 (1 â&#x2C6;&#x2019; 2y 2 )3/2 dy = 3
â&#x2C6;&#x161;
2Ď&#x20AC; 4
â&#x2C6;&#x161; 8Ď&#x20AC; â&#x2C6;&#x161; (3 3 â&#x2C6;&#x2019; 1) 2 r2 + 2 r dr dθ = 3
2
1 + u2 dv du =
0
3u
1 + u2 du = 53/2 â&#x2C6;&#x2019; 1
0
31. (ru Ă&#x2014; rv ) u=1 = â&#x2C6;&#x2019;2, â&#x2C6;&#x2019;4, 1 , tangent plane 2x + 4y â&#x2C6;&#x2019; z = 5 v=2
32. u = â&#x2C6;&#x2019;3, v = 0, (ru Ă&#x2014; rv ) u=â&#x2C6;&#x2019;3 = â&#x2C6;&#x2019;18, 0, â&#x2C6;&#x2019;3 , tangent plane 6x + z = â&#x2C6;&#x2019;9 v=0
4
2+y 2 /8
4
y2 2â&#x2C6;&#x2019; 8
32 ; yÂŻ = 0 by symmetry; 3 â&#x2C6;&#x2019;4 â&#x2C6;&#x2019;4 4 4 2+y2 /8 3 256 8 8 1 256 3 4 y dy = , x ÂŻ= = ; centroid ,0 2 + y2 â&#x2C6;&#x2019; x dx dy = 4 128 15 32 15 5 5 â&#x2C6;&#x2019;4 y 2 /4 â&#x2C6;&#x2019;4 dx dy =
33. A =
y 2 /4
dy =
34. A = Ď&#x20AC;ab/2, x ÂŻ = 0 by symmetry, a bâ&#x2C6;&#x161;1â&#x2C6;&#x2019;x2 /a2 1 a 2 4b 2 2 2 y dy dx = b (1 â&#x2C6;&#x2019; x /a )dx = 2ab /3, centroid 0, 2 â&#x2C6;&#x2019;a 3Ď&#x20AC; â&#x2C6;&#x2019;a 0 1 35. V = Ď&#x20AC;a2 h, x ÂŻ = yÂŻ = 0 by symmetry, 3 2Ď&#x20AC; a hâ&#x2C6;&#x2019;rh/a a r 2 rz dz dr dθ = Ď&#x20AC; rh2 1 â&#x2C6;&#x2019; dr = Ď&#x20AC;a2 h2 /12, centroid (0, 0, h/4) a 0 0 0 0 256 1 , 8 â&#x2C6;&#x2019; 4x2 + x4 dx = 2 15 2 2 â&#x2C6;&#x2019;2 x 0 â&#x2C6;&#x2019;2 x â&#x2C6;&#x2019;2 2 4 4â&#x2C6;&#x2019;y 2 4 2 1024 1 6 32 x â&#x2C6;&#x2019; 2x4 + dx = y dz dy dx = (4y â&#x2C6;&#x2019; y 2 ) dy dx = 3 3 35 â&#x2C6;&#x2019;2 x2 0 â&#x2C6;&#x2019;2 x2 â&#x2C6;&#x2019;2 2 4 4â&#x2C6;&#x2019;y 2 4 2 6 2048 x 1 32 dx = â&#x2C6;&#x2019; + 2x4 â&#x2C6;&#x2019; 8x2 + z dz dy dx = (4 â&#x2C6;&#x2019; y)2 dy dx = 6 3 105 â&#x2C6;&#x2019;2 x2 0 â&#x2C6;&#x2019;2 x2 2 â&#x2C6;&#x2019;2 12 8 x ÂŻ = 0 by symmetry, centroid 0, , 7 7
36. V =
2
4
4â&#x2C6;&#x2019;y
dz dy dx =
2
4
(4 â&#x2C6;&#x2019; y)dy dx =
2
January 27, 2005 11:55
L24-CH15
Sheet number 38 Page number 692
black
692
Chapter 15
37. V =
4 3 ¯ 3 πa , d = 3 4πa3
ρdV =
3 4πa3
ρ≤a
π
2π
a
ρ3 sin φ dρ dθ dφ = 0
0
0
3 a4 3 2π(2) = a 3 4πa 4 4
1 2 3 2 1 1 3 3 1 38. x = + u + v and y = − u + v, hence |J(u, v)| = , and = 10 10 10 10 10 10 10 3 4 3 4 8 x − 3y u 1 1 1 1 2 8= dA = du dv = dv u du = 2 2 2 (3x + y) 10 1 0 v 10 1 v 10 3 15 0 R
1 1 39. (a) Add u and w to get x = ln(u + w) − ln 2; subtract w from u to get y = u − w, substitute 2 2 1 1 1 1 these values into v = y + 2z to get z = − u + v + w. Hence xu = , xv = 0, xw = 4 2 4 u+w ∂(x, y, z) 1 1 1 1 1 1 1 ; yu = , yv = 0, yz = − ; zu = − , zv = , zw = , and thus = u+w 2 2 4 2 4 ∂(u, v, w) 2(u + w) 3 2 4 1 dw dv du (b) V = = 1 1 0 2(u + w) G
= (7 ln 7 − 5 ln 5 − 3 ln 3)/2 =
1 823543 ln ≈ 1.139172308 2 84375