12 minute read

THE NEXT FRONTIER

The future of the space station, low-Earth orbit, and beyond

BY CRAIG COLLINS

The International Space Station has already achieved much more than was expected of it. It was designed and tested for a 15-year lifespan, an age its oldest segments reached in 2013. Its components were built, however, to last twice as long, and in 2017, Boeing, NASA’s prime contractor for the space station, certified all its major U.S. structural elements to 2028.

For more than 20 years, the orbiting laboratory has provided a platform for people to learn about living and working in space, and has yielded discoveries in astrophysics, physical science, Earth science, space science, and human health. It has contributed to commercial research and development for pharmaceuticals, materials, manufacturing, and consumer products, and it’s proven a valuable asset in disaster response on Earth, providing near real-time mapping support for recovery and humanitarian aid. Its contributions to humanity are considerable and ongoing, and often yield unexpected breakthroughs.

But what will become of the International Space Station? Anyone who’s been involved in the program, for all their affection and reverence for what it’s meant for science and humanity, will give you a blunt and unsentimental answer: Someday the station will be at the bottom of an ocean. While spaceflight has introduced dramatic exceptions to Newton’s Third Law, it has been the fate of every object in low-Earth orbit (LEO) to return to Earth. It happened to Skylab, and to Mir, and it will eventually happen to the space station.

“Eventually,” however, may still be a ways off. More than one legislative proposal has been introduced in Congress to extend space station operations to 2030, a desire NASA’s retired former space station program manager, Kirk Shireman, said is unanimous among the station’s international partners: Russia, Japan, Canada, and the supporting member nations of the European Space Agency. “I think the station will be beneficial to the United States, and to the world, at least until 2030,” Shireman said – though he cautioned that the station is a machine, like an automobile or aircraft, that will ultimately reach the end of its service life. “Eventually it will have to come home,” he said. “But there’s no reason why it shouldn’t last well beyond 2030.” Discussions about what LEO will look like post-2030, Shireman said, will involve politics, technology, and economics, including the key question of whether space station partners are receiving adequate returns on their investments.

An illustration of the Lunar Orbital Platform-Gateway, which is envisioned as a hub for communications, short-term habitation, and research in orbit around the Moon. Built with commercial and international partners, the Gateway will be critical to sustainable lunar exploration and will serve as a model for future missions to Mars.

For NASA, that investment is significant: The agency spends between $3 billion and $4 billion annually on maintaining and operating the station, which is roughly half of what the agency spends on human spaceflight, and NASA’s ambitions go far beyond LEO. In December 2017, the Trump administration issued Space Policy Directive 1, which stated that “the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations.”

It will be difficult, if not impossible, to realize these deep-space ambitions with half the agency’s budget spent in LEO, but NASA leaders are pursuing these goals shrewdly: It’s unlikely that any single agency can achieve these goals, anytime soon, without the kind of collaboration that built and continues to support the space station. The Lunar Orbital Platform-Gateway, for example, the minispace station envisioned to provide a hub for communications, short-term habitation, and research in orbit around the Moon, will be led by NASA, but the current plan is to develop, service, and utilize it in collaboration with all space station partners: the European Space Agency (ESA), the Japanese Space Agency (JAXA), Roscosmos, and the Canadian Space Agency (CSA).

Building on the space station partnership to achieve long-duration spaceflight goals is one part of NASA’s strategy to reduce the costs of human spaceflight. The other part is aimed at reducing the amount it spends on the space station, mostly by encouraging other people to spend money there. NASA is leading a new vision for LEO: a thriving trillion-dollar marketplace that will build on a generation of innovation and give NASA and its partners a running start in their plans to explore the Moon and beyond.

COMMERCIALIZING LOW-EARTH ORBIT: SHARING THE BURDEN, SPURRING INNOVATION

In the 1980s, when the Reagan administration envisioned what was then called Space Station Freedom, NASA anticipated a multipurpose facility: an observatory and laboratory, but also a way station for vehicles and payloads, and a facility for manufacturing, assembling, and servicing space hardware and systems. Congressional committees were skeptical about funding a space station, but one argument that helped convince them was the idea articulated by President Ronald Reagan in his 1984 State of the Union address: “Just as the oceans opened up a new world for clipper ships and Yankee traders, space holds enormous potential for commerce today,” he said. “The market for space transportation could surpass our capacity to develop it. Companies interested in putting payloads into space must have ready access to private-sector launch services.”

Reagan’s words were prescient, but a market for space commerce has been slower to develop than anticipated. It took nearly two decades for NASA, with its Commercial Resupply and Crew programs, to break out of the 20th-century government-as-sole- customer model, but the exciting results of those programs have inspired a new push to commercialize activity aboard the space station. In 2014, the agency launched its Next Space Technologies for Exploration Partnerships (NextSTEP) program, establishing a public/private partnership model to prompt commercial development of space exploration technologies.

advertisement

In May 2019, NASA collected the results of several studies it had commissioned among leading aerospace companies to evaluate the potential for stimulating private demand for human spaceflight and services aboard the orbital outpost. After fielding a number of ideas, the agency later announced a plan to encourage for-profit activities aboard the space station. Through the NASA Research Announcement and NextSTEP, the agency asked for proposals to purchase limited amounts of cargo capacity and crew time; to fly private astronauts on commercial spacecraft to the space station for short-term stays; and to attach one or more commercial elements to the last open port on the station: the forward port of its forwardmost module, Harmony (Node 2). NASA has received a number of proposals for commercial and marketing opportunities on the station.

In 2019, NASA began evaluating habitat prototypes developed through NASA’s Next SpaceExploration for Technologies Partnerships, orNextSTEP, program to help engineers refine requirementsfor the design of an American-madedeep space habitat for the Gateway. Here, fromleft, astronauts Frank Rubio, Shannon Walker,Stephanie Wilson, and Raja Chari, pictured atKennedy Space Center inside a habitat prototypedeveloped by Lockheed Martin, participate in anevaluation of the prototype to provide their perspectivesas those who may one day live aboardthe lunar outpost. The five other companies selectedto develop ground prototypes are BigelowAerospace, Boeing, Northrop Grumman, SierraNevada Corporation, and Nanoracks.

NASA’s idea of commercialization isn’t to sell off the station’s assets and wash their hands of it; rather it is to use the resources of the space station to help companies learn how to do business in space. The maturing Commercial Crew Program, which launched astronauts Douglas Hurley and Robert Behnken to the space station in a SpaceX Crew Dragon spacecraft on May 30, 2020, has allowed the agency to show that private-sector competition and innovation can help achieve the program’s objectives. NASA is now transitioning into the era foreseen by the visionaries of Space Station Freedom: a bustling LEO economy in which government agencies are not the sole owner/operators of hardware and systems, but are a handful of customers among many others.

Joel Montalbano, current space station program manager, believes the remaining questions about long-duration spaceflight will be answered more quickly after private companies begin sending their own astronauts into space. Commercialization, he said, will bring other benefits as well. First, and most obviously, it will bring down costs. NASA’s Commercial Resupply Program has already made it cheaper to launch and fly cargo to the station. “Space is still an expensive endeavor,” said Montalbano. “It needs to be cheaper, and commercialization and competition is the way to achieve that. And we’re definitely seeing the benefits of it.”

The Canadarm2 robotic arm and Dextre, the fine-tuned robotic hand, are remotely controlled from Earth to extract Bartolomeo from the pressurized trunk of the SpaceX Dragon resupply ship. Built by Airbus Defense and Space and funded by private investors, Bartolomeo offers commercial companies a streamlined way to get their experiments into orbit.

The Bigelow Expandable Activity Module (BEAM) is seen at center attached to the Tranquility module of the International Space Station. BEAM is an expandable habitat technology demonstration co-sponsored by Bigelow Aerospace and NASA.

Shireman conceded that commercializing the space station – introducing free-market competition to a platform built through unprecedented international collaboration – wasn’t an idea that took hold among all station partners at the same time. The Russians were arguably the first to introduce commerce to the station, when they flew the first private astronaut there a decade-and-a-half ago. When NASA introduced the idea of commercialization to the U.S. Orbital Segment partners, Shireman said, they reacted with surprise at first – but have since warmed to the realization that the commercialization of LEO was, actually, one of the partnership’s founding objectives.

A SpaceX Falcon 9 rocket and Crew Dragon spacecraft lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on May 30, 2020, carrying NASA astronauts Robert Behnken and Douglas Hurley to the International Space Station for the agency’s SpaceX Demo-2 mission. Part of NASA’s Commercial Crew Program, Demo-2 was SpaceX’s final flight test, paving the way for the agency to certify the crew transportation system for regular, crewed flights to the orbiting laboratory.

The space station has since welcomed public-private partnerships, including privately owned and operated research facilities – now close to two dozen in number – to the platform. The Bigelow Expandable Activity Module (BEAM) is one such example of NASA partnership with industry to facilitate the growth of the commercial use of space. BEAM, an expandable habitat technology demonstration, is co-sponsored by NASA and Bigelow Aerospace. It launched to the space station in 2016 on the eighth SpaceX Commercial Resupply Mission, and, once attached to the Tranquility node by Canadarm2, it was filled with air for a two-year test period, during which astronauts performed tests to validate overall performance and capability of expandable habitats with an eye toward their suitability for long-duration space exploration. The two-year test period was extended by three years in 2017, with two options to extend for one additional year.

In March 2020, a SpaceX Dragon cargo capsule delivered a platform called Bartolomeo, built by a private company, Airbus Defense and Space, to house experiments and payloads on the exterior of the European Columbus module. Bartolomeo, funded by private investors, offers commercial companies a streamlined way to get their experiments in orbit. Continuing U.S. private-sector efforts will include the delivery of an airlock named Bishop, built and completely funded by the private company Nanoracks, that will attach to Tranquility (Node 3) and offer greater deployment volume for private satellites. From the airlock of its Kibo module, JAXA is deploying CubeSats for private companies, and leasing time aboard some of its payload facilities.

A NEW ERA IN PRIVATE SPACEFLIGHT

On Feb. 28, 2020, NASA announced it had selected its contractor for the station’s first commercial destination, a habitable module to be attached to the front of the station: Axiom Space of Houston, Texas. Under the agreement, the plan is for Axiom to send a first module, the AxN1 – a node module much like the space station nodes – to dock with the station in late 2024. But according to Axiom’s co-founder, president, and CEO, Michael Suffredini, this will be only the beginning.

A rendering of Axiom Space modules attached to the International Space Station. Under an agreement with NASA, Axiom Space will send a first module, AxN1, to dock with the station in 2024. After the demonstration phase, AxiomSpace will add privately funded modules, creating a space station that will eventually be able to separate from the ISS and fly independently.

Suffredini said Axiom has identified six revenue streams for the company in space; ultimately, as the appropriate market and facilities mature, he sees manufacturing in LEO as probably the most promising. Space has proven to be a superior environment for making fiber optics, metal alloys, certain pharmaceuticals, and biological tissues. “That’s going to be a blooming industry at some point,” said Suffredini. “As we manufacture more and more items in space that can’t be manufactured on the ground, we’ll come to rely on that capability on the ground.” He uses the example of aircraft manufacturers who might benefit from the manufacture of turbine blades made from space-made alloys, allowing engines to be smaller and lighter. “There are areas people don’t even know to think about yet,” he said.

Suffredini, a retired NASA veteran who managed the space station program from 2005 to 2015, said Axiom Space was established in 2016 specifically to build the world’s first privately funded commercial space station, to pick up where the space station left off. This was the idea Axiom first presented to NASA when the agency asked industry to study ideas for commercializing the station. “We came in and we said: ‘We want to build a space station and attach to one of your ports, so we can utilize your power and cooling while we build.” The agency agreed to assist in funding the demonstration of AxN1.

The Axiom Space station, Suffredini said, will be “no-kidding commercial.” After partnering with NASA for the demonstration phase, the company will add privately funded modules in yearly increments: a habitation module with the capacity for eight people; a research and manufacturing facility; and a power and thermal tower that will allow the Axiom station to separate from the orbital outpost and fly independently.

Axiom Space modules won’t require any NASA resources to reach the station, Suffredini said; using one of several available commercial rockets to reach orbit, they’ll be equipped with their own propulsion, power, cooling, and GNC (guidance/navigation/control) systems and will be able to fly to the station independently.

The successful development of commercial crew spacecraft has already introduced a new round of private capabilities: NASA entered into an agreement with KBR in January 2020 that grants the company the opportunity to train private astronauts at NASA facilities. In February 2020, Space Adventures, a space tourism company, announced plans to fly private citizens into orbit aboard a SpaceX Crew Dragon capsule. A month later, SpaceX announced that it had partnered with Axiom Space – the first company to contemplate private astronaut missions, as articulated in an agreement signed with NASA in 2016 – to send three private astronauts on a 10-day trip to the space station sometime in late 2021: SpaceX will handle the transport, with its Falcon 9 rocket and Crew Dragon capsule, and Axiom will handle the logistics of the first fully private trip to the station.

In June 2020, Virgin Galactic signed an agreement with NASA to develop a private astronaut orbital readiness program that entails identifying candidates interested in purchasing private missions to the space station and then procuring transportation, on-orbit resources, and ground sources for the missions.

Even for those who have been paying attention to the space station over the past two decades, such a dramatic change – private astronauts, riding private capsules to a space station that’s spawning the first private space station – might seem strange. Montalbano is excited to see how these developments will accelerate work aboard the orbiting laboratory in the coming decade: maturing the technologies of environmental control and life support systems, understanding the risks of radiation in long-duration spaceflight, and answering the questions that remain about what it means to live and work in space. “A more robust future for human spaceflight is really important, and I want to make sure NASA and its partners are getting the technology they need to send humans farther out into space, for longer durations than ever before,” Montalbano said. “I really think that’s our destiny as a species.”

To learn more, visit: www.nasa.gov/leo-economy

This article is from: