On Neutro-LA-semihypergroups and Neutro-Hv-LAsemigroups
Saeid Mirvakili
Payame Noor University
Akbar Rezaei ( rezaei@pnu.ac.ir )
Payame Noor University https://orcid.org/0000-0002-6003-3993
Omaima Al-Shanqiti
Umm Al-Qura University
Florentin Smarandache
University of New Mexico - Gallup
Bijan Davvaz
Yazd University
Research Article
Keywords: Hyperoperation, Neutrohyperoperation, Antihyperoperation, LA-semihypergroup, Neutro-LAsemihypergroup, Anti-LA-semihypergroup, Hv-LA-semigroup, Neutro-Hv-LA-semigroup, Anti-Hv-LAsemigroup
Posted Date: March 28th, 2023
DOI: https://doi.org/10.21203/rs.3.rs-2553188/v1
License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
OnNeutro-LA-semihypergroupsand Neutro-Hv -LA-semigroups
S.Mirvakilia,A.Rezaeia,∗ ,O.Al-Shanqitib,F.Smarandachec,B.Davvazd
aDepartmentofMathematics,PayameNoorUniversity, P.O.Box19395–4697Tehran,Iran.
bDepartmentofMathematics,UmmAl-QuraUniversityMecca, P.O.Box24341,SaudiArabia.
cDepartmentofMathematicsandScience,UniversityofNewMexico,Gallup, NM87301,USA.
dDepartmentofMathematics,YazdUniversity,Yazd,Iran.
E-mail:saeed mirvakili@pnu.ac.ir
E-mail:rezaei@pnu.ac.ir
E-mail:omshanqiti@uqu.edu.sa
E-mail:smarand@unm.edu
E-mail:davvaz@yazd.ac.ir
Abstract. Inthispaper,weextendthenotionof LA-semihypergroups (resp. Hv -LA-semigroups)toneutro-LA-semihypergroups(respectively, neutro-Hv -LA-semigroups).Anti-LA-semihypergroups(respectively,antiHv -LA-semigroups)arestudiedandinvestigatedsomeoftheirproperties. Weshowthatthesenewconceptsaredifferentfromclassicalconcepts byseveralexamples.Theseareparticularcasesoftheclassicalalgebraicstructuresgeneralizedtoneutroalgebraicstructuresandantialgebraicstructures(Smarandache,2019).
Keywords: Hyperoperation,Neutrohyperoperation,Antihyperoperation, LAsemihypergroup,Neutro-LA-semihypergroup,Anti-LA-semihypergroup, HvLA-semigroup,Neutro-Hv -LA-semigroup,Anti-Hv -LA-semigroup.
2000Mathematicssubjectclassification: 20N20,20N99.
2S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B. Davvaz
1. Introduction
KazimandNaseeruddin[13]providedtheconceptofleftalmostsemigroup (abbreviatedas LA-semigroup).Theygeneralizedsomeusefulresultsofsemigrouptheory.Later,Mushtaq[17]andothersfurtherinvestigatedthestructureandaddedmanyusefulresultstothetheoryof LA-semigroups;seealso [1,3,11,14,18,19,26].
Ahypergroupasageneralizationofthenotionofagroup,wasintroducedby F.Marty[16]in1934.Somevaluablebooksinhyperstructureshavepublished [4,5,6,7,27].In1990,Vougiouklisintroducedtheconceptof Hv -structuresin FourthAHACongressasageneralizationofthewell-knownalgebraichyperstructures.Twobooksonalgebraic Hv -structureorweakhyperstructurehave beenpublished[7,27].
HilaandDine[10]introducedthenotionof LA-semihypergroupsasageneralizationofsemigroups,semihypergroups,and LA-semigroups.Yaqoob,Corsini andYousafzai[28]extendedtheworkofHilaandDine.Gulistan,Yaqooband Shahzad,[9]introducedthenotionof Hv -LA-semigroupsas LA-semihypergroups. Theyshowedthatevery LA-semihypergroupisan Hv -LA-semigroupandeach LA-semigroupendowedwithanequivalencerelationcaninducedan Hv -LAsemigroupandtheyinvestigatedisomorphismtheoremwiththehelpofregular relations.
In2019and2020,withinthefieldofneutrosophy,Smarandache[21,22,23] generalizedtheclassicalalgebraicstructurestoneutroalgebraicstructures(or neutroalgebras)whoseoperationsandaxiomsarepartiallytrue,partiallyindeterminate,andpartiallyfalseasextensionsofpartialalgebra,andtoantialgebraicstructures(orantialgebras) {whoseoperationsandaxiomsaretotally false}.Andingeneral,heextendedanyclassicalstructure,innomatterwhat fieldofknowledge,toaneutrostructureandanantistructure.Thesearenew fieldsofresearchwithinneutrosophy.
Smarandachein[23]revisitedthenotionsofneutroalgebrasandantialgebras,wherehestudiedpartialalgebras,Universalalgebras,Effectalgebrasand Boole′ spartialalgebras,andshowedthatneutroalgebrasaregeneralization ofpartialalgebras.Further,heextendedtheclassicalhyperalgebrato n-ary hyperalgebraanditsalternatives n-aryneutrohyperalgebraand n-aryantihyperalgebra[25].
ThenotionofneutrogroupwasdefinedandstudiedbyA.A.A.Agboolain [2].A.Rezaeietal.introducedthenotionsofneutrosemihypergroupand antisemihypergroup[20].Recently,S.Mirvakilietal.extendthenotionof Hvsemigroupstoneutro-Hv -semigroupsandanti-Hv -semigroupsandinvestigated manyoftheirproperties[15].
Inthispaper,theconceptofneutro-LA-semihypergroups(resp.neutro-HvLA-semigroup)andanti-LA-semihypergroups(resp.anti-Hv -LA-semigroup)is
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups3
formallypresented.Moreover,Wecharacterize LA-semihypergroups(resp. HvLA-semigroup),neutro-LA-semihypergroups(resp.neutro-Hv -LA-semigroup) andanti-LA-semihypergroups(resp.anti-Hv -LA-semigroup)oforder2.
2. Preliminaries
Inthissectionwerecallsomebasicnotionsandresultsregardingto LAsemigroups, LA-semihypergroupsand Hv -LA-semigroups.
Agroupoid(H, ◦)isanon-emptyset H togetherwithamap ◦ : H × H → H called(binary)operation.Thestructure(H, ◦)iscalledagroupoid.
Definition2.1. [13]Agroupoid(H, ◦)iscalledan LA-semigroup,if(a◦b)◦c = (c ◦ b) ◦ a,forall a,b,c ∈ H
Example 2.2 [17]Let(Z, +)denotethecommutativegroupofintegersunder addition.Defineabinaryoperation ◦ in Z asfollows:
a ◦ b = b a, ∀a,b ∈ Z, where denotestheordinarysubtractionofintegers.Then(Z, ◦)isan LAsemigroup.
Definition2.3. ([4,6])Ahypergroupoid(H, ◦)isanon-emptyset H together withamap ◦ : H × H → P ∗ (H)called(binary)hyperoperation,where P ∗ (H) denotesthesetofallnon-emptysubsetsof H.Thehyperstructure(H, ◦)is calledahypergroupoidandimageofthepair(x,y)isdenotedby x ◦ y
If A and B arenon-emptysubsetsof H and x ∈ H,thenby A ◦ B, A ◦ x, and x ◦ B wemean A ◦ B =
Definition2.4. ([4,6])(1)Ahypergroupoid(H, ◦)iscalledasemihypergroup ifitsatisfiesthefollowing:
(A)(∀a,b,c ∈ H)(a ◦ (b ◦ c)=(a ◦ b) ◦ c)
(2)Ahypergroupoid(H, ◦)iscalledan Hv -semigroupifitsatisfiesthefollowing:
(WA)(∀a,b,c ∈ H)(a ◦ (b ◦ c) ∩ (a ◦ b) ◦ c) =
Definition2.5. ([9,10])(1)Ahypergroupoid(H, ◦)iscalledaLeftAlmost semihypergrouporan LA-semihypergroupifitsatisfiesthefollowing:
(LA)(∀a,b,c ∈ H)(
(2)Ahypergroupoid(H, ◦)iscalledaLeftAlmost Hv -semigroupor Hv -LAsemigroupifitsatisfiesthefollowing:
(WLA)(∀a,b,c ∈ H)(
Example 2.6 ([4,6])Let H beanonemptysetandforall x,y ∈ H,wedefine x ◦ y = H.Then(H, ◦)isasemihypergroupandan LA-semihypergroup.
Wedefinethecommutativelawon(H, ◦)asfollows:
4S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B. Davvaz
(C)(∀a,b ∈ H)(a ◦ b = b ◦ a).
Also,wedefinetheweakcommutativelawon(H, ◦)asfollows:
(WC)(∀a,b ∈ H)(a ◦ b ∩ b ◦ a = ∅).
Theorem2.7. Let (H, ◦) beacommutativehypergroupoid.Then (H, ◦) isan LA-semihypergroupifandonlyif (H, ◦) isasemihypergroup.
Proof. Let x,y,z ∈ H.Thenbycommutativitywehave
Example 2.8 Let H = {a,b}.Definethehyperoperation ◦ on H withthe followingCayleytable.
◦ ab
Then(H, ◦)isasemihypergroup,butisnotan LA-semihypergroup.
Example 2.9. Let H = {a,b}.Definethehyperoperation ◦ on H withthe followingCayleytable.
◦ ab
Then(H, ◦)isan LA-semihypergroup,butisnotasemihypergroup.
Theorem2.10. Let (H, ◦) beacommutativehypergroupoid.Then (H, ◦) is an Hv -LA-semigroupifandonlyif (H, ◦) isan Hv -semigroup
Proof. Let x,y,z ∈ H.Thenbycommutativitywehave
Example 2.11 Let H = {a,b}.Definethehyperoperation ◦ on H withthe followingCayleytable.
◦ ab
a aa
b bH
Then(H, ◦)isan Hv -semigroup,butisnotan Hv -LA-semigroup.
Example 2.12. Let H = {a,b}.Definethehyperoperation ◦ on H withthe followingCayleytable.
◦ ab
a ab
b Ha
Then(H, ◦)isan Hv -LA-semigroup,butisnotan Hv -semigroup.
3. OnNeutro-LA-semihypergroups,Neutro-Hv -LA-semigroups, Anti-LA-semihypergroupsandAnti-Hv -LA-semigroups
F.Smarandachegeneralizedtheclassicalalgebraicstructurestotheneutroalgebraicstructuresandantialgebraicstructures. neutro-sophicationof anitem C (thatmaybeaconcept,aspace,anidea,anoperation,anaxiom, atheorem,atheory,etc.)meanstosplit C intothreeparts(twopartsopposite toeachother,andanotherpartwhichistheneutral/indeterminacybetween theopposites),aspertinenttoneutrosophy {(<A>,<neutA>,<antiA>), orwithothernotation(T,I,F )},meaningcaseswhere C ispartiallytrue(T ), partiallyindeterminate(I),andpartiallyfalse(F ).While anti-sophication of C meanstototallydeny C (meaningthat C ismadefalseonitswhole domain)(fordetailseeSmarandache[21,22,24,25]).
Neutro-sophicationofanaxiom onagivenset X,meanstosplittheset X intothreeregionssuchthat:ononeregiontheaxiomistrue(wesaydegree oftruth T oftheaxiom),onanotherregiontheaxiomisindeterminate(wesay degreeofindeterminacy I oftheaxiom),andonthethirdregiontheaxiom isfalse(wesaydegreeoffalsehood F oftheaxiom),suchthattheunionof theregionscoversthewholeset,whiletheregionsmayormaynotbedisjoint, where(T,I,F )isdifferentfrom(1, 0, 0)andfrom(0, 0, 1).Anti-sophicationof anaxiomonagivenset X,meanstohavetheaxiomfalseonthewholeset X (wesaytotaldegreeoffalsehood F oftheaxiom),or(0, 0, 1).
Similarlyforthe neutro-sophicationofanoperation definedonagiven setX,meanstosplittheset X intothreeregionssuchthatononeregionthe operationiswell-defined(orinner-defined)(wesaydegreeoftruth T ofthe operation),onanotherregiontheoperationisindeterminate(wesaydegree ofindeterminacy I oftheoperation),andonthethirdregiontheoperationis outer-defined(wesaydegreeoffalsehood F oftheoperation),suchthatthe unionoftheregionscoversthewholeset,whiletheregionsmayormaynotbe disjoint,where(T,I,F )isdifferentfrom(1, 0, 0)andfrom(0, 0, 1).
Anti-sophicationofanoperation onagivenset X,meanstohavethe operationouter-definedonthewholeset X (wesaytotaldegreeoffalsehood F oftheaxiom),or(0, 0, 1).
Inthissectionwewilldefinethe neutro-LA-semihypergroups and antiLA-semihypergroups
Definition3.1.Neutrohyperoperation(Neutrohyperlaw) Aneutrohyperoperationisamap ◦ : H × H → P (U )where U isauniverseofdiscourse thatcontains H thatsatisfiesthebelowneutro-sophicationprocess.
Theneutro-sophication(degreeofwell-defined,degreeofindeterminacy,degreeofouter-defined)ofthehyperoperationisthefollowingneutrohyperoperation:
(NHA)(∃x,y ∈ H)(x ◦ y ∈ P ∗ (H))and(∃x,y ∈ H)(x ◦ y isanindeterminatesubset,or x ◦ y ̸∈ P ∗ (H)).
Theneutro-sophication(degreeoftruth,degreeofindeterminacy,degreeof falsehood)ofthe LA-semihypergroupaxiomisthefollowingneutrohyperLAsemihypergroup:
(NLA)(∃a,b,c ∈ H suchthat(a,b,c) =(x,x,x)or(a,b,c) =(x,y,x))
((a ◦ b) ◦ c =(c ◦ b) ◦ a)and(∃d,e,f ∈ H suchthat(d,e,f ) =(x,x,x)or
(d,e,f ) =(x,y,x))((d ◦ e) ◦ f =(f ◦ e) ◦ d or(d ◦ e) ◦ f =indeterminate,or (f ◦ e) ◦ d =indeterminate).
Also,Theneutro-sophication(degreeoftruth,degreeofindeterminacy,degree offalsehood)ofthe Hv -LA-semigroupaxiomisthefollowingneutrohyperHvLA-semigroup:
(NWLA)(∃a,b,c ∈ H suchthat(a,b,c) =(x,x,x)or(a,b,c) =(x,y,x))
((a ◦ b) ◦ c ∩ (c ◦ b) ◦ a = ∅)and(∃d,e,f ∈ H suchthat(d,e,f ) =(x,x,x)or (d,e,f ) =(x,y,x))((d ◦ e) ◦ f ∩ (f ◦ e) ◦ d = ∅ or(d ◦ e) ◦ f =indeterminate, or(f ◦ e) ◦ d =indeterminate).
Wedefinetheneutrohypercommutativity(NC)on(H, ◦)asfollows:
(NC)(∃a,b ∈ H)(a ◦ b = b ◦ a)and(∃c,d ∈ H)(c ◦ d = d ◦ c,or c ◦ d = indeterminate,or d ◦ c =indeterminate).
Also,wedefinetheneutrohyperweakcommutativity(NWC)on(H, ◦)asfollows:
(NWC)(∃a,b ∈ H)(a ◦ b ∩ b ◦ a = ∅)and(∃c,d ∈ H)(c ◦ d ∩ d ◦ c = ∅,or c ◦ d =indeterminate,or d ◦ c =indeterminate).
Now,wedefineaneutrohyperalgebraicsystem S =<H,F,A>,where H is asetorneutrosophicset, F isasetofthehyperoperations(hyperlaws),and A is thesetofhyperaxioms,suchthatthereexistsatleastoneneutrohyperoperation (neutrohyperlaw)oratleastoneneutrohyperaxiom,andnoantihyperoperation (antihyperlaw)andnoantihyperaxiom.
Definition3.2.Antihyperoperation {Antihyperlaw(AHL)}
Theantihyper-sophication(totallyouter-defined)ofthehyperoperation(hyperlaw)givesthedefinitionofantihyperoperationantihyperlaw(AHL):
(AHL)(∀x,y ∈ H)(x ◦ y ̸∈ P ∗ (H)).
Theantihyper-sophication(totallyfalse)ofthe LA-semihypergroup:
(ALA)(∀a,b,c ∈ Hsuchthat (a,b,c) =(x,x,x) or (a,b,c) =(x,y,x))((a◦
b) ◦ c) =(c ◦ b) ◦ a)
Also,theantihyper-sophication(totallyfalse)ofthe Hv -LA-semigroup:
(AWLA)(∀a,b,c ∈ Hsuchthat (a,b,c) =(x,x,x) or (a,b,c) =(x,y,x))((a◦ b) ◦ c) ∩ (c ◦ b) ◦ a = ∅)
Wedefinetheanticommutativity(AC)on(H, ◦)asfollows:
(AC)(∀a,b ∈ H with a = b)(a ◦ b = b ◦ a).
Also,wedefinetheantiweakcommutativity(AWC)on(H, ◦)asfollows:
6S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B. DavvazOn[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups7
(AWC)(∀a,b ∈ H with a = b)(a ◦ b ∩ b ◦ a = ∅).
Definition3.3. (1)Aneutro-LA-semihypergroupisanalternativeof LAsemihypergroupthathasatleastone(NLA),withnoantihyperoperation.
(2)Aneutro-Hv -LA-semigroupisanalternativeof Hv -LA-semigroupthat hasatleastone(WNLA),withnoantihyperoperation.
(3)Ananti-LA-semihypergroupisanalternativeof LA-semihypergroupthat hasatleastone(ALA)oran(AHL)axiom.
(4)Ananti-Hv -LA-semigroupisanalternativeof Hv -LA-semigroupthat hasatleastone(WALA)oran(AHL)axiom.
Remark 3.4 Ifhyperoperation ◦ inDefinition3.3isoperation,thenwehave neutro-LA-semigroupandanti-LA-semigroup.
Example 3.5 (i)Let H = {a,b,c} and U = {a,b,c,d} auniverseofdiscourse thatcontains H.Definetheneutrohyperoperation ◦ on H withthefollowing Cayleytable.
◦ abc a aaa
b aa {a,b,d}
c c ? H
Then(H, ◦)isaneutrosemihypergroup.
Example 3.6 (i)Let N bethesetofnaturalnumbersexcept0.DefinehyperLow ◦ on N by x ◦ y = { x 2 x2 +1 ,y}.Then(N, ◦)isananti-LA-semihypergroup.
(AHL)isvalid,sinceforall x,y ∈ N, x ◦ y ̸∈ P ∗ (N).Thus,(AHL)holds.
(ii)Let H = {a,b}.Definethehyperoperation ◦ on H withthefollowing Cayleytable.
◦ ab
a ba
b aa
Then(H, ◦)isacommutativeanti-LA-semihypergroup.
(iii)Let H = {a,b} Definethehyperoperation ◦ onHwiththefollowing Cayleytable.
◦ ab a aa b bb
Then(H, ◦)isananticommutativeanti-LA-semihypergroup.
Theorem3.7. (1) Every LA-semihypergroupisan Hv -LA-semigroup.
(2) Everyanti-Hv -LA-semigroupisananti-LA-semihypergroup.
(3) Everyneutro-Hv -LA-semigroupisaneutro-LA-semihypergrouporan anti-LA-semihypergroup.
(4) Every Hv -LA-semigroupisan LA-semihypergrouporaneutro-LAsemihypergrouporananti-LA-semihypergroup.
8S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B. Davvaz
Example 3.8. [9]TheConverseofpart(1)ofTheorem3.7isnottrue.Consider H = {x,y,z} anddefineahyperoperation ◦ on H bythefollowingtable: ◦ xyz x x {x,z} H y {x,z} xx z {x,y} x {x,z}
Then(H, ◦)isan Hv -LA-semigroupwhichisnotan LA-semihypergroupand notan Hv -semigroup.Indeed,wehave
Thus, z ◦ (y ◦ y) ∩ (z ◦ y) ◦ y = ∅.Therefore(H, ◦)isnotan Hv -semigroup. Also,
Thus,(H, ◦)isnotan LA-semihypergroup.
Example 3.9. TheConverseofpart(2)ofTheorem3.7isnottrue.Consider H = {x,y,z} anddefineahyperoperation ◦ on H bythefollowingtable:
◦ ab
a aH
b aa
Then(H, ◦)isacommutativeanti-LA-semihypergroupandisnotanti-Hv -LAsemigroup.
Let(H, ◦)isahypergroupoid.Thenthehyperoperation ∗ definedasfollows:
x ∗ y = y ◦ x, ∀x,y ∈ H. (H, ∗)iniscalleddualhypergroupoidof(H, ◦). Itiseasytoseethat:
Theorem3.10. (H, ◦) isasemihypergroupifandonlyif (H, ◦) isasemihypergroup.
Theorem3.10for LA-semihypergroupsisnottrue.
Example 3.11. Let(H = {a,b}, ◦)bean LA-semihypergroupoforder2when thehyperoperation ◦ definedon H withthefollowingCayleytable.
◦ ab a HH
b aa
But(H, ∗)isnotan LA-semihypergroup.
Proposition3.12. Let (H, ◦H ) and (G, ◦G) betwoneutro-LA-semihypergroups (resp.anti-LA-semihypergroups).Then (H×G, ∗) isaneutro-LA-semihypergroup (resp.anti-LA-semihypergroups),where ∗ isdefinedon H × G by:forany
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups9
(x1,y1), (x2,y2) ∈ H × G
(x1,y1) ∗ (x2,y2)=(x1 ◦H x2,y1 ◦G y2)
Notethatif(H, ◦)isaneutro-LA-semihypergroup,thenifthereisanonemptyset H1 ⊆ H, suchthat(H1, ◦)isan LA-semihypergroup,wecallit Smarandache LA-semihypergroup
Suppose(H, ◦H )and(G, ◦G)betwohypergroupoids.Afunction f : H → G iscalledahomomorphismif,forall a,b ∈ H,f (a ◦H b)= f (a) ◦G f (b). Proposition3.13. Let (H, ◦H ) bean LA-semihypergroup(Hv -LA-semigroup), (G, ◦G) beaneutro-LA-semihypergroup(neutro-Hv -LA-semigroup)and f : H → G beahomomorphism.Then (f (H), ◦G) isan LA-semihypergroup(HvLA-semigroup),where f (H)= {f (h): h ∈ H}
Proof. Assumethat(H, ◦H )isan LA-semihypergroup(Hv -LA-semigroup)and x,y,z ∈ f (H) Thenthereexist h1,h2,h3 ∈ f (H)suchthat f (h1)= x,f (h2)= y and f (h3)= z, andsowehave
y) ◦G z.
Definition3.14. Let(H, ◦H )and(G, ◦G)betwohypergroupoids.Abijection f : H → G isanisomorphismifitconservesthemultiplication(i.e. f (a ◦H b)= f (a) ◦G f (b))andwrite H ∼ = G. Abijection f : H → G isanantiIsomorphism
ifforall a,b ∈ H,f (a ◦H b) = f (b) ◦G f (a) Abijection f : H → G isa neutroIsomorphismifthereexist a,b ∈ H,f (a ◦H b)= f (b) ◦G f (a), i.e.degree oftruth(T ), thereexist c,d ∈ H,f (c◦H d)or f (c)◦G f (d)areindeterminate,i.e. degreeofIndeterminacy(I), andthereexist e,h ∈ H,f (e ◦H h) = f (e) ◦G f (h), i.e.degreeoffalsehood(F ), where(T,I,F )aredifferentfrom(1, 0, 0)and (0, 0, 1), and T,I,F ∈ [0, 1]
Proposition3.15. Let (Hi, ◦),where i ∈ Λ,beafamilyofneutro-LA-semihypergroups (neutro-Hv -LA-semigroups).Then ( i∈Λ Hi, ◦) isaneutro-LA-semihypergroup (neutro-Hv -LA-semigroup)orananti-LA-semihyperGgroup(anti-Hv -LA-semigroup) oran LA-semihypergroups(Hv -LA-semigroup).
Proof. Itistrivial.
10S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
Proposition3.16. Let (Hi, ◦) beafamilyofanti-LA-semihypergroupsn(antiHv -LA-semigroups),where i ∈ Λ.Then ( i∈Λ Hi, ◦) isananti-LA-semihypergroup (anti-Hv -LA-semigroup).
Proof. Itistrivial. □
Notethatif(H, ◦)isaneutro-LA-semihypergroup(neutro-Hv -LA-semigroup) and(G, ◦)isananti-LA-semihypergroup(anti-Hv -LA-semigroup),then(H ∩ G, ◦)isananti-LA-semihypergroupb(anti-Hv -LA-semigroup).Also,let(H, ◦H ) beaneutro-LA-semihypergroup(neutro-Hv -LA-semigroup)and(G, ◦G)bean anti-LA-semihypergroup(anti-Hv -LA-semigroup)and H ∩ G = ∅.Definehyperoperation ◦ on H G by:
x ◦ y =
x ◦H y if x,y ∈ H; x ◦G y if x,y ∈ G; {x,y} otherwise.
Then(H G, ◦)isaneutro-LA-semihypergroup(neutro-Hv -LA-semigroup), butitisnotananti-LA-semihypergroup(anti-Hv -LA-semigroup).
Proposition3.17. Let (H, ◦) beananti-LA-semihypergroup(anti-Hv -LAsemigroup)and e ∈ H.Then (H ∪{e}, ∗) isaneutro-LA-semihypergroup (neutro-Hv -LA-semigroup),where ∗ isdefinedon H ∪{e} by:
x ∗ y = x ◦H y if x,y ∈ H; {e,x,y} otherwise.
Proof. Itisstraightforward.
4. Characterizationofgroupoidsoforder2
Inthenextresultsweusetheoperation ◦ : H × H → H. Inthissection,let ◦ beanoperationon H = {a,b} and(A11,A12,A21,A22) insideofthebelowCayleytable:
◦ ab
a A11 A12
b A21 A22
Lemma4.1. Let (H = {a,b}, ◦H ) and (G = {a′ ,b′ }, ◦G) betwogroupoidswith theCayleytables (h11,h12,h21,h22) and (g11,g12,g21,g22) respectively.Then
H ∼ = G ifandonlyifforall i,j ∈{1, 2},
gij = h′ ij or
gij = G \ k′ ij , where k12 = h21,k21 = h12,k11 = h22 and k22 = h11
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups11
Lemma4.2. Anycommutativesemigroupoforder2isan LA-semiGrouop.
Theorem4.3. Every LA-semigroupoforder2iscommutative.
Proof. Let(H = {a,b}, ◦)bean LA-semigroup.Wehave
(1)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(2)(a ◦ a) ◦ b =(b ◦ a) ◦ a.
Let a ◦ b = a.Thenby(1), a =(b ◦ b) ◦ a. If b ◦ b = b,thenweobtain b ◦ a = a, andso(H, ◦)iscommutative.Sowehave b ◦ b = a. Hence a ◦ a = a andby(2), a =(b ◦ a) ◦ a.If b ◦ a = b,thenweobtain a = b.andthisisacontradiction. Thus, b ◦ a = a,andso(H, ◦)iscommutative.
Now,let a◦b = a.Thenbythesimilarwayweobtain(H, ◦)iscommutative. □
Corollary4.4. Any LA-semigroupoforder2iscommutative.
Corollary4.5. Any LA-semigroupoforder2isasemigroup.
Corollary4.6. ThereisnoNon-commutative LA-semigroupoforder2.
Theorem4.7. [8] Thereexist5semigroups (H = {a,b}, ◦i), i =1, , 5,of order2bythefollowingCayleytable(uptoisomorphism).
Theorem4.8. Thereexist3 LA-semigroupsoforder2(uptoisomorphism).
Proof. ByCorollary5.2,theonly LA-semigroupsoforder2arecommutative semigroupsoforder2,andso(H, ◦i),for i =1, , 3,fromTheorem4.7are LA-semigroupsoforder2(uptoisomorphism).
Theorem4.9. Thereexist5anti-LA-semigroupsoforder2(uptoisomorphism).
Proof. Let(H = {a,b}, ◦)beananti-LA-semigroup.ThenWehave
(1)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(2)(a ◦ a) ◦ b =(b ◦ a) ◦ a.
Also,ThenwehaveoneofthefollowingCases:
(3)(a ◦ b = a & b ◦ a = a),
(4)(a ◦ b = a & b ◦ a = b),
(5)(a ◦ b = b & b ◦ a = a),
(6)(a ◦ b = b & b ◦ a = b).
Case3:By(1)and(2)wehave
(7) a =(b ◦ b) ◦ a,
(8)(a ◦ a) ◦ b = a ◦ a.
12S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
If a ◦ a = a,then(8)impliesthat a ◦ b = a,whichisacontradiction.If a ◦ a = b, then(8)impliesthat b ◦ b = b,andso b ◦ b = a.Weset ◦1 := ◦ andtherefore wewehaveananti-LA-semigroupasfollows:
◦1 ab a ba
b aa
Case4:By(1)and(2)wehave
(9) a =(b ◦ b) ◦ a, (10)(a ◦ a) ◦ b = b.
If a ◦ a = b,then(8)impliesthat b ◦ b = b,andso b ◦ b = a.Weset ◦2 := ◦ andthereforewewehaveananti-LA-semigroupasfollows:
◦2 ab
a ba
b ba
If a ◦ a = a,thenby(9) b ◦ b = a so b ◦ b = b.Weset ◦3 := ◦ andthereforewe wehaveananti-LA-semigroupasfollows:
◦3 ab
a aa
b bb
Case5:By(1)and(2)wehave
(11) b ◦ b =(b ◦ b) ◦ a, (12)(a ◦ a) ◦ b = a ◦ a.
If a ◦ a = a,then b ◦ b = a or b ◦ b = b.Let b ◦ b = a.Thenby(11) a ◦ a = b andthisisacontradiction.If b ◦ b = b,thenweset ◦4 := ◦ andthereforewe haveananti-LA-semigroupasfollows:
◦4 ab
a ab
b ab
If a ◦ a = b,then(12)impliesthat b ◦ b = a.Weset ◦5 := ◦ andthereforewe haveananti-LA-semigroupasfollows:
◦5 ab
a bb
b aa
Case6:By(1)and(2)wehave
(13) b ◦ b =(b ◦ b) ◦ a, (14)(a ◦ a) ◦ b = b.
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups13
If a ◦ a = b,then(14)impliesthat b ◦ b = a.Weset ◦6 := ◦ andthereforewe haveananti-LA-semigroupasfollows:
◦6 ab
a bb
b ba
If a ◦ a = a,then(14)impliesthat a ◦ b = a,whichisacontradiction.(H, ◦1) ∼ = (H, ◦6),andsowehaveanti-LA-semigroups(H, ◦i),for i =1, , 5,oforder
2. □
Corollary4.10. Thereexists1commutativeanti-LA-semigroupoforder2 (uptoisomorphism).
Corollary4.11. Thereexist4Non-commutativeanti-LA-semigroupsoforder 2(uptoisomorphism).
Theorem4.12. Everyneutro-LA-semigroupoforder2isNon-commutative.
Proof. Let(H = {a,b}, ◦)beacommutativeneutro-LA-semigroup.ThenWe have
(1)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(2)(a ◦ a) ◦ b =(b ◦ a) ◦ a,
(3) a ◦ b = b ◦ a, or
(4)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(5)(a ◦ a) ◦ b =(b ◦ a) ◦ a,
(6) a ◦ b = b ◦ a.
Case2:If a ◦ b = a = b ◦ a,thenwehave
(7) a =(b ◦ b) ◦ a,
(8)(a ◦ a) ◦ b = a ◦ a, or
(9) a =(b ◦ b) ◦ a,
(10)(a ◦ a) ◦ b = a ◦ a. Now,(7)impliesthat b ◦ b = a and a ◦ a = b,whichisacontradictionwith(8). Also,(10)impliesthat a ◦ a = b and b ◦ b = a andthisisacontradictionwith
(9)
Case2:If a ◦ b = b = b ◦ a,thenbythesimilarwayofCase2weprovethat thereisnocommutativeneutro-LA-semigroupoforder2. □ Theorem4.13. Thereexist2neutro-LA-semigroupsoforder2(uptoisomorphism).
Proof. Let(H = {a,b}, ◦)beaneutro-LA-semigroup.ThenbyTheorem4.12 (H = {a,b}, ◦)isaNon-commutativeneutro-LA-semigroup.Now,wehave
14S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
(1)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(2)(a ◦ a) ◦ b =(b ◦ a) ◦ a, or
(3)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(4)(a ◦ a) ◦ b =(b ◦ a) ◦ a.
Case1:If a ◦ b = a and b ◦ a = b,thenby(1),(2),(3)and(4)weobtain
(5) a =(b ◦ b) ◦ a,
(6)(a ◦ a) ◦ b = b, or
(7) a =(b ◦ b) ◦ a, (8)(a ◦ a) ◦ b = b.
Let(5)and(6)betrue.If a ◦ a = a,then a ◦ b = a andthisisacontradiction.
If a ◦ a = b,thenusing(6), b ◦ b = b.Weset ◦1 := ◦ andthereforewehavea neutro-LA-semigroupasfollows:
◦1 ab a ba b bb
Let(7)and(8)betrue.If b ◦ b = b,then b ◦ a = a andthisisacontradiction.
If b ◦ b = a by(7), a ◦ a = a.Weset ◦2 := ◦ andthereforewehaveaneutroLA-semigroupasfollows:
◦2 ab a aa
b ba
Case2:If a ◦ b = b and b ◦ a = a,thenby(1),(2),(3)and(4)weobtain
(9) b ◦ b =(b ◦ b) ◦ a, (10)(a ◦ a) ◦ b = a ◦ a, or
(11) b ◦ b =(b ◦ b) ◦ a, (12)(a ◦ a) ◦ b = a ◦ a.
Let(9)and(10)betrue.If a ◦ a = a,then a ◦ b = a andthisisacontradiction.
If a ◦ a = b by(10), b ◦ b = b.Weset ◦3 := ◦ andthereforewehavea neutro-LA-semigroupasfollows:
◦3 ab
a bb
b ab
Let(11)and(12)betrue.If b ◦ b = b,then b ◦ a = b andthisisacontradiction.
If b ◦ b = a by(11), a ◦ a = a.Weset ◦4 := ◦ andthereforewehavea
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups15
neutroLA-semigroupasfollows:
◦4 ab a ab b aa Itisnottodifficulttoseethat(H, ◦1) ∼ = (H, ◦2)and(H, ◦3) ∼ = (H, ◦4) Thereforethereexist2neutro-LA-semigroupsoforder2uptoisomorphism. □
Now,bytheaboveresultsinthissection,weobtainthenumberofanti-LAsemigroups,neutro-LA-semigroupsand LA-semigroupsoforder2(classesup toisomorphism).
Table1. Classificationofthegroupoidsoforder2
CAC
LA-semigroups30
neutro-LA-semigroups02 Anti-LA-semigroup14
5. Characterizationofhypergroupoidsoforder2
Inthenextresultsweusethehyperoperationinsteadofneutrohyperoperation.
Inthissection,let ◦ beahyperoperationon H = {a,b} and(A11,A12,A21,A22) insideofthebelowCayleytable:
◦ ab a A11 A12
b A21 A22
Lemma5.1. Let (H = {a,b}, ◦H ) and (G = {a′ ,b′ }, ◦G) betwohypergroupoids withtheCayleytables (H11,H12,H21,H22) and (G11,G12,G21,G22) respectively.Then H ∼ = G ifandonlyifforall i,j ∈{1, 2}, Gij = H ′ ij or
Gij = K ′ ij if Kij = H; G \ K ′ ij if Kij = H.
where K11 = H22,K12 = H12,K21 = H21 and K22 = H11
Proof. Itisstraightforward. □
Lemma5.2. Let (H, ◦) beagroupoidoforder2. (H, ◦) isan LA-semihypergroup ifandonlyifitisacommutativesemigroup.
Theorem5.3. If (H, ◦) isananti-Hv -LA-semigroupoforder2,then ◦ isan operationand (H, ◦) isanti-LA-semigroup.
16S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
Theorem5.4. Thereexistsoneantiweakcommutative LA-semihypergroupof order2,uptoisomorphism.
Proof. Let(H = {a,b}, ◦)beanantiweakcommutative LA-semihypergroup.
Thenwehave(a ◦ b = a & b ◦ a = b)or(a ◦ b = b & b ◦ a = a) Suppose a ◦ b = a and b ◦ a = b. Since(H = {a,b}, ◦)isan LA-semihypergroup,weget
(1)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(2)(a ◦ a) ◦ b =(b ◦ a) ◦ a. Thus,by(1)and(2)weobtain
(3) a =(b ◦ b) ◦ a,
(4)(a ◦ a) ◦ b = b.
Now,if b ◦ b = a,then(3)impliesthat a ◦ a = a. So(4)impliesthat a ◦ b = b andthisisacontradiction.If b ◦ b = b,then(3)impliesthat b ◦ a = a andthis isacontradiction.Finally,if b ◦ b = H,then(3)impliesthat a = H andthis isacontradiction.
Let a ◦ b = b and b ◦ a = a. Thenusing(1)and(2)wehave
(5) b ◦ b =(b ◦ b) ◦ a,
(6)(a ◦ a) ◦ b = a ◦ a.
If a ◦ b = b and b ◦ a = a,thenusing(5)and(6),weget b ◦ b = a, b ◦ b = b, a ◦ a = a or a ◦ a = a.Therefore b ◦ b = H = a ◦ a. □
Theorem5.5. Thereexist3anticommutative LA-semihypergroupsoforder2, uptoisomorphism.
Proof. Let(H = {a,b}, ◦)beanantiweakcommutative LA-semihypergroup. Thenwehave(a ◦ b = b ◦ a. Thenwehave
(1)(a ◦ b = a & b ◦ a = b),
(2)(a ◦ b = b & b ◦ a = a),
(3)(a ◦ b = a & b ◦ a = H),
(4)(a ◦ b = b & b ◦ a = H),
(5)(a ◦ b = H & b ◦ a = a),
(6)(a ◦ b = H & b ◦ a = b).
ByproofofTheorem5.4,case(1)cannotadmittingan LA-semihypergroup. ByproofofTheorem5.4,case(2)admittinga LA-semihypergroup(H, ◦1)with thefollowingCayleytable: ◦1 ab
Hb b aH
Case3:Let a ◦ b = a and b ◦ a = H. Since(H = {a,b}, ◦)isan LAsemihypergroup,so
(7)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(8)(a ◦ a) ◦ b =(b ◦ a) ◦ a.
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups17
Thus,by(3),(7)and(8)weobtain
(9) a =(b ◦ b) ◦ a, (10)(a ◦ a) ◦ b = H.
Now,if b ◦ b = a,then(9)impliesthat a ◦ a = a. So(10)impliesthat a ◦ b = H, whichisacontradiction.If b ◦ b = b,then(9)impliesthat b ◦ a = a andthisis acontradiction.Finally,if b ◦ b = H,then(9)impliesthat a = H,whichisa contradiction.
Case4:Let a ◦ b = b and b ◦ a = H. Thusby(4),(7)and(8)weobtain
(11) b ◦ b =(b ◦ b) ◦ a, (12)(a ◦ a) ◦ b = H.
Now,if b ◦ b = a,then(11)impliesthat a ◦ a = a. So(12)impliesthat a ◦ b = H, whichisacontradiction.If b ◦ b = b,then(11)impliesthat b ◦ a = b andthis isacontradiction.Sowehave b ◦ b = H.By(4)and(12)weobtain a ◦ a = b or a ◦ a = H.Thereforeweobtaintwohyperoperationsandwecallthesetwo hyperoperation ◦2 and ◦3,respectivelyasfollows:
◦2 ab
Case5:Let a ◦ b = H and b ◦ a = a. Thus,by(4),(7)and(8)weobtain
(13) H =(b ◦ b) ◦ a, (14)(a ◦ a) ◦ b = a ◦ a.
Now,if a ◦ a = b,then(14)impliesthat b ◦ b = b. So(13)impliesthat b ◦ a = H, whichisacontradiction.If a ◦ a = a,then(14)impliesthat a ◦ b = a andthis isacontradiction.Sowehave a ◦ a = H.By(5)and(13)weobtain(b ◦ b = a or b ◦ b = H.Thereforeweobtaintwohyperoperationsandwecallthesetwo hyperoperation ◦4 and ◦5,respectivelyasfollows:
◦4 ab a HH b aH
◦5 ab a HH b aa
Case6:Let a ◦ b = H & b ◦ a = b. Thusby(4),(7)and(8)weobtain
(15) H =(b ◦ b) ◦ a,
(16)(a ◦ a) ◦ b = b.
Now,if a ◦ a = b,then(16)impliesthat b ◦ b = b. So(15)impliesthat b ◦ a = H andthisisacontradiction.If a ◦ a = a,then(16)impliesthat a ◦ b = a andthis isacontradiction.Sowehave a ◦ a = H.By(5)and(16)weobtain H = b, whichisacontradiction.
Itiseasytoseethat(H, ◦2) ∼ = (H, ◦4)and(H, ◦3) ∼ = (H, ◦5). Therefore (H, ◦1),(H, ◦2)and(H, ◦4)areanticommutative LA-semihypergroupsoforder 2. □
18S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
Corollary5.6. Thereisnoanticommutative LA-semigroupoforder2. Theorem5.7. Thereisnoproperanti-Hv -LA-semigroupoforder2.
Proof. Let(H = {a,b}, ◦)beaproperanti-Hv -LA-semigroup.ThenWehave
(1)(a ◦ b) ◦ b ∩ (b ◦ b) ◦ a = ∅,
(2)(a ◦ a) ◦ b ∩ (b ◦ a) ◦ a = ∅.
Sinceanti-Hv -LA-semigroup(H = {a,b}, ◦)isproper,wehaveoneofthe followingcases:
(3) a ◦ a = H,
(4) a ◦ b = H,
(5) b ◦ a = H,
(6) b ◦ b = H.
Case3:If b◦a = a or b◦a = H,then(b◦a)◦a = H andthisisacontradiction with(2).If b ◦ a = b,then(b ◦ a) ◦ a = b and(a ◦ a) ◦ b = H ◦ b.Thus,by(2) wehave a ◦ b = a and b ◦ b = a. Then(a ◦ b) ◦ b = a and(b ◦ b) ◦ a = H,which isacontradictionwith(1).
Case4:Then(a ◦ b) ◦ b = H andthisisacontradictionwith(1).
Case5:Then(b ◦ a) ◦ a = H,whichisacontradictionwith(2).
Case6:If a◦b = b or a◦b = H,then(a◦b)◦b = H andthisisacontradiction with(2).If a ◦ b = a,then(a ◦ b) ◦ b = a and(b ◦ b) ◦ a = H ◦ a.Soby(1)we have a ◦ a = b and b ◦ a = b. Then(b ◦ a) ◦ a = b and(a ◦ a) ◦ b = H,whichis acontradictionwith(2).
Theorem5.8. Thereexist4commutativeanti-LA-semihypergroupsoforder 2.
Proof. Let(H = {a,b}, ◦)beacommutativeanti-LA-semihypergroup.Then Wehave
(1)(a ◦ b) ◦ b =(b ◦ b) ◦ a,
(2)(a ◦ a) ◦ b =(b ◦ a) ◦ a,
(3) a ◦ b = b ◦ a.
Now,wehave3Cases:
Case1:Let a ◦ b = a = b ◦ a. then
(4)(a =(b ◦ b) ◦ a,
(5)(a ◦ a) ◦ b = a ◦ a.
◦2 ab a ba b aa
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups19
If a ◦ a = H,thenby(5)wehave
(6) H ◦ b = H, since a ◦ b = a, using(6),wehave H ◦ b = a.Thus, b ◦ b = b. Thenwehavea commutativeanti-LA-semihypergroupwiththefollowingCayleytable.
◦3 ab
a Ha
b ab
Case2:Let a ◦ b = b = b ◦ a. Inthesimilarwayweobtain3commutative anti-LA-semihypergroupsisomorphismwithanti-LA-semihypergroupsinCase 1.
Case3:Let a ◦ b = H = b ◦ a, by(1)and(2)wehave
(7) H =(b ◦ b) ◦ a,
(8)(a ◦ a) ◦ b = H.
Thus,(7)and(8)implythat a◦a = H = b◦b, a◦a = a and b◦b = b.So a◦a = b and b ◦ b = a.Thereforewehaveacommutativeanti-LA-semihypergroupwith thefollowingCayleytable.
◦4 ab
a bH
b Ha
Thenwehave4commutativeanti-LA-semihypergroupsoforder2uptoisomorphism. □
Now,wehaveageneralizationofTheorem4.12.
Theorem5.9. Thereisnocommutativeneutro-Hv -LA-semigroupsoforder
2.
Proof. Let(H = {a,b}, ◦)beaweakcommutativeneutro-Hv -LA-semigroup. Thenwehave
(1)(a ◦ b) ◦ b ∩ (b ◦ b
20S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
(9) a ∩ (b ◦ b) ◦ a = ∅,
(10)(a ◦ a) ◦ b ∩ a ◦ a = ∅
Now,(7)impliesthat b ◦ b = a and a ◦ a = b andthisisacontradictionwith
(8) Also,(10)impliesthat a ◦ a = b and b ◦ b = a,whichisacontradiction with(9)
Case3:If a ◦ b = b = b ◦ a,thenbythesimilarwayofCase2wecanprove thatthereisnoaweakcommutativeneutro-Hv -LA-semigroupoforder2. □
Theorem5.10. Thereexist2weakcommutativeneutro-Hv -LA-semigroupsof order2.
Proof. Let(H = {a,b}, ◦)beaweakcommutativeneutro-Hv -LA-semigroup. Thenwehave
(1)(a ◦ b) ◦ b ∩ (b ◦ b) ◦ a = ∅,
(2)(a ◦ a) ◦ b ∩ (b ◦ a) ◦ a = ∅
Theorem5.9andweakcommutativityimplythat
b ◦ a = a ◦ b = H, or
(6) a ◦ b = b ◦ a = H.
Now,wehavethefollowingCases:
Case1:Let(1),(2)and(5)betrue.Then H ∩ (b ◦ b) ◦ a = ∅ andthisisa contradiction.
Case2:Let(1),(2)and(6)betrue.By(6)and(1)wehave b ◦ b = a. Using(6)wehave a ◦ b = a or a ◦ b = b.If a ◦ b = a,thenby(1)weobtain a ◦ a = b. Thus,wehaveaweakcommutativeneutro-Hv -LA-semigroupwith thefollowingCayleytable.
◦ ab
a ba
b Ha
If a ◦ b = b,thenby(1)weobtain a ◦ a = b. Sowehaveaweakcommutative neutro-Hv -LA-semigroupwiththefollowingCayleytable.
◦ ab
a bb
b Ha
Case3:Let(3),(4)and(5)aretrue.By(5)and(4)wehave a ◦ a = b. by(5) wehave b ◦ a = a or b ◦ a = b.If b ◦ a = a,thenby(4)weobtain b ◦ b = a. Sowe
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups21
haveaweakcommutativeneutro-Hv -LA-semigroupwiththefollowingCayley table.
◦ ab
a bH
b aa
If b ◦ a = b,thenby(4)weobtain b ◦ b = a. Thenwehaveaweakcommutative neutro-Hv -LA-semigroupwiththefollowingCayleytable.
◦ ab
a bH
b aa
Case1:Let(3),(4)and(6)aretrue.Then(a ◦ a) ◦ H ◦ a = ∅ Thisisa contradiction.
Theorem5.11. Thereexistsoneantiweakcommutative LA-semihypergroupof order2,uptoisomorphism.
Proof. Let(H = {a,b}, ◦)beanantiweakcommutative LA-semihypergroup. ThenWehave
Using(3)weget a ◦ b = H and b ◦ a = H. Then
(4) a ◦ b = a,b ◦ a = b, or
(5) a ◦ b = b,b ◦ a = a. If(4)istrue,then
(6) a =(b ◦ b) ◦ a, (7)(a ◦ a) ◦ b = b.
If b ◦ b = a or b ◦ b = b or b ◦ b = H,thenwehaveacontradiction. So,let(5)betrue.Then
(8) b ◦ b =(b ◦ b) ◦ a,
(9)(a ◦ a) ◦ b = a ◦ a. So,if b ◦ b = a,then a ◦ a = b. By(9)wehave b = a,whichisacontradiction.If b ◦ b = b,then b ◦ a = b thisisacontradictionwith(5).If a ◦ a = b or a ◦ a = a, thenbythesimilarwaywehaveacontradiction.Thus, b ◦ b = H,andso a ◦ a = H. Thereforewehaveanantiweakcommutative LA-semihypergroup withthefollowingCayleytable.
◦ ab a Hb b aH
22S.Mirvakili,A.Rezaei,O,Al-Shanqiti,F.Smarandache,B.Davvaz
Usingtheaboveresultsinthesections4and5,wecancharacterize45 non-isomorphicclasseshypergroupoidsoftheorder2.Weobtainanti-LAsemihypergroups,neutro-LA-semihypergroups, LA-semihypergroups,anti-HvLA-semigroups,neutro-Hv -LA-semigroups, Hv -LA-semigroupsoforder2(classes uptoisomorphism).
Table2. Classificationofthehypergroupoidsoforder2
CWCACAWC
LA-semihypergroups91131
Hv -LA-semigroups1330203
Neutro-LA-semihypergroup29103
Neutro-Hv -LA-semigroup0275
Anti-LA-semihypergroup313188
Anti-Hv -LA-semigroup1144
Compliancewithethicalstandards
Conflictofinterest Theauthorsdeclarethattheyhavenoconflictof interest.
Humanparticipantsand/oranimals Thisarticledoesnotcontainany studieswithhumanparticipantsoranimalsperformedbytheauthors.
Authors’contributions Allauthorsreadandapprovedthefinalmanuscript.
References
1.M.Akram,N.YaqoobandM.Khan, On(m,n)-idealsin LA-semigroups,AppliedMathematicalSciences,7(44)(2013)2187–2191.
2.A.A.A.Agboola, Introductiontoneutrogroups,InternationalJournalofNeutrosophic Science,6(1)(2020)41–47.
3.J.R.Cho,J.JezekandT.Kepka, Paramedialgroupoids,CzechoslovakMathematical Journal,49(2)(1999)277–290.
4.P.Corsini, Prolegomenaofhypergrouptheory,AvianiEditor,(1993).
5.P.Corsini,V.Leoreanu-Fotea, Applicationsofhyperstruturetheory,KluwerAcademic Publishers,(2003).
6.B.Davvaz, Semihypergrouptheory,Elsevier,(2016).
7.B.DavvazandT.Vougiouklis, Awalkthroughweakhyperstructures; Hv -structure,World ScientificPublishingCo.Pte.Ltd.,Hackensack,NJ,(2019)
8.A.Distler, Classificationandeumerationoffinitesemigroups,Ph.D.Thesis,University ofStAndrews,(2010).
9.M.Gulistan,N.YaqoobandM.Shahzad, Anoteon Hv -LA-semigroups,U.P.B.Sci. Bull.,SeriesA,77(33)(2015)93–106.
10.K.HilaandJ.Dine, Onhyperidealsinleftalmostsemihypergroups,ISRNAlgebra, ArticleID953124(2011)8pages.
11.P.Holgate, Groupoidssatisfyingasimpleinvertivelaw,TheMathematicsStudent,61(14)(1992)101–106.
On[Neutro](Anti)LA-semihypergroupsand[Neutro](Anti)Hv -LA-semigroups23
12.J.Jantosciak, Transpositionhypergroups:Noncommutativejoinspaces,J.Algebra,187 (1997)97–119.
13.M.A.KazimandM.Naseeruddin, Onalmostsemigroups,TheAligarhBulletinofMathematics,2(1972)1–7.
14.M.KhanandN.Ahmad, Characterizationsofleftalmostsemigroupsbytheirideals, JournalofAdvancedResearchinPureMathematics,2(3)(2010)61–73.
15.S.Mirvakili,F.SmarandacheandA.Rezaei, Onneutro-Hv -semigroups,JournalofIntelligent&FuzzySystems,42(2022)1289–299.
16.F.Marty, Surunegeneralizationdelanotiondegroupe,HuitiemecongressdeMathematiciens,Scandinaves,Stockholm,(1934)45–49.
17.Q.MushtaqandS.M.Yusuf, On LA-semigroups,TheAligarhBulletinofMathematics, 8(1978)65–70.
18.Q.MushtaqandS.M.Yusuf, Onlocallyassociative LA-semigroups,TheJournalofNaturalSciencesandMathematics,19(1)(1979)57–62.
19.P.V.ProticandN.Stevanovic, AG-testandsomegeneralpropertiesofAbel-Grassmann’s groupoids,PureMathematicsandApplications,6(4)(1995)371–383.
20.A.Rezaei,F.Smarandache,S.Mirvakili, Applicationsof(neutro/anti)sophicationsto semihypergroups,JournalofMathematicsVolume2021,ArticleID6649349,7pages.
21.F.Smarandache, Neutroalgebraisageneralizationofpartialalgebra,InternationalJournalofNeutrosophicScience(IJNS),2(1)(2020)8–17.
22.F.Smarandache, Introductiontoneutroalgebraicstructuresandantialgebraic structures, inAdvancesofStandardandNonstandardNeutrosophicTheories,PonsPublishing HouseBrussels,Belgium,Ch.6,(2019)240–265.
23.F.Smarandache, Introductiontoneutroalgebraicstructuresandantialgebraic structures (revisited),NeutrosophicSetsandSystems,31(2020)1–16.
24.F.Smarandache, Neutrosophy/Neutrosophicprobability,set,andlogic,AmericanResearchPress,(1998).
25.F.Smarandache, Extensionofhypergraphton-superhypergraphandtoplithogenicnsuperhypergraph,andextensionofhyperalgebrato n-ary(classical-/neutro-/anti-) hyperalgebra,neutrosophicsetsandsystems,33(2020)290–296.
26.N.StevanovicandP.V.Protic, CompositionofAbel-Grassmann’s3-bands,NoviSad JournalofMathematics,34(2)(2004)175–182.
27.T.Vougiouklis, Hyperstructuresandtheirrepresentations,HadronicPress,Inc.(1994) (seepage31).
28.N.Yaqoob,P.CorsiniandF.Yousafzai, Onintra-regularleftalmostsemihypergroups withpureleftidentity,JournalofMathematics,ArticleID510790(2013)10pages.