Coronal Loops for Solo Violin

Page 1

Coronal Loops

Violin

for Solo Violin

MICHAEL-THOMAS FOUMAI (2010)

q=90 Duration: 6:00                                          

1

p leggiero

                                                              

3

mf

                                        p

re

6

co

                                                 

lS

8

                                                       

sa

11

ru

mf

f

18



Pe

                                                        

15

p

f

                                                    

mp

mf

p

                                    

21

25



     

 

  

fp

      

sf mp

 

          

mf

                

f

© Copyright 2011 Michael-Thomas Foumai. All Rights Reserved (ASCAP) www.michaelfoumai.com


3                                                 

28

mp

f

più f

sul pont.

                                                               

32

p legato

mf

p

                                                              

36

mf

f

                                                 

re

ord.

co

40

p

dim.

f

lS

 s.p.   s.p. (ord.) ord.                                             f poco

sa

 44                  mp   

mf

s.p.

p

f

p

ru

ord.                                                

47

f

fp

mf

f

mf

Pe

                                               

50

f

p sub.

f

ord.                                                           

53

s.p.

p

f mp

cresc.

f

                                                                            sf sf sf sf cresc.            59                                                  56


4

senza misura      

accel.

                     61                         3-5x

   s.p.

 ff

 

ff

 

 

   sfp

ord.  

sfp

 

  ff sfp

 

 

ff

sfp

   

  ff

sfp

ff

        ord.        

  

   



sfp

 ord.    

sfp

  ff

 

sfp

 s.p.    

sfp

s.p.

ff

sfz

sfp

re



    

s.p.     

ff

q=90                               sf

co

     ord.

  

f

lS

s.p.                                                      s.p.      70   ord.      ord.                                                      p

ru

sa

65

                        

Pe

75

       fp

                                        mf

77

                  

79

f

                      mf cresc.

                                                    

81



f


               (ossia: arco only)

83

più f

   (x=x)                                                                           

5

  s.p.                        

          (x=x) ord.                                                                sf sf sf  s.p. (e=e) sim. 94                                                                                                               

re

89

sf

s.p.

lS

ord.

co

   ord.                                                                                                  sf  sf      sf   sf sf sf sf sf sf sf sf sf

100

ord.

s.p.

106

sfp

sfp

sfp

sfp

                                                  f

Pe

110

ru

sfp

sa

                                                                   

sfp

s.p.

                                                 sfp  s.p.

113

ord.

f

                                                        

116 ord.

f

120

 

ff

sf

sf sf sf

                             sf

sf

sf

                                                           s.p.

ord.

p sub.

ff

sf

sf

sf

sf


                                                                                 mp cresc.

123

ord.

s.p.

sf

    sim.                                

129

sf sf

sf

sf

sf

sf

sf

sf sf

                                                  fp

                                                            

re

s.p.

134

co

f

 ord.                                                                 cresc.  più f 

sa

lS

138

                                                                                         

ru

142

Pe

6

                             

146

ff

                                         fp s.p.

 

                                          

149

ord.

ff

                                      

153

3

                          3

                  

                                                      


3

3

3

7

3

                                                                                                                      

157

                                                                               3

161

3

più ff

                             pizz.                                  

arco                           

sfz

co

re

165

più ff

sfz sfz

più ff

lS

                                                                 

sa

170

ru

poco accel.

                                                                                   s.p.

Pe

173

175

 

     

 



  

sffp

     

 



  

     

 



   

q=96   ord.                                                                                            ff   6 6 6 6 6 6

178


6

6

 

                               

181

senza misura     185         

fffp

              

                   

gliss.

6

         

fffp

                   

6

6

             

fff

s.p.

         

ord.

ru Pe



                                                        5-7x

6

         

fffp

sa

ord.

fffp

6



6

6

       

                       s.p.

fff

re



as fast highest pitch poss. as poss.

               

co



accel.

lS

8

s.p.

ord.  pizz.        fffp

sfffz

Feb. 2011 Ann Arbor, MI


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.