Duel II for Two Cellos

Page 1

Michael-Thomas Foumai

DUEL II

Pe

ru

sa lS

co

re

for Two Cellos


ru

Pe sa lS re

co


DUEL II for Two Cellos

MICHAEL-THOMAS FOUMAI (2012)

A

sul G w/ intense vib.

  Violoncello I 

  

sf

(A tempo)

          

sf

ff

poco

pp

 

  

sf

sf

        3

3

poco

  

 

3

3

         

3

p

3

poco

   

mf

p

3

p cresc.

                                      

f

      mf più

           3

                 poco

        poco

sf

p

     





sf

                fp

f



p sub.

f

sul pont.

 

poco

      

f

p sub.

 

  

                  

f

(e=e)

poco

          

                   3

p

poco

(e=e)

20

mf

 

  

poco

3

sa lS

mp

p

< h = h. > (q=108)

mf più

mf

       

p



3

p

ru

 14

3

3



    3           

mp

  

pp

poco



poco

        

3

Pe

3

pp

ff

  

7

   

          

  

p

pp

sul tasto

lunga

ord.

poco

poco

           sul tasto

(A tempo)

co

   

   

ord.

w/ intense vib.

Violoncello II

lunga

re

  

Slow, h=36

 

ord.

       

p leggiero

              sul pont.

p

poco

© 2012 Michael-Thomas Foumai. All Rights Reserved (ASCAP) www.michaelfoumai.com



ord.



p cresc.

 


B poco meno mosso, (q=96)

    25                                                           ff/p

f

pizz.                    ff

     29    

 

   

 

sf/f with vigor

 

fp

 

sfz

             arco

fp

                     

p

sf

p

f

f

   

 

      

sf

   

   

   

      

   

   

   

(x=x), (e.=128)

(x=x), (e.=128)

      



    

 

   

 

        

 

fp

 

fp



fpp

fpp

  

  

sf



  

   

  

   

cresc.

cresc.

   

                                       p sub.

ff

     

ff



ru

      35

co

 

sa lS

32   

re

                                           sf sf/f with vigor 

Pe

3

     

                 

p sub.

C

                                                  cresc. ff                                                      cresc. 41

ff

                              più ff                                 48

più ff

           sf sf             sf

sf

    


4                                                                                             sf sf sf sf sf sf fp f fp                                                                        p sf  sf sf sf sf f sf fp 53



61                                                                 

p

f

f

mf

ff

ff più pizz.                                                                          p ff f

  

re

< e. = q >                                                                         sf

sf

sfp

co

    

  

arco              sf

sfz

sfz

sfp

D

sfz

ff

sfz

sfz

sfz

sfz

sfz

sfz

                                           sf sfz

sa lS

   69

ff più

sfz

sfz

ff

                                                 sul pont.

fp

sfz

ru

78

fp

fp

       pizz.

  

Pe

     

sf

sfz

sf

sf

ord.

f/mf

         sf

sf



sf

  

p

sf

                                                     85



p

    sf

                                      91

sul pont.

p ord.

                                  arco, sul pont. p

f


 96

pp

grad. w/ intense vib.

                                                           

 103

     

  

(x=x)ord.

f

                

      

  

A tempo

  

             

p sub.

sfz

fp

           

     

sfz

fp

  

                 sfz

  



p sub.

              sfz

co

f più

cresc.

re

  

sul G, ord., no vib.

sfz

sfz

sfz

sfz

sfz

     

sf

sf

sf

sf

ff marcato

                                                      sf sf sf sf ff marcato   

  

p sub. cresc. poco

ru

 115

p sub. cresc. poco

sfz

            

sa lS

< e.e = q. >                                                                     108                        

                    

Pe

5

  force                with

with force

                         

          

3 3

  

 

 

 

 

molto

            molto

E Meno mosso (q=108)          

p cresc.

       p cresc.

    

5

              119



 

  

     



 

     5

p sub.

< e = e > (q=135)

 

                 

ff

       ff

                                                5

p sub.


 

     125

sf

                              sf mf sf                                   f  sf  

   

          sf

sf

              sf sf                        sf  131

                 p

     p

mf

sf

            mf sf sf

 

           

sf

sf

sf

sf

sf

6

                   

      f

  

co

re

sf

        

f più arco

   

f più



 

           

Pe

    

arco

ru

sf

143

pizz.                            

sa lS

 137                               sf sf sfz                                          sfz sf

fp

cresc.

              cresc. fp 

    

f

pizz.                              f 

     

                    

                   3

3

                                                    marcato marcato

                                                                   149

ff

      ff



 



 



 



 



   

3 3 3 3 3                3                          


        151

fff

         fff

F

              

   

   

             

     

broadly

                                        broadly  molto molto

      

fff

  

ppp

p sub.

              sfz p sub.   sfz

 

 

 

ppp

fff

A tempo, q=135

                                                 p sempre                                              sul pont.                  p sempre sul pont.

co

re

158

   166

      170

ff











 





sfp

sfp

      

sfp

  sfp



 

sfp

sfp

 

sfp

 

sfp



3

 

                      3

 

sfp

   

sim.

sfp

    sfp

sff

ff

                             f 3

f

 

    



              



 

sff

                             

ru

     

sa lS

  162                                           

Pe

7



sim.

     3

 3

   3

3

3

3

3

3

3

3

3

       3            3

           

3

sf

   

3


8

3 176 3           3   3   3   3   3   3  3   3                                           3 3 3                        3   3   3      3                                                                            sf sf sf sf

sf

sf

3

3

sf

3

3

3

3

sf

3

sf

                                            3 p sfz 180

3

sfz

ff

ff

   

                      sfz         sfz ff sfz sfz sfz

3

   p

                              3 3  3 

ff

Pe

ru

sa lS

3

re

sfz

sfz

co

sfz

                              3 3 3

     

pizz.

     

sffz pizz.

sffz


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.