The Burning Heart for Soprano, Harp and Strings

Page 1

Full Score

MICHAEL-THOMAS FOUMAI The Burning Heart for Soprano and Chamber Orchestra (2012)



MICHAEL-THOMAS FOUMAI The Burning Heart for Soprano and Chamber Orchestra (2012)


Orchestral performance materials are available for hire from the composer: www.michaelfoumai.com Published by the Foumai Foundation: foumaifoundation@gmail.com Š 2012 by Michael-Thomas Foumai & Foumai Foundation Ann Arbor, MI, Printed in the U.S.A. All rights of performance and broadcast are strictly reserved.


1. Mist Mist floats on the Spring meadow. My heart is lonely. A nightingale sings in the dusk. - Yakamochi 2. Pronoun Who is there? Me. Me who? I am me, you are you. But you take my pronoun. And we are us. - Marichiko 3. Have I learned to understand you? You say, “I will come.” And you do not come. Now you say, “I will not come.” So I shall expect you. Have I learned to understand you? - Lady Otomo no Sakanoe 4. Ghost Others may forget you, but not I. I am haunted by your beautiful ghost. - The Empress Yamatohime 5. Night without end Night without end. Loneliness. The wind has driven a maple leaf Against the shoji. I wait, as in the old days, In our secret place, under the full moon. The last bell crickets sing. I found your old love letters, Full of poems you never published. Did it matter? They were only for me. - Marichiko 6. The heart of man Without changing color in the emptiness of this world of ours, the heart of man fades like a flower. - Komachi From Love Poems from the Japanese and 100 Poems from the Japanese Text Translation: Kenneth Rexroth


INSTRUMENTATION Harp Soprano Violin I Violin II Viola Violoncello Bass Duration: 10 minutes The first performance was given by Antonina Chekhovskaya and conducted by the composer, Ann Arbor, MI, March, 17 2013.


The Burning Heart

3

Six Songs for Soprano, Harp and String Orchestra

Text Translations KENNETH REXROTH

1. Mist Soprano

 

Still, q=60

 

p

                         

Harp

MMMOMMMM

 

p sempre

   

3

        

Mist floats

 

on the

 

Spring

mead -ow

mf

 

MICHAEL-THOMAS FOUMAI

Violin 2

     

div.

p sempre

     

p sempre div.

Viola

p sempre div.

Violoncello

    

p sempre

Contrabass

S.

Hp.

    

p sempre



 

Vln. 2

Vla.

mf

      mf div.

Vc.

          mf

Cb.

        mf

 

           



 

 

 

  

 



unis.

 



 

 





 

 

p

Db

  

p

  

p

 

f

pp

 

          

  

 

   

p

 p

unis.

3 3                 

p

 

                       p mf   unis.                     

   

   

  Vln. 1    

 

 

               

Bb

A night -in -gale sings

is lone ly

 

  

 

heart

 

p

mf

my

 

  

6

   

   

                                     Violin 1                 Still, q=60

mf

3

in the

    

dusk

mf

 

pp

 

                             

 div.    pp  

      

  

   



pp non div.

 

pp non div.

pp

© 2013 Foumai Foundation. (ASCAP). All Rights Reserved. www.michaelfoumai.com

 

pp

             


2. Us

4

11 S.

Hp.

Playfully, q=152 p

    



Who

 

   

Vla.

 

p sempre

 

pizz.

 

p sempre pizz.



 



 



 

p sempre

 

  

   

    pizz.

  

Who is

there?

Playfully, q=152

  Vln. 1   Vln. 2

who is

MNMOMMMM

 

    

   

p sempre

  



   

there?

 

  



 

 

Who





is

there?

  



        

  

   

  







        

Who is

 

who is there?

 

  

  

      

 

Cb.

  

18 S.

Hp.

Vln. 1

 

 

  

Vln. 2

Vc.

Me.

Who is



there?



   

 

Vla.

Cb.

              mf

 

Me

who?

    



                   

   

 

there? Me.

   



Who is

 

Me who?



 

             I

 

   

        

  

 

am

 

  

  

  

 

  

 

me,



 

 

Who



  

  

  

Vc.

is



 

 

  

there?

   

 

   


5

                 

       

24 S.

Hp.

Vln. 2

 

 

Vla.

Vc.

Me

 Vln. 1 

Cb.

Me.



  

Hp.

 

  





 

 

  

  

Me.

 

who is there? Me.

 



 

 

  

  

 

Me

 

  

  

  

who? Who

 

  

  

 

      

  

    

 

 

 

 

     

   

Cb.

     

    

 

 

 

me

 

f

Me

who?

   

 

     

    I am

I am

  

 

 

I am

I

am

 

  

 

        

A arco                                      mf

 

p

 

  





sub. ff

 

   

mf

 

A  

p

  arco          mf

  

sub. ff

   arco          sub. ff arco             

arco         sub. ff

 

             

    

       

      

 

      

 

sub. ff



  

 

  

  



     

am



I

there? Me.

 

    



is

   Vln. 1 

Vc.

there?

Vla.

me, Who is

 

        Me who?        Bb  

Vln. 2

am



30 S.

I

  

who?

                                 


6

                                                                  

37 S.

Hp.

me

me

        LMMOLMLL

 

mf

Vla.

Vc.

Cb.

 S.

am

me

         sub. p 

you are

I

am

me I am me

 

  

  

     



  



  

  

 

  

   

  

    

 

sub. p

B

take

my



f

B

non div.

f non div.

pro

you take

my

pro

 -

noun

       I am

me



  

    

 

   

più f             you are you,

Who is there? Me.

  

 

 

 

     

        

                f

div.         Vla.    f       Vc.      f            Cb.     f

noun

   

 

p

    

. gliss

  

  



 

   f

MMMOMMMM

   

but you

  

      

you

   



43

and you are you

  

you

 

 

     Vln. 1    Vln. 2

I

                sub. p                   sub. p

Hp.

am me

              

       Vln. 1    Vln. 2

I

 

      

       

               

                                       

           

                                       

     

div.                     

   

più f

                 più f          unis.            div.            

         

     

più f

             più f 


7

Who is there? Me

    

  

sub. p

Cb.

C   

gli

ss.

 

Hp.

 

Vla.

Vc.

Cb.

 

pp

      

pro

ff

ff

    

     

   



 

ff

                       

            ff

p

but

                         f

you take my

 

take my

take my

 

noun

           

        

ff

ff

  

-

you



  

my

you

 

take

take take

                                 f                                                  unis.                                                                 div.                                                                                   



   

ff

      

unis.             

  

      

you

      

         pp   Bb 

       

pp

ff

C     Vln. 1    Vln. 2

             pp                 pp  unis.           

57 S.

you are you

sub. p

Vc.

I am me

       Vln. 1  sub. p     Vln. 2    Vla.

who?

 

ss.

   

ss.

Hp.

               pp

gli

S.

sub. p

gli

      

50

    

 

       

   

and

and

 

 

 

 

                         

                                       

 

                 

                                                                    

           

 


8

    

   

63 S.

Hp.

and

   

we

 

                    Vc.               Cb.     

S.

Hp.

f sempre

69

     

You

     

 

ff

  

q=50

     Vln. 1  

Vla.

Vc.

say

    

  

  

 

non div. arco

  

non div.

 

ff non div. arco

ff

      ff

 Cb.  



pp B§

 

   

pp

pp

  

   are

p

 

   

   



us.

  

  

   

  

come

         and you

 

    

      



ff

    



ff

      div.        

 

    

   

 

 

 

 

 

 

   pizz.      

will

 

I



       

pp

            

  

non div.

ff

Vln. 2

   we  

3. Have I learned to understand you?

q=50

MNMOMMMM

        p         p       

          

p

  

we are

Vla.

and

        Vln. 1    Vln. 2

mp

      pizz.

p pizz.

     

p

senza misura

sub. p



do

       

 

not

   

sul pont.

sffz sul pont.

senza misura

  

 

 

 

    

 

 

    

 

 

    

 

 

 

 

sffz sul pont.

sffz non div. sul pont.

sffz sul pont.

    sffz


q=50

       f

74 S.

        

come. MNLOMMMM

Now you say

        



sub. ff

p

I

will not

q=50

ff                                



come.

        ff

 

q=50

  

    

     

 

      



  

     

 

fp

S.

Hp.

fp

78

      

Vln. 2

Vla.

Vc.



           

 Cb.  

 

learned to

un - der

  Vln. 1      

   

 

fp

 

  

senza misura



fp

Cb.

   

      

Vc.

ex - pect you.

 

q=50

 

ff

fp

Vla.

shall

  

 

ff

div. sul pont.

ff

    3

   

stand

fff



you?

        

 

          

 

fp

 ord.    

   

 

div.ord.  O  O 

 

fp ord.

 

fp

pp





 

 

fp

 

 

   

 

  O O 

I

 

 ord.      

 

you?

  

 sul D    ord.    

ff

    

 

fff

fp

p

   

 

     

      

 

sul pont.

ff sul pont.

Have

MNMOMMMM

sul pont.

    Vln. 1      Vln. 2

9

So I

 



Hp.

senza misura

 

 

sul D

highest pitch

ppp

sul G

highest pitch

ppp

sul C/G

highest pitch



sul C/G/D

 

sul E/A/D

 

 

ppp

 

 

 

highest pitch    

  

ppp highest pitch

ppp

   


4. Ghost 10

82 S.

LMMOMNMM

                             

pp

 

                   Vln. 1           pp Still, q=60

    

    

 

   

    

  

Vc.

pp

pp

87

Hp.

 



 

p

   

 

p

 

mf

 

        Gb

        

  

mf

        

  

mf

       unis.

mf

  



unis.

 

  

  

p

div.          

p

mf

      

 A tempo, q=60

  

3            

mf

I



am haunt ed by your beau - ti -ful

 poco rit.

pp

     

 

                                  ghost.

pp

 

  

 

A tempo, q=60



unis.                                 

                  p

 

     

  

  

   div.    

unis.   

p

  

Vc.

I.

Bb

poco rit.

p

div.

Vla.

 

                   p     

Vln. 2

but not

   

mf

             div.      Vln. 1     

Cb.

div.

S.

   

pp



you,

mf

  

p

 

Vla.

may for - get

MMMOMMMM

div.     

    

  

   

div.

pp

Oth -ers

 

Vln. 2

Cb.

  

p

      



 

p



Hp.

 

Still, q=60



  

p

p

 

                       

unis.

pp

mf

   

mf

     





 

div.       

 

pp

mf

unis.

 



 

pp

 

pp

 

pp


5. Night without end S.

Hp.

 

Night with -out end

               pp                    LLLOLMLL

Strolling, q.=46

     Vln. 1       

div. con sord.

pp div. con sord.

   

Vln. 2

pp con sord.

  

Vla.

pp con sord.

      

Vc.

pp

pizz.        Cb.   pp

     

98 S.

    

Hp.

  

   

 

  Vln. 1 

 

  

Vln. 2

 

Vla.

 

  

Vc.

Cb.



                     

      mp

   

 

 

 





with -out end Lone -li - ness.

      

     

      

     

the wind has

 

 

 

 

 

 

 

 

 



      



 

 

 

 

 

 

   

 

 

 

 

 

 

               f

   

  

   

   

 

  

 





 

  

   

arco p

Sho - ji

I

                        Fb

         mf

        mf

   

  

mf

        mf

        mf

-

wait

    

LLLOLLML

     

           

   

     

sub. p

sub. p

   

sub. p

   

sub. p

   

sub. p

   

sub. p

                   

old

 

  

 

 

D



 

 



 

 

in our se -cret place in our

LLLOLMLL

 

     

        unis. p

  p

 

     

    

 

 

 

 

 

 

 

 

div.

     p

  

        

D

 

 

mf

days



  

p



   

ma - ple leaf

   

 

 



a

 



p

in the

  

unis.

         as

   

driv -en

   

 

   

a - gainst the

11

mf



91

Strolling, q.=46

p

 

 

 


12

106 S.

f

  

Hp.

Vln. 1

Vln. 2

Vla.

Vc.

Cb.

    

Hp.

moon

 

                C§ mf

              

   

     

       

             

 



mf

mf

    

 



 

    mp

 

     

 

p





p

your old

love lett -ers

 

mp



 







 

 

unis. p

pizz.

  p



  



  

 

po -ems you ne - ver pub - lished

(unis.)

   

div.

  

 

 

  



mp

 

     



 

mp

 

   

 Cb.  

 

 

  

   



      unis.          

mp

 

 



div.

 

   

mp

 

 

     

mp

 

E§ A§

           

mp div.

full of

  

p

 

                    

  

   

         

     

div.



p



mp

  mp

 

p

 

div.

  

 

unis.



mp

 

F§ C§



                  

p

 

 

p

Vc.



D§ Fb



sing

                      

p

Vla.

p

  

 

mp

p

found

     G§     

  

    

    E      unis.        p

 

p

I

the last bell crick ets

 

p

  

moon

mp

 

mf

full

mp

 

    

 

E

Cb

p

 

mf

  

     

mf



  

p

 

 

 

un -der the

    

mf

   

  Vln. 1   Vln. 2

full

  

111 S.

un der the

          

 

cret place

   

    p



se -

   

     

   

  



  



  



 

senza sord. unis.

 

 

 

 

 

 

mp

senza sord. mp

senza sord. mp

 


       

 

 

 

 

 

117 S.

Hp.

 

 

 

 

 

 

                           Vln. 1       

div.

Vln. 2

Vla.

Vc.

Cb.

 S.

Hp.

   

div.   (unis.)                        f                   f

    

      

   

 

 

          ff

    

 

     

  

     

 

ff

Vc.

ff

Cb.



f

ff

ff

Vla.

           

       

F            Vln. 1   Vln. 2

                          

f

arco

ff

   

    

 

            

 

F

123

did it

                              f

   



f    

They were on

MNMOMNNM

 

    

   



 

sub. p

         sub. p   unis.      

for

  

me

 

unis.

 

    

      

 

     

 

 

 

sub. pp

sub. pp

  

sub. pp

      

   

                  div.          

 

    

 

  

   

  

 

                            ff                         ff

       

 

  

  

div.        

 

  

ter?

 

   

  

sub. p

  

-

     

 

mat

unis.

sub. p

     

ly

     

f

sub. pp



-

 

sub. pp

        

mf

        

13

 

senza sord. mf

          f



 

     ff

ff

     ff

   

 

           

 


14

   

128 S.

      

Hp.

     

for me

         

D#



       Vln. 1   

              

Hp.







 

  

Vln. 2

mf

    mf

Vla.

   mf

Vc.

mf

p

   

   

    

   p



f

f

          

   



    



   



 



for

me.





 



 

 

 



pp

div.

pp

  pp

unis.



pizz.

   



  

    





    



 



     

p

p

p

  



 



 

 

 

  

 

 



   

 

  

          

pp



   

LLLOLLLL

p







      

f



me

p

f

   

 

G             

unis.

         

for

G§         



f

p

me

p

        



p

 

 

f

   

       

 

me.



MNMOLNNM

 div.    

div.

p

  

unis.        

   

p

for



   

p

me

   

 

for

mf

     

          

  

mp

they were

  

p

 

f

              



   

unis.

                   

 

p

me

 

unis.

   

for

mf



     

 

       

p

     

for

        



  Vln. 1   

Cb.

p



   

   

    

134

S.





Vc.



p



Vla.

Cb.

for me

LLNOLLLL

       

Vln. 2

          

mf

G







 

 

    



     

 

 

 

 

 




6. The heart of man

15

Solemn, q=52

H Flowing, q=62                         

S.

Hp.

f

p

141

p

(hum)

LLLOLLLL

 

 

3

3

                     3

3

p

3

3

3

3

H Flowing, q=62

  Vln. 1  

Vln. 2

 

Vla.

 

Vc.

 

Cb.

  

Solemn, q=52

con sord.

3

3

                     3

3

p

3

3

3

3

 p

148 S.

Hp.

Vln. 1

3

    

mf

    

3

with -out chang - ing col - or

 

3

3

3

this world of

3

3

          3





        f

    

in the emp -ti - ness of the world

3

3

      3

3

          3

ours

with- out

                   3

3

3

3

3

3

3

3



3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                

Vln. 2

Vla.

 

pizz.

Vc.

p sempre

Cb.

    

 



 


16

152 S.

Hp.



I

chang -

ing

with - out

3

3

chang - ing col - or

    

Vc.

Cb.



 3

3

in





 3

I

Vla.

 

3

3 3 3 3  Vln. 1            

Vln. 2

p

3

       

         

     



 

the emp - ti ness

  

   

3

  

of this world

  3

3

f

   



the



 

3

3



    

heart

the heart

   3

 



 

3



of

3

  

3

con sord.

                                  3

3

3

p

3

3

3



p

3

3

3

3

 

3



 





3







 156 S.

 

man

Hp.

Vln. 1

      

p

 

the heart

  3



 

3

3

mp

 

of

man

  

3

   



 

3





 

3

3

p

 3



man

3

  

3

the heart of



    

 

3

3

 3

3

3

3



man

of

  

3







 

3

3

3

 3

3

3

3





f

 3

3

3

3

3

3

                                                 

Vln. 2

mp

Vla.

 

Vc.

Cb.

3

Bb

       

mf

the heart of

  3

  

p

 



mp

 





 p

 





 

 

arco



arco

 p

 


J 160 S.

Hp.

sub. p



   

Cb.

J

p

con sord.



p

 

Hp.

Vln. 1



pp







   

        mf

the heart of

  3

 

3

man

 

3

 F§

  3

   

Vla.

Vc.

Cb.

3

3

          

ff

the heart of

3



3

  

3

man

man

fades

the

p



mf



p

mf

heart

of

3

3

3

3

  

3

G§ 3

3

 



 

 





 

  f



 



 



 



3

3

3

        mp

 

cresc.

 

cresc.

     

div.

f

3

3

3





        3                       

mp

3

3

3



3

3 3 3  3 3                                     3

 

          3   3   3 3 3 3                  3 3 3 3 3 mp



f

Vln. 2

3

of

pp

3

3

p

         

  





   

 

p

pp

 

mf

the heart

   



       mp







pp



man

 

 

mf

fades

3

unis.



   

3

   



div.

man

pp

 mf

of

3

div.

mf

heart

3

3

mf 3



the

     

 

3          3                          3 3 3 3 3

3

3

164 mf S.

p

man

p

               

  

3

   

    

17

p

3 3                    3  3

LLLOLMLM

3

 

Vc.

  

the heart of

 

Vla.

  

man

 Vln. 1   Vln. 2



mf

3

f

 

 

 

 

f

   


K Più mosso, q=68 18

168 S.

 



   



man

the

man

  

Hp.

fff

3

    3

heart of

 

3

 

3

 

 

3

ff

3 K Più mosso, q=68                 Vln. 1    3 3      3

  

    

Vln. 2

    Cb.    Vc.

172 S.

Hp.

unis.

    



fff espress.

5

5



 





 



f



 

 

   

Vla.

fff espress.





















3

3

3

3

3

fades like a

   

flow - er

3

3

 Vln. 1 

   

fade like a



flow -er

fades

3

3

3

3

3

mp

3

3

3



mp 3

3

3



3

Vla.

3

3

3

3

3

3

3

3

mp

Vc.

















mp

Cb.

mp

 













 like a

   

3

p

p

  

div.

3

p

                                     3

3

               G§ D§

3 3 3 3                                  3

 

mf

  

Vln. 2

3

3

3

fff espress.

3 3 3 3                                    mp 3 3

3

                                  fff espress.            fff espress.           

      

fades LLMOLMLL



 p

 

non div.

p



p

3

3


L

176 S.

   

Vln. 1

  

  

      Bb

          3

3

3

3

 

 

(div.)

 Cb.  

  



 

3

pp sempre

pp sempre





  



 

 

mp



 

  



 

pp sempre

pp sempre

mp

pp sempre

mp

pp sempre

S.

Hp.

 

 



 

 



   



dim.



3

Cb

3

3

3

3

3

3

3

3

3

3 3 3 3 3 3 3 3 3 3 3 3    Vln. 1                                   

Vln. 2

Vla.

Vc.

Cb.

3

3

3

3

3

3

              G§

3

3

         

       

  

  

      

 

  

 

    non div.   O  

  

  

 

 

 

 

   



3                                        3

 

3 3 3 3  3 3                         3 3 3

 

mp

 



181

 



L                        3 3 3 3 3         3  3                     3 3 3 3 3 3 3 3 3 p

  

 

Vc.



LMLOLMLL

     

Vla.

19

(hum)

 

 

Vln. 2

mf ossia: sing "oh"

flow - er

 

Hp.

p


20

rit.

185 S.





 3



 3

 

 3

3

                                              3

3

3

3

3

3

3

3

3

3

Ab

3

3

3 3 3 3 3 3 3 3 3 3 3   3      Vln. 1                                       

Vln. 2

Vla.

Vc.

Cb.

rit.

3

3

3

3

         

      

      

      

   

  

  

  

 

 

 

 

  



Hp.

 

ppp

      

           


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.