Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Towards the Future of CSP PROcesses, Materials and Solar Energy PROMES‐CNRS Laboratory Cyril Caliot, Gilles Flamant
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
1
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Content 1. PROMES Laboratory 1. Introduction 2. Mission of PROMES 3. PROMES Main Facilities
Nov. 11th 2010 C. Caliot, G. Flamant
2. Central Receiver Systems 1. Basic Principles 2. Central Receiver Systems 3. Receiver Technologies
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
2
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
PROMES locations
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
3
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
PROMES‐Overview CNRS Institute for Engineering and Systems Sciences (INSIS)
• Two locations: Perpignan and Odeillo • About 120 people, permanent staff: 70 • Original equipments: Solar Furnaces (from 1.5 kW to 1 MW) • Member of the European Alliance on solar concentrating systems « SolLab » • « European Infrastructure » in the FP7 of the EC: « SFERA Project » Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
4
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
MISSION of PROMES To develop Science and Technology related to solar energy applications, mainly concentrated solar energy, in the field of: – Thermal conversion: building heating and cooling, power and hydrogen production – Photovoltaic conversion: new PV material processing, concentrated PV (CPV)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
5
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
PROMES Main Facilities 13 Solar Facilities
{
• 12 Solar Furnaces (two reflections)
One (1) 1000 kW One (1) 6.0 kW Ten (10) 2.0 et 1.5 kW
• 1 Dish 50 kW (one reflection) P = 1000 kW 63 Heliostats, Parabola 53x40m, Concentration ~ 10 000
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
6
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
PROMES Main Facilities Small Solar Furnaces 6 kW, 2 kW and 1.5 kW
P=6kW Spherical mirrors D= 4m, S=12.5m² f= 3.75m, d=5cm Concentration ~ 6 000 Nov. 11th 2010 C. Caliot, G. Flamant
P=2 & 1.5kW Single mirror parabola 6 Units: D=2m, f=.85m, d=0.5-1cm 4 Units: D=1.5m, f= .65m, d=0.5-1cm Concentration ~ 17 000
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
7
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
PROMES Main Facilities THEMIS tower and heliostat field
107 heliostats 53 m2, 5 MWth
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
8
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Example of R&D Actions Concentrated solar energy Dish‐Stirling performance evaluation (10 kWe)
Hydrogen production by NG cracking, (European Project) and water splitting
Development of a solar‐gas turbine demonstrator (Mini‐PEGASE 350kWe, PEGASE 1.5MWe) Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
9
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Example of R&D Actions Concentrated solar energy Testing of CPV high efficiency cells
Thermal heat storage 0,200 0,180 0,160
Design and evaluation of CSP facilities
LEC [€/kWh]
0,140 0,120 0,100 0,080 7 €-cts/kWh
0,060 0,040 0,020
Nov. 11th 2010 C. Caliot, G. Flamant
0,000 « Towards the Future of CSP » 100 Israel‐France Conference on Renewable Energy
LEC (FCR=0,11, DNI =2000 kWh/m²a) LEC (FCR=0,11, DNI =2350kWh/m²a) LEC (FCR=0,11, DNI =2700 kWh/m²a)
1000
5000 MW
10000
installed capacity [MW]
100000
10
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Example of R&D Actions Low temperature solar energy Solar cooling (adsorption processes)
Thin film processing (PV coating)
Solar detoxification Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
11
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Content 1. PROMES Laboratory 1. Introduction 2. Mission of PROMES 3. PROMES Main Facilities
Nov. 11th 2010 C. Caliot, G. Flamant
2. Central Receiver Systems 1. Basic Principles 2. Central Receiver Systems 3. Receiver Technologies
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
12
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Components Working Fluid
Solar Portion
Nov. 11th 2010 C. Caliot, G. Flamant
Heat Storage
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
Conventional Power Block
13
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Power Block To transform thermal energy in work, thermodynamical cycles are used.
1. 2. 3.
Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
14
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Power Block To transform thermal energy in work, thermodynamical cycles are used. Steam
1. 2. 3.
Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
14
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Power Block To transform thermal energy in work, thermodynamical Compressor Gas Turbine cycles are used. Steam
Pressurised Receiver
1. 2. 3.
Combustion Chamber
Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
14
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Power Block To transform thermal energy in work, thermodynamical Compressor Gas Turbine cycles are used. Steam
Pressurised Receiver
1. 2. 3.
Combustion Chamber Steam Turbine
Rankine Cycle (Steam turbine), 300<T<600°C, 36<η<40% Brayton Cycle (Gas turbine), T>800°C, 46<η<49% Combined Cycle, T>800°C, 55<η<60%
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
14
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Hybrid Solar Gas Turbine and Combined Cycle
Cycle / engine
Solar‐to‐electricity conversion efficiency
Gas Turbine only
15%
Recuperated Gas Turbine or Classical Steam Cycle
20%
Combined Cycle (GT + bottom Steam Cycle)
30%
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
15
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Energy Cascade and Investment
PS10 Subsystems (Saturated Steam, Rankine Cycle,
η=31%, 40b @250°C) Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
16
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Expected Gains • Cost reduction of the reflecting surface and drive mechanism • High efficiency receiver • Compact system • High efficiency cycle (Combined Cycle)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
17
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Expected Gains • Cost reduction of the reflecting surface and drive mechanism • High efficiency receiver • Compact system
Radiation Losses Working Fluid T>800°C
• High efficiency cycle (Combined Cycle)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
17
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Working Fluids
• Molten Salts T < 600°C e.g.: Hitec (NaNO3 – KNO3 ‐ KNO2) • Water/Steam T ~ 600°C High Pressure (> 60 b) • Air at p =1 atm T > 600°C • Pressurised Air T > 800°C
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
18
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Receivers • Absorbing Surface – Solar Flux ~ 200kW/m²
Nov. 11th 2010 C. Caliot, G. Flamant
• Volumetric Receiver – Solar Flux ~ 1000kW/m²
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
19
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
Crimea (1978-1985) CRS 5 MW Saturated Steam URSS
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
Crimea (1978-1985) CRS 5 MW Saturated Steam URSS
CRS (1981-) PSA, Almeria 2.7MWt CESA 1 (1983-) PSA, Almeria 7MWt
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
Thémis (1982-1986) Molten Salts, 2.5MWe
Crimea (1978-1985) CRS 5 MW Saturated Steam URSS
CRS (1981-) PSA, Almeria 2.7MWt
CESA 1 (1983-) PSA, Almeria 7MWt
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
Thémis (1982-1986)
Crimea (1978-1985) CRS 5 MW Saturated Steam URSS
Molten Salts, 2.5MWe
CRS (1981-) PSA, Almeria 2.7MWt
Solar Two, USA (1997-2000) CESA Molten 1 (1983-) Salts - 12,4 MWe PSA, Almeria 7MWt
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
Thémis (1982-1986)
Crimea (1978-1985) CRS 5 MW Saturated Steam URSS
Molten Salts, 2.5MWe
CRS (1981-) PSA, Almeria 2.7MWt
Solar Two, USA (1997-2000) CESA Molten 1 (1983-) Salts - 12,4 MWe PSA, Almeria 7MWt
Abengoa Solar PS10 11MW , PS20 20MW Saturated Steam
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Central Receiver Systems (CRS) • • • • • • • • •
Solar One (1978‐1985) Crimea (1978‐1985) CESA 1 (1983) Thémis (1982‐1986) Solar Two (1997‐2000) PS10 (2007) PS20 (2009) Consolar (1995‐1999) …
Nov. 11th 2010 C. Caliot, G. Flamant
Weizmann Beam Down Solar Tower Thémis (1982-1986)
Crimea (1978-1985) CRS 5 MW Saturated Steam URSS
Molten Salts, 2.5MWe
CRS (1981-) PSA, Almeria 2.7MWt
Solar Two, USA (1997-2000) CESA Molten 1 (1983-) Salts - 12,4 MWe PSA, Almeria 7MWt
Abengoa Solar PS10 11MW , PS20 20MW Saturated Steam
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
20
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • • • •
Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
21
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • • • •
Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
21
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • • • •
Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)
Alveolar Module
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
21
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • • • •
Ceramic Dome (1978, MIT, Air@ 4b, 980°C, SiC) SIROCCO (1979, CNRS, Air@ 3b, 845°C, Metal Alloy) Fluidized Bed (1980, CNRS) Ceramic Fins (1982, AiResearch, Air@ 3b, 1177°C, SiC)
Alveolar Module
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
21
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
22
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
22
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
22
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Pressurized Air Solar Receiver • SOLGATE (1999‐2002, DLR, Air@ 15b, 960°C, Refos SiC) • DIAPR (1998, WIS, Air@ 20b, 1200°C, Porcupine SiC) • Solhyco (2008, DLR CEA …, Air @ 800°C, Profiled Multi-Layer tube)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
22
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
CRS : Air at 1 atm Jülich solar tower power plant (Germany) 1,5 MWe Technology : air @ P =1 atm , Tair = 700°C Rankine Cycle (Superheated Steam @ 485°C and 27 bar) Ambiant Air
External Receiver with Modular Volumetric Absorber SOLAIR Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
23
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Surface or Volumetric Receiver ? • Absorbing Surface – Advantages No Pressurized Window Cheaper, Simpler to Operate – Limitations Wall Temperature Tf outlet < 800°C
• Volumetric Receiver – Advantages Volumetric Effect Tf outlet ~ 1000°C – Limitations Fragile Quartz Window More Expensive
Need to improve both technologies
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
24
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Tests of Ceramics Foams (SiC) Parabola
Heliostat Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
25
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Modelling of Ceramic Foams • Modelling at the Pore Level Fluid Dynamics
Radiative Transfer
Rolland et al, Rad 10 – Antalya (2010)
Wu et al, App. Energy (2010) ; Wu et al, IJHMT (2011)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
26
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Modelling of Ceramic Foams • Modelling of the Equivalent Porous Medium --> Outlet Air
Inlet Air -->
Symmetry axis Mesh : 64x64 ; Y : [0, 0.025m] ; X: [0, 0.05m] Porosity 0.7, Cell size 2.23mm, Total hemi. Reflectivity 0.08 MFR : 0.004 kg/s ; Wall emissivity 0.3 ; ka=186m-1 ; kd=218m-1 Collimated incident solar flux (gaussian distrib.)
Nov. 11th 2010 C. Caliot, G. Flamant
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
27
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Conclusion and Future Work Central Receiver System Advantages
Limitations
• High Flux Concentration (200-1000) → High Temperature (>450°C) → High Cycle Efficiency • Compact Receiver → Less Thermal Losses
• Investment • Limited Power < 500 MWth
Future Research : Combined Cycle Volumetric Pressurized Air Receiver • Increase Thermal Efficiency : with high solar flux and temperatures, more compact designs and smaller receivers can be developped
Nov. 11th 2010 C. Caliot, G. Flamant
Storage • High Temperature Storage
Testing • Volumetric Receiver
« Towards the Future of CSP » Israel‐France Conference on Renewable Energy
28
Processes, Materials and Solar Energy Laboratory (PROMES – CNRS) UPR 8521, Odeillo and Perpignan ‐ France
Thank you for your attention
Nov. 11th 2010 C. Caliot, G. Flamant
PROMES, April 2010 « Towards the Future of CSP » Israel‐France Conference on Renewable Energy
29