French-Israeli Workshop on Renewable Energies – Tel Aviv, Nov. 10-11th
SOLID HYDROGEN : THE UNIQUE SOLUTION FOR INTERMEDIATE AND MASS ENERGY STORAGE Daniel FRUCHART IEA Expert – IAEA Observer
Directeur de Recherche Emérite CNRS Institut Néel – BP 166, 38042 Grenoble Cedex 9, France daniel.fruchart@grenoble.cnrs.fr
Research Manager McPhy Energy - 26190 La Motte Fanjas, France - www.mcphy.com
Fuel = Hydrogen
ICE
PEMFC SOFC
Thermal engine
Low temperature FC
High temperature FC
Hydrogen storage Reforming
Gasoline Gasoil/gas High pressure gas Cryogenic liquid Solid hydrides 30 to 70 MPa !! CO2 emission
20 K !!
Risks & Energy consuming
eg : MgH2 7.6 w%
Mass and Volume Densities
Reversible Metal Hydrides – Safe storage
H2
Metal
kg H2 / m3
weight %
H2 gas (700 b)
62
100
H2 liq. (20 K)
70
100
LaNi5H6
123
1.4
Ti-V-Cr
205
3.7
AlNaH4
96
7.5
MgH2
106
7.6
Low pressure + endothermal desorption
– High volume density – High purity hydrogen
Hydride
BCC type alloys
Relative stability : Experimental & Theoretical Approaches
BCC
Hystory 100
AB2
P (bar)
10
1
T i066 0,1
T i07 T i09
Cr1.8Ti
Cr2 Ti
T i0833
-1954.72 -0,8
-0,6 Wt% loss
-0,4
-0,2
-1945.66
0
PCT (H/M vs pressure)
-1954.76
-1945.68
Etot (Ry)
-1
Etot (Ry)
0,01 -1,2
bcc-so -1954.80
BCC alloys form FCC hydrides !
bcc
-1954.84 10
11
12
AB2 13
-1945.70
bcc
-1945.72 10
14
11
AB2 12
13
14
a (a.u.)
a (a.u.)
FLAPW & KKR-CPA band structure calculations Martensitic transformation
Cr1.97V0.03Ti -1934.5
-1948.72
Ti0.7V0.9Cr1.4H3x -1935.0
bcc -1948.76
Etot (Ry)
BCC
Etot (Ry)
FCC
-1948.80
AB2
-1935.5
-1936.0
fcc
bcc 11
12
a (a.u.)
Martensitic transformation
13
-1936.5 0.0
0.5
1.0
x = H/M
1.5
BCC based alloys : TixVyCr1-x-y Composé à base Ti0.33V1.27Cr1.4 à 18°C (291 K) Composé à base TiV0.8Cr1.2 à 15°C (288 K) Composé à base Ti0.5V1.9Cr0.6 à 18°C (291 K)
0.1
2
PH (MPa)
1
Effective reversible capacity > 2 w%
0.01 0.0
0.5
1.0
1.5
2.0
2.5
3.0
H (% massique)
3.5
4.0
Fast reactivity of TixVyCr1-x-y alloys to hydrogen when composite with few % Zr-Ni additives Reactive bulk microstructure
Decrepited powders ~ 50 µm
TiV0.8Cr1.2 + 4 wt% Zr7Ni10
10
volume (%)
8 6 4 2 0 1
10 100 particule size (µm)
100µm
Specific process : Patent W0 2007096527 Pseudo-cellular microstructure for a fast intergranular hydrogen diffusion and homogeneous powder size decrepitation
Targets : nomade and mobile applications HyCan (CNRS – McPHy – PaxiTech – Boxal - AdVAnta) Development of small cans to H-supply micro fuel cells
FUI
(Peq < 13 bars at 50°C)
MODERNHy’T (CNRS - CEA-Liten - G-INP – SNCF - PSA) Hybride storage for automotive applications (Peq > 100 bars : gas + metal hydride)
Mg vs MgH2 tetragonal
Mg is the best ?
So called difficulties with Mg/MgH2 H-reaction kinetic are said low, butâ&#x20AC;Ś Temperature of reaction is high, butâ&#x20AC;Ś
Mg is the 7th most abundant element on earth Mg has ~ same cost as Al Mg metallurgy is easy Mg is bio-compatible Mg is re-cyclable MgH2 is monometal hydride system: no demixtion MgH2 uptake is 7.6 w%
Tank : 5 kg H2 = 300 km
160 l 40 l
357 kg
47 l
66 kg
71 l
5 kg
350 5 kg
1 - Metal catalyst deposits on BM MgH2 particles 5
5
•1h •5h • 10 h • 20 h
4 H (%wt.)
H (%wt.)
4 3 2
3 2 1
1 0
0 0
2
4 6 temps (min)
8
0
10
5
10
15 20 25 temps (min)
30
35
40
Energetic Ball-Milling is a common method used to prepare reactive powders : homogeneous nano-crystallites, high density of defects, doping with metal type catalysts® Absorption 240 C – 1 MPa kPa
6
5
5
4
4
3
3
2
2
1
1
0
@ McPhy Energy SA France
Désorption 300°C
6
%H
%H
• 1 % at V • 3 % at V • 5 % at V
Desorption 300 C – 10
Abs 240°C
0 0
5
10
15
temps (mn)
20
25
30
0
10
20
30 t (mn)
40
50