The energy crisis francisco javier cervigon ruckauer

Page 1

Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction Master in European Construction Engineering

Pablo Pascual Mu単oz This lesson is published under the License: Creative Commons BY-NC-SA 4.0


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

MODULE CONTENTS 1. The energy crisis 2. Energy efficiency 3. Environmental Certification

Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

1. The energy crisis I.

Energy sources

II. Relevant factors III. Energy consumption IV. Energy crisis: causes and consequences V. Energy crisis in the 20th century VI. Solutions Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

I. Energy sources: renewable and non-renewable

Conventional

Alternative

Non-renewable

Renewable

Oil Coal Gas Nuclear (fission)

Wood Hydraulic

Geothermal (H.E.) Shale Gas Nuclear (Fusion) Oil shale

Solar Wind Biomass Ocean Geothermal (L.E.)

Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

I. Energy sources •

Currently (2015), energy that powers the world is mainly produced from the combustion of fossil fuels as gas, oil, coal or nuclear fission.

However, in some countries of the world including Sweden, Denmark, Spain or the US, the progress of renewable energy is very relevant.

In general, energy sources are as valuable to humans that their search has led wars throughout history.

Actually, the development of a country might largely depend on the lack of essential energy sources.

Furthermore, mismanagement of these sources can ruin the benefits associated to the possession of essential sources of energy, as it can be seen today in some countries.

Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

I. Energy sources •

The total transition from the fossil to the alternative and renewable energies will take decades due to the exisiting oil and gas reservoirs. To date: -

The energy wind keeps on growing considerably every day.

-

The infrastructure for solar energy is cheapear as time goes by.

-

The geothermal heat pumps are much more efficient nowadays.

-

The development of biofuels at commercial level fosters the development of greener engines for cars and trucks.

-

The nuclear fusion keeps on growing very slowly. Another 20-30 years of research are still needed for its proper development.

-

The energy efficiency policies are more active every day, yet their promotion is still necessary. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

II. Relevant factors 1) SUFFICIENCY: -

The existence of energy reserves is of vital importance in a world that depends on non-renewable energy sources.

-

The EU possesses less than 0.5% of global oil reserves and less than 1% of the gas reserves.

-

Renewable and nuclear are world's fastest-growing energy sources by 2.5 percent / year; however, fossil fuels continue to supply almost 80 percent of world energy use through 2040 (Source: EIA, Outlook 2013).

2) SAFETY: -

The safety of energy supply is essential since most of the countries in the world are not producers and, therefore, depend on the reliability of the distribution.

-

Recent confrontation in Europe between Russia, one of the largest gas producers, and Ukraine, highlights the importance of this factor. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

II. Relevant factors 3) COST AND COMPETITIVENESS: -

The global energy consumption will grow by 56% between 2010 and 2040. Most of this increase will occur in non-OECD countries, in which a pronounced economic progress is expected.

-

It is estimated that the average global GDP growth between 2010 and 2040 will be 3.6%, while in non-OECD countries it is estimated that the average growth will be 4.7%.

-

China and India (and other countries like Mexico or Brazil to a lesser extent) will play a very important role in this increase of consumption, by buying from the same suppliers and thereby increasing prices.

-

Sources: U.S. Energy Information Administration - International Energy Outlook 2013.

4) SUSTAINABILITY: -

The increased use of renewable energy and energy efficiency policies will reduce emissions of CO2 and global warming. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

III. Primary energy consumption in the world

World energy consumption (X 1015 Btu)

World energy consumption by fuel type (X 1015 Btu)

** Sources: U.S. Energy Information Administration - International Energy Outlook 2013. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

III. Final energy consumption in the world (By sector)

** Sources: US Energy Information Administration - International Energy Outlook 2013. http://www.eia.gov/oiaf/aeo/tablebrowser/#release = IEO2013 & subject = 0-IEO2013 & table = 15-IEO2013 & region = 4-0 & cases = Referenced041117 Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

III. Energy consumption in construction (Spain) Total Energy Consumptions (2011) *

Coal Consumptions (2011) *

0% 3%

6% 4% 2% 15%

38%

35%

97%

Timber structures and carpentry materials for construction

Timber structures and carpentry materials for construction

Manufacturing of ceramic products for construction

Manufacturing of ceramic products for construction

Manufacturing of cement, lime and gypsum

Manufacturing of cement, lime and gypsum

Manufacuring of concrete, cement and gypsum elements

Manufacuring of concrete, cement and gypsum elements

Cutting, carving and polishing of stone

Cutting, carving and polishing of stone

Manufacturing of steel structures and components

Manufacturing of steel structures and components

Master in European Construction Engineering

* Published in 2013


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

III. Energy consumption in construction (Spain) Oil Consumptions (2011) *

Gas Consumptions (2011) *

0% 1% 5% 9%

7% 3% 8% 15%

0%

20% 84%

46%

Timber structures and carpentry materials for construction

Timber structures and carpentry materials for construction

Manufacturing of ceramic products for construction

Manufacturing of ceramic products for construction

Manufacturing of cement, lime and gypsum

Manufacturing of cement, lime and gypsum

Manufacuring of concrete, cement and gypsum elements

Manufacuring of concrete, cement and gypsum elements

Cutting, carving and polishing of stone

Cutting, carving and polishing of stone

Manufacturing of steel structures and components

Manufacturing of steel structures and components

Master in European Construction Engineering

* Published in 2013


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

According to the previous diagrams: •

Almost three quarters of the energy consumed in Spain in the construction sector is employed in the manufacture of gypsum, cement, lime, and ceramic materials.

All theses processes require high temperatures and, therefore, large amounts of energy.

In the construction sector, coal is employed almost exclusively in the manufacture of cement, lime and plaster.

Two thirds of the oil used in the construction sector is intended for the production of cement, lime, gypsum and derivatived materials such as concrete.

Most of the gas is used in the manufacture of ceramic elements for construction. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

IV. What is an energy crisis? • An ENERGY CRISIS is a deficit in the supply of an energy source essential for the development of a specific region. • These crucial energy sources are responsible for providing electricity to the streets and buildings and fuel to the cars, heating and domestic hot water systems. • Inevitably, limiting the supply will result in an exorbitant increase of the energy prices. • In some severe cases, the scarcity means that the supply of the energy demanded by the area/region/country is totally impossible. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

IV. What are the causes of an energy crisis? • POLICIES: - Excessive market control that can result in a lack of incentives and hence a decrease in the production. - Total lack of regulation that ends up in the formation of oligopolies and/or monopolies that leave people at the mercy of the market. • GEOSTRATEGIC: rivalry between two regions or countries, one of which is source of scarce energy resources, can lead the other to a reduction in the supply. • INSTABILITIES OR CONFLICTS: the outbreak of a conflict on a country that possesses energy resources reduces the extraction capacity of that country and thus its ability to supply energy to other countries. • NATURAL PHENOMENA: earthquakes, tsunamis or hurricanes seriously affect too the generation and subsequent supply of energy. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

IV. What are the consequences of an energy crisis? The shortage of energy sources or the exorbitant rise of prices have always important consequences: • For industrial and commercial activity: - Decrease of the production capacity. - Decline in business activity. • Regarding social issues: - Decline in health standards. - Absence of basic services: heating, electricity, etc. - Inadequate hygienic conditions. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

V. Energy crisis in the 20th century • In 1973, Arabian oil countries embargoed oil shipments to the West because of their support to Israel in the Six-Day War against Egypt. Arab oil embargo finished in 1974. • In 1979-80, a second oil crisis occurred in the USA due to the Iranian Revolution and the Iran-Iraq War. • In 1990, the oil price spike occurred in response to the Iraqi invasion of Kuwait. • In 2000-01, the electricity crisis in California was caused by market manipulations and business corruption. • Oil prices increase in 2004-2005 due to: natural disasters, terrorism, speculation (demand bubble), etc. Master in European Construction Engineering


Introduction to Sustainable Construction Module 4. Energy Efficiency and Environmental Certification in Construction

VI. Any solution to future energy crisis? a) Development of alternative/renewable energies that contribute to ensuring a continuous supply of the energy while impacts associated with the generation, transmission and use are minimized. b) Promotion of Energy Efficiency instruments and policies in order to optimize the use of energy, and hence reduce the required resources and the impact on the environment.

Master in European Construction Engineering


Introducción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción Master in European Construction Engineering

Pablo Pascual Muñoz Este tema se publica bajo Licencia: Creative Commons BY-NC-SA 4.0

1


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

MODULE CONTENTS 1. La crisis energética 2. Eficiencia energética 3. Certificación ambiental

Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

1. La crisis energética I.

Fuentes de energía

II. Factores determinantes III. Consumo actual de energía IV. Crisis energética: causas y consecuencias V. Crisis energética en el siglo XX VI. Soluciones Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

I. Fuentes de energía: renovables y no renovables

Convencional

Alternativa

No renovable

Renovable

Petróleo Carbón Gas Nuclear (fisión)

Madera Hidráulica

Geotermia (A.E.) Gas de esquisto Nuclear (fusión) Petróleo de esquisto

Master in European Construction Engineering

Solar Eólica Biomasa Océano Geotermia (B.E.)


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

I. Fuentes de energía •

Actualmente (2015), la energía que alimenta el mundo se obtiene principalmente de la combustión de combustibles fósiles como el gas, el petróleo y el carbón o de la fisión nuclear.

No obstante, en algunos países del mundo como Suecia, Alemania, Dinamarca, España o EE.UU., el avance de las energías renovables es muy relevante.

En general, las fuentes de energía son tan valiosas para el ser humano que su búsqueda ha provocado guerras a lo largo de la historia.

De hecho, el desarrollo de un país puede depender en gran medida de la falta de fuentes de energía esenciales.

Por otra parte, una mala gestión de esas fuentes puede arruinar los beneficios asociados a la posesión de fuentes de energía esenciales, tal y como puede verse hoy en día en algunos países. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

I. Fuentes de energía •

La transición total desde las energías fósiles hasta las alternativas y renovables llevará décadas todavía gracias a las reservas de petróleo y gas existentes. Hasta ese momento: -

La energía eólica continua creciendo considerablemente.

-

La infraestructura para la energía solar es cada vez más barata.

-

Las bombas de calor geotérmicas son mucho más eficientes.

-

El desarrollo de los biocombustibles a nivel comercial fomenta el desarrollo de motores más verdes para coches y camiones.

-

La fusion nuclear sigue su lento crecimiento, tratándose todavía de una tecnología en pañales con al menos otros 20-30 años de investigación necesaria.

-

Las políticas de eficiencia energética son cada vez más activas, si bien se hace todavía necesario el fomento de esta. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

II. Factores determinantes 1) SUFICIENCIA: -

La existencia de reservas energéticas es de vital importancia en un mundo que depende de fuentes de energía no renovables.

-

La UE posee menos del 0,5% de las reservas mundiales de petróleo y menos del 1% de las reservas de gas.

-

Renewable and nuclear are world’s fastest-growing energy sources by 2.5 percent/year; however, fossil fuels continue to supply almost 80 percent of world energy use through 2040 (Fuente: EIA, Outlook 2013).

2) SEGURIDAD: -

La seguridad en el suministro de la energía es de vital importancia ya que la mayoría de los países del mundo no son productores y, por tanto, dependen de la fiabilidad de su transporte.

-

Los recientes acontecimientos surgidos en Europa entre Rusia, uno de los mayores productores mundiales de gas, y Ucrania ponen de manifiesto la importancia de este factor. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

II. Factores determinantes 3) COSTE Y COMPETITIVIDAD: -

El consumo de energía mundial crecerá un 56% entre los años 2010 y 2040. La mayor parte de este aumento tendrá lugar en países fuera de la OCDE, en los cuales se prevee un desarrollo económico acusado.

-

Se estima que el crecimiento medio del PIB mundial entre los años 2010 y 2040 será del 3.6%, mientras que en países no pertenecientes a la OCDE se estima que el crecimiento medio será del 4.7%.

-

China e India (y otros países como Mexico o Brasil en menor medida) serán protagonistas de este incremento de consumo, comprando a los mismos proveedores y aumentando con ello los precios.

-

Fuentes: U.S. Energy Information Administration - International Energy Outlook 2013.

4) SOSTENIBILIDAD: -

El aumento del uso de energías renovables y las políticas de eficiencia energética reducirán las emisiones de CO2 y el calentamiento global. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

III. Consumo de energía primaria en el mundo

Consumo mundial de energía (x 1015 Btu)

Consumo mundial de energía por tipo de combustible (x 1015 Btu)

** Fuentes: U.S. Energy Information Administration - International Energy Outlook 2013. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

III. Consumo de energía final en el mundo (por sectores)

** Sources: U.S. Energy Information Administration - International Energy Outlook 2013. http://www.eia.gov/oiaf/aeo/tablebrowser/#release=IEO2013&subject=0-IEO2013&table=15-IEO2013&region=4-0&cases=Reference-d041117 Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

III. Consumo de energía en la construcción (Spain) Total Energy Consumptions (2011) *

Coal Consumptions (2011) *

0% 3%

6% 4% 2% 15%

38%

35%

97%

Timber structures and carpentry materials for construction

Timber structures and carpentry materials for construction

Manufacturing of ceramic products for construction

Manufacturing of ceramic products for construction

Manufacturing of cement, lime and gypsum

Manufacturing of cement, lime and gypsum

Manufacuring of concrete, cement and gypsum elements

Manufacuring of concrete, cement and gypsum elements

Cutting, carving and polishing of stone

Cutting, carving and polishing of stone

Manufacturing of steel structures and components

Manufacturing of steel structures and components

Master in European Construction Engineering

* Publicado en 2013


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

III. Consumo de energía en la construcción (Spain) Oil Consumptions (2011) *

Gas Consumptions (2011) *

0% 1% 5% 9%

7% 3% 8% 15%

0%

20% 84%

46%

Timber structures and carpentry materials for construction

Timber structures and carpentry materials for construction

Manufacturing of ceramic products for construction

Manufacturing of ceramic products for construction

Manufacturing of cement, lime and gypsum

Manufacturing of cement, lime and gypsum

Manufacuring of concrete, cement and gypsum elements

Manufacuring of concrete, cement and gypsum elements

Cutting, carving and polishing of stone

Cutting, carving and polishing of stone

Manufacturing of steel structures and components

Manufacturing of steel structures and components

Master in European Construction Engineering

* Publicado en 2013


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

De las gráficas anteriores se desprende que: •

Casi tres cuartas partes de la energía consumida en España en el sector de la construcción se emplea en la fabricación de yesos, cementos, cales, y materiales cerámicos.

Se trata en todos los casos de procesos que demandan altas temperaturas y, por tanto, grandes cantidades de energía.

En el sector de la construcción en España, el carbón se utiliza casi exclusivamente en la fabricación de cemento, cal y yeso.

Dos terceras partes del petróleo utilizado en la construcción se destina a la producción de cementos, cales, yesos y materiales derivados como el hormigón.

La mayor parte del consumo de gas se utiliza en la fabricación de elementos cerámicos para la construcción. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

IV. ¿Qué es una crisis energética? • Una crisis energética es un déficit en el suministro de una fuente de energía esencial para el desarrollo de una región determinada. • Estas fuentes de energía son las encargadas de proveer de electricidad a las calles y edificios, y de combustible a los automóviles y a los sistemas de calefacción y agua caliente. • Inevitablemente, la limitación del suministro traerá consigo un aumento desorbitado del precio de la energía. • En algunos casos, la carestía supone la imposibilidad total de abastecimiento de la demanda energética. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

IV. ¿Cuáles son las causas de una crisis energética? • POLÍTICAS: - Excesivo control del mercado que pueda traer consigo una falta de incentivos y por ende, una disminución de la producción. - Falta total de regulación que acabe en la formación de oligopolios y/o monopolios que dejen a la población a merced del mercado. • GEOESTRATÉGICAS: la rivalidad entre dos regiones o países, uno de los cuales es fuente de recursos energéticos escasos, puede llevar al otro a una reducción del suministro. • INESTABILIDADES Y/O CONFLICTOS: la explosión de un conflicto en un país poseedor de recursos energéticos limitará su capacidad extractiva y con ello su capacidad de suministro de energía a otros países. • FENÓMENOS NATURALES: terremotos, tsunamis o huracanes afectan también gravemente a la generación y posterior suministro de energía. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

IV. ¿Qué consecuencias tiene una crisis energética? La carestía de fuentes energéticas o el aumento desorbitado de su precio acarrea importantes consencuecias: • A nivel industrial y comercial: - Disminución de la capacidad productiva. - Disminución de la actividad comercial. • A nivel social: - Déficit de atención sanitaria. - Ausencia de servicios básicos: calefacción, luz, etc. - Salubridad. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

V. Crisis energética en el siglo XX • In 1973, Arabian oil countries embargoed oil shipments to the West because of their support to Israel in the Six-Day War against Egypt. Arab oil embargo finished in 1974. • In 1979-80, a second oil crisis occurred in the USA due to the Iranian Revolution and the Iran-Iraq War. • In 1990, the oil price spike occurred in response to the Iraqi invasion of Kuwait. • In 2000-01, the electricity crisis in California was caused by market manipulations and business corruption. • Oil prices increase in 2004-2005 due to: natural disasters, terrorism, speculation (demand bubble), etc. Master in European Construction Engineering


Introduccción a la Construcción Sostenible Módulo 4. Eficiencia Energética y Certificados Ambientales en Construcción

VI. ¿Soluciones a las crisis energéticas futuras? a) Desarrollo de energías alternativas y renovables que contribuyan al aseguramiento del suministro contínuo de energía al tiempo que minimizan los impactos asociados a su generación, transporte y uso. b) Favorecimiento de las políticas e instrumentos de eficiencia energética que permitan optimizar el uso de la energía, disminuyendo así los recursos necesarios y el impacto sobre el medio ambiente. Master in European Construction Engineering


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.