Año académico: 2003-04.
Departamento de Física y Química
Los Métodos de la Ciencia
4º de ESO
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
ÍNDICE p ág. Características de los inform es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 U.D . 1: LA M ED ID A ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Práctica 1.1.- M anejo de los instrum entos de m edida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Práctica 1.2 .- T rabajos con el vidrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Práctica 1.3 .- Errores en las m edidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Práctica 1.4 .- D eterm inación de la m asa, el volum en y la densidad de una canica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Práctica 1.5 .- La densidad del CO 2 y otras prop iedades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Práctica 1.6 .- Elaboración de hip ótesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Práctica 1.7 .- Estudio del m ovim iento rectilíneo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Práctica 1.8 .- Estudio del péndulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Práctica 1.9 .- D eterm inación de la aceleración de la gravedad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Práctica 1.10 .- M ap as y escalas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 A ctividades finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 U .D . 2 : TEM PER AT U R A Y PR ES IÓ N Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Práctica 2 .1.- F enóm enos term oeléctricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Práctica 2 .2 .- D eterm inación del punto de ebullición del agua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Práctica 2 .3 .- Curva de calentam iento del naftaleno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Práctica 2 .4 .- Sublim ación del yodo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Práctica 2 .5 .- Solubilidad y tem p eratura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Práctica 2 .6 .- D eterm inación de la presión atm osférica Práctica 2 .7 .- F uerz a y presión
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Práct ica 2 .8 .- D e t erm inación de d ensidades por el principio d e Arquím ed es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 A ctividades finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 U. D . 3 : L A EN ERG Í A Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Práctica 3 .1.- T rabajo realiz ado por una fuerza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Práctica 3 .2 .- Calor y tem p eratura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Práctica 3 .3 .- Energía y reacciones quím icas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 A ctividades finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 U .D . 4 : C O R R I EN T E ELÉ CT R I CA Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Práctica 4 .1.- F enóm enos electrostáticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Práctica 4 .2 .- Estudio del polím etro didáctico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Práctica 4 .3 .- Ley de O h m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 Práctica 4 .4 .- El generador y el m otor eléctricos
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A ctividades finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 U. D . 5 : CL A SI F I C A C I O N ES Y DISO LUCION ES Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 Práctica 5 .1.- Electrolisis del agua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 Práct ica 5 .2 .- D escom p osición té rm ica del trioxoclorato(V ) de p otasio (K ClO 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 Práctica 5 .3 .- D escom p osición del óxido de m ercurio (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 Práctica 5 .4 .- Sep aración de una m ez cla de sal y arena
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Práctica 5 .5 .- D eterm inación del grado alcoh ólico de una bebida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 Práctica 5 .6 .- Crom atografía en pap el . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 Práctica 5 .7 .- Extracción de clorofila
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Práctica 5 .8 .- Prep aración de una disolución 0 ,5 M de carbonato de sodio
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A ctividades finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 U. D . 6 : R EA C CI O N ES Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Práctica 6 .1.- Enlace quím ico y prop iedades de las sustancias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Práctica 6 .2 .- T ransform aciones quím icas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 Práctica 6 .3 .- Com p robación de la producción de CO 2 en la resp iración . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 Práctica 6 .4 .- V aloración de H Cl con N aO H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 Práctica 6 .5 .- V elocidad de reacción: F actores que la m odifican (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 Práctica 6 .6 .- V elocidad de reacción: F actores que la m odifican (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 Práctica 6 .7 .- Identificación de proteínas con ácido nítrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 Práctica 6 .8 .- Identificación de am oniaco en ch am p ús . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 Práctica 6 .9 .- Identificación de alm idón en cereales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 A ctividades finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-2-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
CARACTERÍSTICAS DE LOS INFORMES En diversas ocasiones, durante el curso, tendréis que buscar información sobre diversos temas, presentarla y exponerla al resto de la clase. Con el fin de unificar los criterios a seguir, al elaborar un informe hay que tener en cuenta las siguientes normas: 1ª.- Formato: - Extensión: de 5 a 8 páginas, incluidos los dibujos, fotografías, portada, etc.. - Formato de página: A4, con numeración en cada página. - Fuente: Cualquiera, con un tamaño de 12 puntos. - Texto justificado completo, a un solo espacio, escrito con ordenador o a mano. - Encabezado en todas las páginas con el título del informe. - Pie de página con el nombre y apellidos de los autores, curso y grupo. 2ª.- Estructura: a) Portada, con el título, autores, curso, grupo y fecha. b) Índice, con referencia a nº de página. c) Resumen del trabajo en un máximo de 10 líneas, utilizando una fuente de tamaño 10. d) Cuerpo del informe: Síntesis de la información encontrada en la bibliografía, reelaborada por el propio alumno (huir del “copiar” y “pegar”). e) Conclusiones del alumno sobre el tema tratado: aspectos con los que se está de acuerdo o en desacuerdo, posibles alternativas, etc., razonando en todo caso el punto de vista adoptado. f) Bibliografía. Deben citarse siempre un mínimo de 3 fuentes, indicando autor, año, título, editorial y lugar de edición. Ejemplos: GARCÍA POZO, T. (2003): Física y Química 4. Guadiel. Barcelona. LÓPEZ, J. et al. (1999): Técnicas experimentales de laboratorio. McGraw-Hill. Madrid. En caso de sitios electrónicos, citad la dirección.
U.D. 1: LA MEDIDA. INTRODUCCIÓN (Véanse las pág. 13 y ss. del libro texto): - Magnitudes fundamentales y derivadas. El Sistema Internacional de Unidades de Medida.
Cuestiones: 1.- ¿Cuántos litros habrá en un metro cúbico?.
2.- ¿Para qué crees que es útil el empleo de la notación científica?
3.- Si un vaso de los de agua tiene una capacidad de 250 ml, ¿cuántos vasos son necesarios para tener 5 litros?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-3-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO 4.- Responde a las cuestiones de la pág. 15 del libro de texto(1).
PRÁCTICA 1.1.- MANEJO DE LOS INSTRUMENTOS DE MEDIDA 1.- El calibrador (Véase la pág. 16 del libro de texto). Completa la siguiente tabla: Pieza
Grosor
Diámetro exterior
Moneda de 1 Eur
Diámetro interior
Profundidad
---
---
---
---
---
---
Tubo de ensayo Canica
---
Hoja del libro
---
2.- La balanza (Véase la pág. 18 del libro de texto). Antes de utilizar la balanza de laboratorio hay que equilibrarla. Para ello, coloca en el platillo la tara necesaria para que el fiel de la balanza quede por encima de la señal de equilibrio y, después, mueve las pesas hasta que esté en el cero. Anota el valor de las pesas: ésa será la tara inicial (T0= __________ g). Para calcular la masa de cualquier cuerpo, colócalo en el platillo sin quitar la tara y mueve las pesas hasta que la balanza esté equilibrada. Al valor de las pesas hay que restarle T0 para obtener la masa real del cuerpo. Completa la siguiente tabla: Pieza
Masa (g)
Moneda de 1 Eur Tubo de ensayo Canica Bola
(1 )
LÓ PE Z , J. et al. (19 9 9 ): T écnicas exp erim entales de laboratorio. M c G raw -H ill. M a d rid .
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-4-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO 3.- Medidas de volúmenes (Véase la pág. 19 del libro de texto). Para medir volúmenes utilizaremos, fundamentalmente, la probeta, la bureta y la pipeta. Coge un instrumento de cada clase y mide con ellos 1, 5 y 200 cm3 de agua. Cuestiones: 1.- ¿Qué instrumento utilizarías para medir volúmenes grandes? ¿Y para volúmenes pequeños?
2.- ¿Cómo calcularías el volumen de una gota de agua? ¿Y su radio?
PRÁCTICA 1.2.- TRABAJOS CON EL VIDRIO (Véase la pág. 20 del libro de texto). PRÁCTICA 1.3.- ERRORES EN LAS MEDIDAS Material: Flexómetro Regla milimétrica Calibrador
Mesa de laboratorio. Folio A4. Moneda de 20 céntimos.
Procedimiento: Con el flexómetro mide cinco veces la longitud de la mesa. Rellena la siguiente tabla y anota las medidas en la segunda columna: Medida Longitud Error 1 2 3 4 5 Media Determina la media de las medidas realizadas y anótalo en la última fila. Ese será el valor, que tomaremos como real, de la longitud de la mesa. Resta ahora, a cada medida, el valor real de la longitud y anota el valor absoluto (es decir, siempre positivo) en la tercera columna. Calcula la media de los errores y anótala en la última fila. Con la regla milimétrica mide cinco veces la longitud del folio. Rellena la siguiente tabla, que es similar a la anterior: IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-5-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Medida 1
Longitud
Error
2 3 4 5 Media Con el calibrador mide cinco veces el grosor de la moneda. Rellena la siguiente tabla: Medida 1
Longitud
Error
Folio
Moneda de 0'2 Eur
2 3 4 5 Media Cuestiones: 1.- ¿Cuál es la longitud de la mesa? Mesa
2.- ¿Cuánto vale el error absoluto cometido al hacer cada medida? Mesa Folio Moneda de 0'2 Eur 3.- ¿Y el error relativo? Mesa
Folio
Moneda de 0'2 Eur
4.- ¿Qué instrumento es más cómodo y rápido de usar para medir? ¿Cuál comete mayor error absoluto?
PRÁCTICA 1.4.- DETERMINACIÓN DE LA MASA, EL VOLUMEN Y LA DENSIDAD DE UNA CANICA Material: Calibrador Balanza Probeta Vidrio de reloj
Agua Canica
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-6-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Procedimiento: 1) Determinación de la masa con la balanza. Comprueba que cuando la balanza está en disposición de pesar el fiel de la misma marca 0. Sitúa en el platillo un vidrio de reloj limpio y seco y pésalo. Anota el resultado. MASA DEL VIDRIO DE RELOJ=_______ g. Deposita ahora la canica en el vidrio de reloj y pesa de nuevo. Anota el resultado MASA DEL VIDRIO DE RELOJ + CANICA=________g. Calcula la masa de la canica: MASA DE LA CANICA=_______g. 2) Determinación del diámetro de la canica con el calibrador y cálculo de su volumen. Abre el calibre, introduce la canica en la apertura y vuelve a cerrarlo de modo que sujete bien a la canica y ésta no se mueva. La lectura del calibrador corresponde al diámetro de la canica. Anota el resultado DIÁMETRO DE LA CANICA=________ mm A partir de este dato calcula matemáticamente el volumen de la canica suponiéndola una esfera perfecta. VOLUMEN DE LA CANICA=________cm3 3) Determinación del volumen de la canica mediante la probeta. Llena la probeta aproximadamente hasta su mitad con agua. Determina exactamente el volumen de líquido que has puesto. Anota el resultado: VOLUMEN DE AGUA EN LA PROBETA=________ml Introduce con cuidado la canica, comprueba que no quedan burbujas de aire adheridas a la misma (golpea suavemente el fondo de la probeta contra un paño situado en la mesa, si es necesario), y determina el nuevo volumen. Anota el resultado: VOLUMEN DE AGUA + CANICA=_______ml Calcula el volumen de la canica: VOLUMEN DE LA CANICA=_______ml Cuestiones: 1.- ¿Coinciden el volumen calculado a partir del radio con el volumen medido gracias a la probeta? ¿Cuánta es la diferencia entre ambos? ¿Cuál piensas que será el volumen correcto? ¿Por qué?
2.- ¿Qué densidad tiene la canica a partir del volumen que has considerado como correcto?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-7-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
PRÁCTICA 1.5.- LA DENSIDAD DEL CO2 Y OTRAS PROPIEDADES
Material:
Reactivos:
Matraz erlenmeyer de 250 ml Vaso de precipitados de 600 ml. Cristalizador. Probeta de 100 ml. 2 tubos de vidrio acodados a 90º Tubo de ensayo. Gradilla. Manguito de goma. Tapón perforado.
Mármol en trozos. Ácido clorhídrico concentrado. Disolución jabonosa para hacer pompas. Agua destilada. Vela de cumpleaños.
Procedimiento: Introduce el un codo de vidrio en la perforación del tapón (ten cuidado al realizar esta operación, humedece el vidrio y el agujero y protege tus manos con un trapo), une la salida del codo a otro mediante un manguito de goma. Llena hasta la tercera parte de su volumen el matraz erlenmeyer con trozos de mármol. Mide con la probeta 25 mL de ácido clorhídrico concentrado, añádelo al erlenmeyer y cierra con el tapón y sitúa la salida del mismo en el fondo de un vaso de precipitados de 600 ml vacío. Deja que la reacción se desarrolle un rato y, con cuidado retira, la salida de gas del vaso de precipitados. Lleva horizontalmente y con cuidado el vaso de precipitados hasta un vela encendida y vierte su contenido sobre la llama de la misma. Llena ahora un tubo de ensayo con el gas que se desprende del matraz erlenmeyer. Añade dos o tres mililitros de agua tapa el tubo con el dedo pulgar y agita fuertemente. Finalmente pon la salida de gas en el interior de un cristalizador vacío, deja un rato y luego lanza desde una cierta distancia una pompa de jabón a su interior. Si ves que el burbujeo de gas en el erlenmeyer se detiene, añade otros 25 ml de ácido clorhídrico concentrado. Cuestiones: 1.- A la vista de los resultados, ¿crees que el CO2 favorece la combustión?
2.- ¿Es soluble el CO2 en agua? Su densidad, ¿es mayor o menor que la del aire?
PRÁCTICA 1.6.- ELABORACIÓN DE HIPÓTESIS
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-8-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Hacer ciencia consiste en preguntarse sobre las causas de los fenómenos que se observan. Esto conduce a formular suposiciones lógicas que denominamos hipótesis las cuales tendrán que ser confirmadas por la experimentación. Si esto sucede, elaboramos una ley y el conjunto de leyes es lo que llamamos teoría científica. Las teorías suelen llevar a plantear nuevas preguntas y nuevas hipótesis con lo que conseguimos que nuestro conocimiento de las cosas se vaya perfeccionando. Observa el siguiente montaje. Los recipientes pueden ser dos garrafas de las que se utilizan para el agua potable. Cuestiones: 1.- Intenta explicar el funcionamiento del aparato y plantea una hipótesis.
2.- Expón a tus compañeros tu hipótesis, discútela con ellos y anota el consenso a que habéis llegado entre todos.
PRÁCTICA 1.7.- ESTUDIO DEL MOVIMIENTO RECTILÍNEO Se trata de investigar la relación entre la distancia recorrida por un cuerpo que se deja caer por un plano inclinado y el tiempo que tarda en recorrerla.
Material: Plano inclinado Carrito Cronómetros optoelectrónicos Cinta métrica Papel milimetrado Procedimiento: 1.- Coloca la rampa con una inclinación de unos 10º. 2.- Coloca el carrito en la parte superior y los dos cronómetros optoelectrónicos, de manera que el carrito, en su movimiento, intercepte el haz electromagnético emitido por el detector. 3.- Sujeta el carrito sobre la rampa impidiendo su caída con un lápiz situado delante; la varilla del carrito debe estar justo en el punto en que hace disparar el detector. Señala, en la vertical de dicho detector, la posición inicial marcando un cero sobre la rampa. Es conveniente señalar también la posición del lápiz para futuras pruebas. 4.- Haz marcas a lápiz a los 20, 40, 60, 80, 100 cm. 5.- Con el primer detector siempre en el cero, sitúa el segundo detector en la marca 20, pon un libro al final de la rampa para impedir que el carrito caiga al suelo y déjalo caer; anota el tiempo trascurrido. Repite la
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
-9-
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO operación dos veces más; los resultados quedarán reflejados en las columnas t1, t2 y t3. 6.- Haz lo mismo para las otras distancias y completa la siguiente tabla: Distancia (cm)
t1 (s)
t2 (s)
t3 (s)
t(media)= T(s)
T2 (s2)
20 40 60 80 90 100 Haz una gráfica en papel milimetrado, poniendo las distancias en el eje de ordenadas y la media de los tiempos en el eje de abcisas. Cuestiones: 1.- El movimiento que sigue el carrito, ¿cómo lo definirías: uniforme o acelerado? ¿Por qué?
2.- ¿Qué se entiende por aceleración?¿Cómo demostrarías que el movimiento es acelerado o uniforme?
3.- A la vista de la representación gráfica realizada, ¿cuánto vale la aceleración?
4.- ¿Qué velocidad lleva el carrito al final de cada uno de los intervalos?
5.- Pesa el carrito y, a continuación, sitúa sobre él un cuerpo de forma que la masa del mismo sea, por lo menos, el doble. Haz recorrer al carrito la distancia de 100 cm sobre el plano inclinado. ¿Varía el tiempo que tarda en recorrer esa distancia?¿Depende el tiempo, y por lo tanto, la aceleración, de la masa del cuerpo?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 10 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
6.- Si el ángulo de inclinación del plano lo hacemos mayor, ¿qué ocurre con la aceleración? ¿Hay un límite para el valor de la aceleración adquirida? ¿Cuánto vale dicho límite?
PRÁCTICA 1.8.- ESTUDIO DEL PÉNDULO (Véase la pág. 23 del libro de texto). a) Relación entre el periodo y el ángulo de oscilación. Cuenta el tiempo (t), que tarda en dar 10 oscilaciones y calcula el periodo. Completa la siguiente tabla:
" = 4º t(s)
" = 8º T(s)
Media
t(s)
" = 12º T(s)
Media
t(s)
" = 16º T(s)
Media
t(s)
T(s)
Media
Cuestiones: ¿Depende el periodo del ángulo de oscilación?
b) Relación entre el periodo y la longitud del péndulo. Cuenta el tiempo (t), que tarda en dar 10 oscilaciones y calcula el periodo. Completa la siguiente tabla: L= 40 cm t(s)
Media
L= 80 cm T(s)
t(s)
L= 120 cm T(s)
Media
t(s)
Media
T(s)
L= 160 cm t(s)
T(s)
Media
Cuestiones: ¿Depende el periodo de la longitud del péndulo?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 11 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
c) Relación entre el periodo y la masa del péndulo. Cuenta el tiempo (t), que tarda en dar 10 oscilaciones y calcula el periodo. Completa la siguiente tabla: m= t(s)
g T(s)
Media
m= t(s)
g
m=
T(s)
t(s)
Media
g T(s)
Media
m= t(s)
g T(s)
Media
Cuestiones: ¿Depende el periodo del péndulo de la masa de éste?
PRÁCTICA 1.9.- DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD La experiencia cotidiana de que todos los cuerpos, dejados libremente, caen, se explica diciendo que la Tierra crea un campo gravitatorio de manera que cualquier entidad que tenga masa, es atraída por ella. La intensidad del campo gravitatorio en un punto es la fuerza que se ejerce sobre cada kilogramo de masa colocado en dicho punto; este valor se llama también ‘aceleración de la gravedad’. La aceleración con que los cuerpos caen cuando se dejan libres en las proximidades del planeta, puede considerarse constante y su valor se puede obtener midiendo el periodo de oscilación de un péndulo. Dicho periodo, viene dado por la expresión:
.
Material: Pie, varilla, nuez y pinza. 2 m de hilo inextensible. Bola metálica con gancho. Cronómetro. Procedimiento: - Amarra la cuerda a la bola y cuélgala de la pinza. - Deja el péndulo en la posición de reposo para que el hilo, si está retorcido, recupere su estado normal. - Mide la longitud del hilo desde el punto de suspensión hasta el centro de la bola. - Separa la masa desde su posición de equilibrio hasta un ángulo de unos 20º como máximo (cuanto menor sea el ángulo, mejor será la medida de la aceleración de la gravedad). Deja que oscile el péndulo, procurando que el movimiento tenga lugar en un plano vertical. IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 12 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO - Cuando el péndulo alcance la amplitud máxima, pon en marcha el cronómetro y cuenta 10 oscilaciones completas. Entrénate un poco hasta que consigas medirlas bien. - Repite el procedimiento hasta que lo hayas hecho un total de 10 veces. Resultados: Anota los resultados en la siguiente tabla. t(s)
J (s)
gi
(gi -
)2
Intensidad del campo gravitatorio calculada: =
Como valor de g, tomaremos su valor medio y como estimación del error cometido, la desviación típica. Cuestiones: 1.- Explica de qué magnitudes depende el periodo de un péndulo.
2.- Compara el valor de g obtenido con el valor que usamos en los ejercicios (9'8 m.s-2). ¿Cómo explicarías la diferencia entre ambos valores? Indica las causas de error que hayan podido influir en el resultado.
3.- Un procedimiento para investigar la existencia de yacimientos minerales es la gravimetría. Explica en qué consiste.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 13 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
PRÁCTICA 1.10.- MAPAS Y ESCALAS (Véase la pág. 24 del libro de texto). Hacer un corte topográfico y m edir la distancia real entre dos puntos del m apa facilitado a los alum nos.
ACTIVIDADES FINALES: (Véase
la pág. 28 del libro de texto).
a) Observa a tu alrededor: 1, 2, 3, 7. b) B usca inform ación sobre ...: 1, 2, 3, 4, 5, 6. Elab ora un inform e sobre estos tem as. c) Diseña tus propias experiencias: 1, 2, 3, 4, 5, 7.
U.D. 2: TEMPERATURA Y PRESIÓN INTRODUCCIÓN (Véase la pág. 32 del libro de texto). Repaso de los conceptos: temperatura, cambios de estado, presión, principio de Pascal y principio de Arquímedes. - Actividades previas sobre la presión: - Calentar una lata de refresco, que contiene un poco de agua, hasta ebullición. Invertirla rápidamente mientras se sumerge en un recipiente con agua. Explica qué ha ocurrido. - En una botella de refresco echamos agua caliente hasta la mitad y cerramos inmediatamente. Observa lo que ocurre y da una explicación. - Dos globos diferentemente inflados se conectan a una llave de paso de las que se emplean en el riego por goteo, ¿en qué sentido pasará el aire? - Ajustamos un globo a la boca de una botella de refresco, lo metemos dentro e intentamos inflarlo. ¿Qué sucede? - Echamos agua en una botella de refresco hasta la mitad y la invertimos rápidamente sobre un recipiente con agua. ¿Qué sucederá si apretamos con la mano en la parte de la botella que tiene aire? ¿Y si lo hacemos en la parte que tiene agua? Explica lo que ocurre. - Una botella con agua y otra vacía se conectan mediante un doble tapón horadado. Al poner una sobre otra, no pasa el líquido a menos que lo agitemos. ¿Por qué? - A una botella de refresco se le hacen tres agujeros a diferentes alturas y se llena de agua. ¿Qué chorro llegará más lejos? ¿Por qué? - Actividad sobre el principio de Arquímedes: - Llenamos un vaso de agua hasta el borde y echamos unos cuantos cubitos de hielo. Cuando se derritan, ¿se derramará el agua? Cuestiones: (pág. 34): 1, 2, 3, 5, 6, 7. PRÁCTICA 2.1.- FENÓMENOS TERMOELÉCTRICOS Cuando se ponen en contacto dos metales diferentes, aparece entre ellos una tensión eléctrica debida a la diferente energía de los electrones libres de cada uno. Los electrones más energéticos se difunden en la red metálica del otro con lo cual, el primero queda cargado positivamente y el segundo, negativamente. La tensión producida, llamada tensión de Volta, es del orden de los milivoltios. Si se cierra el circuito, la tensión se hace nula, de forma que se cumpla el principio de conservación de la IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 14 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO energía. No obstante, si ponemos uno de los contactos entre los metales a mayor temperatura que otro, se puede obtener una corriente eléctrica cerrando el circuito. Este fenómeno es el fundamento de las pilas termoeléctricas y se conoce como efecto Seebeck. En la práctica de la pág. 36 del libro de texto, se utiliza un termopar formado por dos hilos de cobre y constantán (una aleación formada por un 60 % de cobre y un 40 % de níquel, de escasa conductividad eléctrica, que apenas varía con la temperatura). Una de las soldaduras se calienta con el mechero y la otra, se mantiene introducida en un vaso de precipitados con hielo picado; si conectamos entre los extremos libres un polímetro, observaremos que indica el paso de una corriente eléctrica. Si, por el contrario, se aplica una tensión eléctrica a los extremos de la soldadura, se observa que ésta se enfría o se calienta según el sentido de la corriente eléctrica. El fenómeno se llama efecto Peltier. Cuestiones: 1.- ¿De qué factores depende la tensión de Volta obtenida?
2.- ¿Qué aplicaciones pueden tener estos fenómenos?
PRÁCTICA 2.2.- DETERMINACIÓN DEL PUNTO DE EBULLICIÓN DEL AGUA
Material:
Reactivos:
Matraz redondo de 500 ml Tapón perforado Termómetro Tubo de vidrio acodado a 90º. Soporte Pinza y nuez Trípode Rejilla difusora Mechero
Agua destilada Plato poroso.
Procedimiento: Introduce unos 200 mL de agua destilada en el matraz, añade el plato poroso y tapa con el tapón perforado al que previamente has introducido el termómetro y el codo a 90º. El bulbo del termómetro debe quedar situado en las proximidades de la superficie del agua pero sin llegar a tocarla. Calienta el agua tomando nota de la temperatura que marca el termómetro cada minuto y cesa de tomar datos cuando el agua lleve en ebullición 10 minutos.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 15 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Cuestiones: 1.- Representa gráficamente la temperatura que has ido midiendo en función del tiempo.
2.- ¿Piensas que ocurrirá lo mismo si se emplea un recipiente hermético para hervir el agua? ¿Por qué?
3.- Si conectáramos el matraz a una bomba de vacío, el punto de ebullición hubiera sido mayor o menor? Compruébalo (pág. 40, experiencia nº 8 del libro de texto), y saca conclusiones.
4.- Dibuja el material de laboratorio empleado y el montaje realizado.
PRÁCTICA 2.3.- CURVA DE CALENTAMIENTO DEL NAFTALENO Material:
Reactivos:
Vaso de precipitados de 400 ml Tubo de ensayo Termómetro Aro Soporte 2 pinzas con nuez Cordel o hilo metálico fino. Rejilla difusora Mechero
Naftaleno Agua
Procedimiento: Llena hasta la tercera parte un tubo de ensayo con naftaleno, introduce el termómetro de modo que el bulbo del mismo este situado como a 1 cm del fondo del tubo. Pon en el vaso de precipitados unos 300 ml de agua y añade unos trozos de piedra pómez o de porcelana porosa; sitúalo encima de la rejilla, en el aro. Pon el tubo de ensayo en el interior del vaso de precipitados con agua y sujétalo con una pinza al soporte. Pon otra pinza por encima y cuelga de ella con el cordel el termómetro. Enciende el mechero, procurando que la llama sea incolora y sitúalo bajo el aro metálico.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 16 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Anota la temperatura que marca el termómetro antes de encender el mechero: es la temperatura correspondiente al tiempo = 0. Con el mechero encendido, deja transcurrir un minuto y anota la nueva temperatura: es la correspondiente al tiempo t= 1 min. Ve tomando las temperaturas, minuto a minuto hasta que trascurran diez minutos desde que el agua empiece a hervir. Apaga en mechero, deja que se enfríe y deja todo limpio en su sitio. Cuestiones: 1.- Haz una tabla con el tiempo y la temperatura obtenidos mientras el mechero ha estado encendido.
2.- Representa gráficamente, en papel milimetrado, los valores obtenidos. Pega el papel a continuación:
3.- ¿Qué ocurre al principio con la temperatura?
4.- Dibuja y nombra el material que has utilizado en esta práctica.
PRÁCTICA 2.4.- SUBLIMACIÓN DEL YODO (Véase la pág. 39 del libro de texto). Cuestiones: 1.- ¿Conoces otras sustancias que, al calentarlas, sublimen?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 17 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO 2.- ¿Podría utilizarse este proceso para purificar sustancias? Explícalo.
PRÁCTICA 2.5.- SOLUBILIDAD Y TEMPERATURA (Véase la pág. 42 del libro de texto y hacer la práctica número 12, respondiendo a las cuestiones que, en ella, se plantea). Cuestiones:
PRÁCTICA 2.6.- DETERMINACIÓN DE LA PRESIÓN ATMOSFÉRICA Objetivo: Calcular experimentalmente la presión atmosférica. Material: 1 vaso de precipitados 50 cm de tubo trasparente flexible 1 probeta graduada 1 tapón perforado para la probeta Procedimiento:
Tomamos un vaso de precipitados y una probeta graduada y los unimos mediante un tubo flexible, como indican las figuras. En la figura, el nivel del agua en el vaso y en la probeta es el mismo, por lo que podemos escribir: P1=P’2, donde P’2 coincidirá con la presión del aire encerrado en la jeringa, cuyo volumen es V1. Si levantamos ahora la jeringa, un poco de agua descenderá hasta el vaso, con lo que el nuevo volumen del aire encerrado será V2. Por otra parte, la presión en dos puntos de un mismo líquido que estén a la misma altura, debe ser igual, por lo que: P1= dAgAh + P2, donde P2 es la nueva presión a que se encuentra ahora el aire encerrado. Considerando al aire como un gas ideal y dado que la experiencia se realiza a temperatura constante, es de aplicación la ley de Boyle-Mariotte: P0 A V0 = Pf A Vf. Así que: P1 AV1 = P2 AV2, pero d A g A h + P2 =P1, y P2 = P1 - d A g A h con lo que IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 18 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO P1 AV1 = ( P1 - d A g A h) A V2
La densidad del agua, g y h hay que expresarlas en las unidades del SI; el volumen, puedes dejarlo en cm3. De esta forma, la presión atmosférica vendrá dada en pascales. Resultados: V1=
Cálculos:
V2= h= dagua= g=
Presión atmosférica calculada=_________________ Pa.
Cuestiones: a) ¿Qué altura debería tener una columna de agua para poder utilizarla como líquido barométrico? ¿Piensas que sería fácil de utilizar?
b) Expresa la presión atmosférica calculada en: b.1) Atmósferas: _________ atm. b.2) Bares: __________ b. b.3) Milibares: _________ mb. b.4) Tores o mm de Hg: __________ tor. c) Si la presión atmosférica, medida con el barómetro del laboratorio es de _________ tor, calcula: c.1) El error absoluto que hemos tenido al hallar la presión con nuestro procedimiento.
c.2) El error relativo, considerando la medida barométrica como el valor real de la magnitud.
PRÁCTICA 2.7.- FUERZA Y PRESIÓN
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 19 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Material: Automóvil Manual del vehículo Papel milimetrado Manómetro Objetivo: Distinguir entre presión y fuerza y comparar la presión de un neumático sobre la carretera con la presión del aire que contiene. A veces se confunden los conceptos de fuerza y presión y se oye decir que “hay que meterle dos kilos de presión a las ruedas”, cuando lo correcto hubiera sido decir dos kilopondios por cada centímetro cuadrado o dar la presión en pascales, bares o atmósferas. La presión depende de la forma en que se distribuye la fuerza sobre una superficie; recuerda que, por definición,
, donde P es la presión, F es la fuerza y S es el área de la
superficie sobre la que se aplica la fuerza. En esta actividad vamos a calcular la presión que un neumático ejerce sobre la carretera y compararla con la presión del aire dentro de la rueda. Si no fuera por la cubierta, ambas presiones deberían ser iguales. La presión del aire se puede determinar con un manómetro y la del neumático sobre la carretera, dividiendo el peso del coche entre el área de contacto con la carretera. Procedimiento: a) Infla las ruedas del coche y anota la presión de cada una de ellas, medida con el manómetro. Fíjate en las unidades en que está graduado el aparato. Anota los datos en la tabla. b) Coloca una hoja de papel milimetrado delante de cada una de las cuatro ruedas del coche. Pide a tu padre que mueva el vehículo hasta que las ruedas estén encima de las hojas milimetradas. Traza con un rotulador el contorno de la parte de la rueda que está en contacto con el papel. Sería conveniente que las ruedas estuvieran manchadas para que la huella sobre el papel se vea bien. c) Calcula el área de cada una de las ruedas en contacto con el papel, en cm2 y en m2. Como habrá zonas en las que no hace contacto la rueda, debido a los huecos que deja el dibujo, haz un muestreo marcando un rectángulo de 5 x 3 cm, por ejemplo, y calcula la superficie que, realmente, toca el suelo; extrapola el resultado a toda la superficie de contacto. Anota los resultados en la tabla. d)Averigua la masa y el peso del coche mirando en la documentación del mismo. Si hay datos que indiquen la distribución del peso entre los neumáticos delanteros y traseros, utilízalos; si no es así, divide el peso total entre 4 y anota el resultado en la tabla anterior. Resultados: NE UMÁTICO
ÁREA DE CON TACTO
PRE SIÓ N CALCULAD A
PRE SIÓ N ME DID A
(cm 2 )
(bar)
CO N E L MA N ÓME TR O (bar)
Delantero izq. Delantero derecho Trasero izq. Trasero derecho
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 20 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Cuestiones: 1.- Compara la presión ejercida por cada rueda sobre el suelo con la presión del aire en el neumático. ¿Qué porcentaje de la presión ejercida por el neumático se debe a la presión del aire? Anótalo a continuación: Rueda
Delantera izq.
Delantera dcha.
Trasera izq.
Trasera dcha.
% de la presión debida al aire
2.- La presión ejercida por el neumático sobre la carretera es mayor que la presión del aire dentro de la rueda. ¿Piensas que pasaría lo mismo si la cubierta fuera una membrana sin apenas resistencia?
3.- Considera ahora la situación opuesta: si el neumático fuera una estructura rígida, ¿la presión del aire sería similar a la presión del neumático sobre la carretera? Explícalo.
4.- La masa real del vehículo, ¿podría ser diferente de la que aparece en la documentación?
5.- ¿Para qué sirve el dibujo del neumático, sobre todo, en caso de lluvia?
6.- El manómetro mide la diferencia entre la presión del aire del interior de la rueda y la presión atmosférica (observa que si la rueda está desinflada marca cero bares aunque esté presente la presión atmosférica). ¿Cuál es la presión dentro del neumático delantero derecho?
7.- ¿Por qué la presión atmosférica (1'013 bar o 101 300 Pa), no se sumó a la presión manométrica cuando se compararon las presiones en la cuestión nº 1?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 21 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO PRÁCTICA 2.8.- DETERMINACIÓN DE DENSIDADES POR EL PRINCIPIO DE ARQUÍMEDES (Véase la pág. 45 del libro de texto). ACTIVIDADES FINALES: a) (Véase la pág. 34 del libro de texto): Cuestiones números 1, 2, 4 y 5. b) Explica el concepto de ósmosis directa e inversa. c) Construye un elevador de Pascal (prensa hidráulica) (pág. 38 del libro de texto). d) Explica el funcionamiento del diablillo de Descartes (pág. 38 del libro de texto). e) Busca información sobre... (pág. 48 del libro de texto): 1, 2, 3, 4 y 5. f) Diseña tus propias experiencias: 1, 3, 4, 5 y 7. U.D. 3: LA ENERGÍA INTRODUCCIÓN (Véase la pág. 51 y ss. del libro de texto): - Repaso de los conceptos: trabajo, potencia y energía, y comentario de las cuestiones de la pág. 54. - Funcionamiento de la máquina de vapor, de los sistemas de calefacción y de las centrales eléctricas. PRÁCTICA 3.1.- TRABAJO REALIZADO POR UNA FUERZA (Véanse las experiencias 1, 2, 3 y 4 de las pág. 58 y ss. del libro de texto). Cuestiones: 1.- (Experiencia 1):
2.- (Experiencia 2):
3.- (Experiencia 3):
4.- (Experiencia 4):
PRÁCTICA 3.2.- CALOR Y TEMPERATURA * IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 22 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Objetivo: Predecir la temperatura final de una mezcla de varios vasos de agua a diferentes temperaturas. PRÁCTICA 3.3.- ENERGÍA Y REACCIONES QUÍMICAS (Véase la pág. 63 y ss. del libro de texto): Experiencias: 9, 10, 11, 12, 13, 14 y 15. Cuestiones: 1.- (Experiencia nº 9):
2.- (Experiencia nº 10):
3.- (Experiencia nº 11):
4.- (Experiencia nº 12):
5.- (Experiencia nº 13):
6.- (Experiencia nº 14):
7.- (Experiencia nº 15):
ACTIVIDADES FINALES:
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 23 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO a) Observa a tu alrededor (pág. 66 del libro de texto): 2, 4, 5, 6, 7, 8, 9 y 10. b) Busca información (pág. 67 del libro de texto): 1, 2, 3, 4 y 5. c) Diseña tus propias experiencias: 1, 4, 5 y 6. U.D. 4: CORRIENTE ELÉCTRICA INTRODUCCIÓN: (Véase la pág. 70 y ss. del libro de texto): - Repaso de los conceptos: carga eléctrica, corriente eléctrica, intensidad, resistencia, tensión y potencia eléctrica. - Código de colores para resistencias. - Diferentes tipos de resistencias: termistores, fotorresistores, varistores, etc. - Conexión de resistencias en serie y en paralelo. - Ley de Ohm y efecto Joule. - Fenómenos de inducción electromagnética. - Peligros de la corriente eléctrica. - Aparatos de medida. Funcionamiento. PRÁCTICA 4.1.- FENÓMENOS ELECTROSTÁTICOS (Véase la pág. 76 y ss. del libro de texto). PRÁCTICA 4.2.- ESTUDIO DEL POLÍMETRO DIDÁCTICO (Se facilitará el material teórico y práctico correspondiente). PRÁCTICA 4.3.- LEY DE OHM (Se facilitará el material teórico y práctico correspondiente). PRÁCTICA 4.4.- EL GENERADOR Y EL MOTOR ELÉCTRICOS (Véase la experiencia nº 12 de la pág. 83 del libro de texto). Cuestiones:
ACTIVIDADES FINALES: a) Observa a tu alrededor (pág. 86 del libro de texto): 1, 2, 4, 5, 6, 7, y 8. b) Busca información (pág. 86 del libro de texto): 1, 2, 3, 4, 5 y 6. Además, sobre las pilas de combustible y sus aplicaciones prácticas. c) Diseña tus propias experiencias: 1, 2, 4, y 5.
U.D. 5: CLASIFICACIONES Y DISOLUCIONES IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 24 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO INTRODUCCIÓN: (Véanse las pág. 109 y ss. del libro de texto): - Distinción entre compuesto y mezcla. - Concentración de una disolución. Modos de expresarla. PRÁCTICA 5.1.- ELECTROLISIS DEL AGUA Material:
Reactivos:
Aparato de Hofmann Fuente de alimentación Vaso de precipitado de 250 mL
Agua destilada Ácido sulfúrico
Procedimiento: 1º.- Vierte agua destilada en el vaso de precipitados hasta su mitad y añádele unas gotas de ácido sulfúrico. Abre las llaves de paso del aparato de Hofmann y vierte el agua del vaso hasta que salga un poco de agua por la parte superior de los tubos del aparato. A continuación, cierra las llaves de paso. 2º.- Conecta el aparato a la fuente de alimentación. Selecciona una corriente continua de unos 10 V. Cuestiones: 1.- ¿Qué ocurre en los tubos de ensayo?
2.- Conociendo la fórmula química del agua, ¿qué tubo es el que contiene oxígeno? Compruébalo acercando, una vez terminada la operación, una cerilla a cada tubo y anota lo que pasa.
3.- ¿Por qué se emplea corriente continua para hacer una electrolisis y no una corriente alterna?
4.- Dibuja los materiales empleados y el montaje realizado.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 25 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO PRÁCTICA 5.2.- DESCOMPOSICIÓN TÉRMICA DEL TRIOXOCLORATO(V) DE POTASIO (KClO3)
Material:
Reactivos:
Tubo de ensayo Pinza con nuez Soporte Mechero
Trioxoclorato(V) de potasio Papel de filtro. Palillo de madera.
Procedimiento: Echa una capa de 1 cm de clorato de potasio en el fondo de un tubo de ensayo. Sujétalo, inclinado, con la pinza al soporte y caliéntalo suavemente, desde arriba hacia abajo, de forma que se funda en primer lugar la parte superior. Ten cuidado al calentar y evita que la boca del tubo de ensayo esté inclinada hacia un compañero. Cuando el clorato esté fundido, enciende un palillo de madera por su extremo y sopla para apagar la llama, sitúa la punta incandescente el la boca del tubo de ensayo. Haz una pequeña bola con un cuadradito de papel de filtro de 1 a 1,5 cm de lado. Introduce la bolita de papel en el tubo de ensayo Cuestiones: 1.- ¿Qué ocurre al situar la punta incandescente del palillo en la boca del tubo de ensayo?¿Y al introducir una bolita de papel?
2.- Tras la experiencia, ¿sigue habiendo clorato en el tubo de ensayo?
3.- Dibuja el material de laboratorio empleado.
PRÁCTICA 5.3.- DESCOMPOSICIÓN DEL ÓXIDO DE MERCURIO (II)
Material:
Reactivos:
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 26 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Pie con varilla Nuez Pinza Tubo de ensayo Algodón Mechero Espátula
Óxido de mercurio (II)
Haz el montaje sujetando el tubo de ensayo a la varilla mediante la pinza; déjalo un poco inclinado. Pon en el tubo de ensayo un poco de óxido de mercurio (II), tapa la boca del tubo con un poco de algodón y calienta suavemente. Procura no respirar los gases desprendidos pues son tóxicos. Observa lo que ocurre. Cuestiones: 1.- La sustancia pura que había en el tubo de ensayo, ¿era un compuesto o una sustancia simple?
2.- ¿Cuáles han sido los productos de la reacción? ¿Qué queda en el tubo?
3.- ¿Se ha mantenido constante la masa? ¿Cómo lo comprobarías?
4.- Escribe la reacción que ha tenido lugar.
PRÁCTICA 5.4.- SEPARACIÓN DE UNA MEZCLA DE SAL Y ARENA
Material:
Reactivos:
2 Matraces erlenmeyer Vaso de precipitados Embudo Papel de filtro Vidrio de reloj Mechero Balanza.
Cloruro de sodio Arena Agua destilada.
Ajusta la balanza a cero con el vidrio de reloj.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 27 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Vierte la mezcla de sal y arena en el vidrio de reloj y pésala. Masa de la mezcla: Pasa la mezcla al vaso de precipitados y añádele agua destilada, que previamente habrás calentado. Agita brevemente y deja reposar. Comprueba que se ha disuelto toda la sal. Si no se ha disuelto, vuelve a agitar y, si es necesario, añade un poco más de agua caliente. Cuando toda la sal esté disuelta, haz un filtro cónico con el papel de filtro y filtra la mezcla, dejando que el líquido caiga en otro matraz erlenmeyer. Limpia el vaso de precipitados con agua destilada caliente, hasta que no queden restos de arena en él, y filtra el agua de lavado. Añade un poco de agua destilada caliente en el filtro, para lavar la arena. Coloca el papel de filtro, con la arena, en un vidrio de reloj y deja que se seque durante un día entero. Si es posible, introdúcelo en una estufa o un desecador. Una vez seca, pasa con cuidado la arena a un vidrio de reloj para pesarla. Masa en gramos
Porcentaje
Mezcla Arena Sal: Cuestiones: 1.- ¿Por qué crees que el filtrado se hace más lento cuando transcurre el tiempo?
2.- El agua filtrada ¿es igual al agua destilada empleada al disolver? ¿Qué las diferencia? ¿Puedes distinguirlas a simple vista?
3.- Dibuja el material de laboratorio
PRÁCTICA 5.5.- DETERMINACIÓN DEL GRADO ALCOHÓLICO DE UNA BEBIDA (Véase la pág. 113 del libro de texto, experiencia 2). Cuestiones: 1.- (Experiencia nº 2):
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 28 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
PRÁCTICA 5.6.- CROMATOGRAFÍA EN PAPEL Material:
Reactivos:
Vaso de precipitados de 250 ml Papel de filtro Varilla de vidrio Probeta.
Alcohol Agua destilada Rotulador negro.
Procedimiento: Pon en el vaso de precipitados 25 ml de alcohol y 25 ml de agua destilada. Corta una tira de unos 2 cm de ancha y 20 cm de larga de papel de filtro. Cerca de uno de sus extremos, como a 1.5 cm, haz una mancha densa con el rotulador. Introduce la tira de papel en el vaso de precipitados, de forma que el líquido la moje pero no llegue a la mancha de rotulador. Con ayuda de la varilla de vidrio, cruzada sobre el vaso de precipitados, deja la tira de papel de filtro en el vaso de precipitados. Cuestiones: 1.- Cuántos colores han aparecido sobre el papel?
2.- Son todas las manchas de la misma extensión? )crees que podría emplearse esta técnica para calcular la composición de la tinta?
3.- Dibuja el material de laboratorio empleado y el montaje final de la cromatografía.
PRÁCTICA 5.7.- EXTRACCIÓN DE CLOROFILA Material:
Reactivos:
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 29 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Mortero de porcelana. Vaso de precipitados de 100ml. Embudo. Varilla de vidrio Soporte. Aro con nuez. Papel de filtro.
Alcohol etílico de 96º. Arena lavada. Hojas verdes.
Procedimiento: Pon en el mortero una pequeña cantidad de arena y añade hojas verdes finamente troceadas. Tritura frotando fuertemente con la maja la mezcla arena-planta sobre las paredes del mortero. Cuando esté bien triturado añade unos 30 mL de alcohol etílico y remueve bien la mezcla. Monta el embudo con un filtro de papel en el aro del soporte y pon el vaso de precipitados debajo para recoger el filtrado. (el pico del embudo debe estar en contacto con la pared interior del vaso). Vierte el contenido del mortero al papel de filtro y espera a que todo el liquido atraviese el filtro. Cuelga una tira estrecha de papel de filtro de modo que el extremo inferior este sumergido en la disolución transparente de color verde que has obtenido tras la filtración pero que no toque ni las paredes ni el fondo del vaso. Deja que el líquido verde ascienda por capilaridad por la tira de papel de filtro. Cuando haya ascendido unos 10 cm retírala y deja que se evapore el alcohol. Has realizado una cromatografía del extracto de clorofila. Cuestiones: 1.- Anota todas las operaciones realizadas y explica para qué las has efectuado.
2.- ¿Aprecias distintas bandas de color donde ha llegado la disolución de clorofila en la tira de papel?. Pega tu cromatografía en el cuaderno.
3.- Dibuja los materiales empleados y un esquema del montaje realizado.
PRÁCTICA 5.8.- PREPARACIÓN DE UNA DISOLUCIÓN 0'5 M DE CARBONATO DE SODIO
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 30 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Material:
Reactivos:
Matraz aforado de 500 ml Embudo varilla de vidrio Gotero Vidrio de reloj Vaso de precipitados Balanza
Agua destilada Carbonato de sodio
Procedimiento: Determina la masa molar del carbonato de sodio (Na2CO3): M=___________ g. Determina el número de moles que habrá en 0'5 L de disolución 0.5 M: n= _________ mol. Determina la masa de esos moles: m= ___________ g. Pesa en la balanza y sobre el vidrio de reloj esa masa de carbonato y viértela en el vaso de precipitados. Limpia el vidrio de reloj con un poco de agua destilada y viértela en el mismo vaso. Añade 100 mL de agua al vaso y agita hasta que se disuelva. Si es preciso, añade más agua. Una vez disuelto, pásalo, con el embudo, al matraz aforado. Añade agua destilada al vaso de precipitados y viértela al matraz aforado. Repite la operación. Añade agua destilada con el frasco lavador al matraz aforado. Cuando el nivel del líquido esté cerca de la marca de aforo, añade el agua lentamente con un gotero. Cuestiones: 1.- ¿Cuántas moléculas de carbonato hay en la disolución?
2.- ¿Cuántos átomos de carbono y cuántos de sodio habrá en la disolución?
3.- ¿Cuántos moles de átomos de sodio están disueltos? ¿Cuántos de carbono?
ACTIVIDADES FINALES: 1.- Busca información sobre... (pág. 126 del libro de texto): 1, 2, 3, 4, 5, 6 y 7. 2.- Diseña experiencias: 1, 2, 3 y 4. U.D. 6: REACCIONES
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 31 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO INTRODUCCIÓN (Véase la pág. 129 del libro de texto): - Concepto de reacción química. - Tipos de reacciones. - Leyes de las reacciones químicas. PRÁCTICA 6.1.- ENLACE QUÍMCO Y PROPIEDADES DE LAS SUSTANCIAS
Material:
Reactivos:
Pila de petaca Hilo de cobre Polímetro Matraz erlenmeyer Vaso de precipitados.
Agua destilada Cloruro de sodio Clavo Estaño Sulfato de sodio Alcohol Parafina.
Procedimiento: Con ayuda de la pila y el polímetro, determina qué sustancias son conductores eléctricos. Para eso, conecta en la pila a cada sustancia con ayuda del cable de cobre y tócala con las varillas del polímetro, puesto para medir intensidad de corriente. En el matraz erlenmeyer intenta disolver en agua cada sustancia. Coloca 50 mL de agua en el matraz, añade la sustancia y agita. Una vez disueltas, con ayuda del polímetro y la pila, comprueba si la disolución conduce la electricidad. Pasa la disolución al vaso de precipitados, conecta la pila con el cable de cobre a la disolución, y toca los cables de cobre con las varillas del polímetro. Recuerda que las sustancias con enlace metálico conducen la electricidad, lo mismo que las sustancias iónicas disueltas en agua. Cuestiones: 1.- En una tabla, indica qué sustancias conducen la electricidad, cuáles se disuelven en agua y cuáles conducen la electricidad disueltas.
2.- ¿Qué sustancias presentan enlace iónico?
3.- ¿Qué sustancias presentan enlace covalente? ¿Y metálico?
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 32 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO
PRÁCTICA 6.2.- TRANSFORMACIONES QUÍMICAS Material:
Reactivos:
Vidrio de reloj 2 Tubo de ensayo Pinza Gradilla Balanza Mechero
Hierro en limadura Azufre.
Procedimiento: Pesa 5 g de azufre y un gramo de limaduras de hierro. Deposítalo todo en el vidrio de reloj y mézclalo cuidadosamente. Introduce parte de la mezcla en dos tubos de ensayo, hasta ocupar una altura de 1 o 1,5 cm. Deja uno en la gradilla y calienta la mezcla en el mechero bunsen con cuidado. Déjalo enfriar en la gradilla junto al otro tubo. Vacía el contenido de ambos tubos de ensayo. Cuestiones: 1.- Ambos tubos tenían inicialmente la misma mezcla. Al final, ¿contienen la misma sustancia?
2.- Sabiendo que el azufre es soluble en éter de petróleo, indica el procedimiento para separar la mezcla de azufre e hierro.
3.- ¿Qué es necesario para que se produzca la transformación química?
PRÁCTICA 6.3.- COMPROBACIÓN DE LA PRODUCCIÓN DE CO2 EN LA RESPIRACIÓN
Material:
Reactivos:
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 33 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO 2 Matraces erlenmeyer de 250 ml Embudo Varilla de vidrio. Aro con nuez. Soporte. Espátula. Tubo de virio o pajita de refresco. Papel de filtro
Hidróxido de Bario. Agua destilada.
Procedimiento: Pon unos 50 ml de agua destilada en uno de los matraces erlenmeyer de 250 ml. Añade una espátula rasa de hidróxido de bario, agita con la varilla y añade a continuación otros 50 ml de agua destilada. Filtra, recogiendo el filtrado en el otro vaso de precipitados. Cuando todo el líquido haya sido filtrado, introduce en él el extremo del tubo de vidrio o de la pajita de refresco y sopla de modo que borbotee en el líquido. La aparición de un ppdo blanco de carbonato de bario indica la presencia de dióxido de carbono. Cuestiones: 1.- Escribe y justifica todas las operaciones que has realizado.
2.- Escribe todas las reacciones que han transcurrido. A la vista de los resultados, ¿puedes decir que expeles dióxido de carbono?
3.- Dibuja los materiales empleados y un esquema del montaje realizado.
PRÁCTICA 6.4.- VALORACIÓN DE HCl CON NAOH
Material:
Reactivos:
Matraz erlenmeyer de 100 ml Bureta Soporte Nuez y pinza Embudo Pipeta
Disolución de NaOH Disolución 0,1 de HCl Fenolftaleína 0,25 %
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 34 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Procedimiento: Coloca la bureta verticalmente y sujétala en el soporte con la nuez y la pinza. Llénala, con ayuda del embudo, de disolución de NaOH 0.1 M. Debajo de la bureta debe caber perfectamente el matraz erlenmeyer. Pon en el matraz erlenmeyer 25 ml de disolución de HCl, medidos con la pipeta, y agrégale dos gotas de la disolución de fenolftaleína. Coloca el matraz debajo de la bureta y abre despacio el grifo de ésta, dejando que caiga gota a gota la disolución en el matraz erlenmeyer. Cuando al caer la gota aparezca una tonalidad rosa, disminuye la velocidad de caída de las gotas cerrando el grifo y, cada vez que caiga una gota agita el matraz erlenmeyer. Cierra el grifo en el momento en que la tonalidad rosácea sea permanente y anota el volumen de disolución que ha caído: V= ml La concentración de la disolución es 0.1 M, equivalente a 4 g/l. Determina la masa de NaOH añadida (recuerda que debes expresar el volumen en litros): Como la reacción producida es: NaOH + HCl -----------> NaCl + H2O Puedes, empleando la estequiometría, calcular los gramos de ácido clorhídrico que han reaccionado y la concentración de la disolución. Cuestiones: 1.- ¿Cuántos moles de NaOH y HCl han reaccionado?
2.- ¿Por qué se añade fenolftaleína?
3.- Dibuja los materiales empleados y un esquema del montaje realizado.
PRÁCTICA 6.5.- VELOCIDAD DE REACCIÓN: FACTORES QUE LA MODIFICAN (I)
Material:
Reactivos:
Mortero Tubos de ensayo Globos y gomilla Gradilla.
Marmolina Ácido clorhídrico al 5 % Ácido clorhídrico al 1 % Ácido clorhídrico al 0'1 %.
Se trata, en esta experiencia, de estudiar la relación que existe entre la velocidad de una reacción química y el grado de división o la concentración de los reactivos. Utilizaremos, para ello, marmolina pulverizada y sin pulverizar y ácido clorhídrico de distintas concentraciones. IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 35 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Procedimiento: Con el mortero, convierte parte de la marmolina en un polvo fino. Vierte un poco del polvo en un globo y coloca en otro globo marmolina no pulverizada (como 1 g). Llena hasta 3 cm dos tubos de ensayo con ácido clorhídrico al 0'1% y coloca los globos anteriores sobre los tubos, sujetándolos con ayuda de las gomas y sitúalos en la gradilla. Vierte el contenido de cada globo dentro del tubo. Pon en tres globos 3 gramos de marmolina y sujétalos como anteriormente en tres tubos de ensayo en los que has puesto anteriormente unos 3 cm de ácido clorhídrico al 5, 1 y 0'1 %. Vierte el contenido de cada globo en el tubo. Cuestiones: 1.- ¿Qué ocurre con los globos?
2.- ¿Qué globo se ha inflado antes?
3.- ¿Depende la velocidad de la reacción de la concentración del ácido? ¿Y de la pulverización de la marmolina? ¿Cómo?
PRÁCTICA 6.6.- VELOCIDAD DE REACCIÓN: FACTORES QUE LA MODIFICAN (II) (Véase la pág. 41 del libro de texto, experiencias 10 y 11), y contesta a las cuestiones correspondientes:.. Cuestiones: 1.- (Experiencia nº 10):
2.- (Experiencia nº 11):
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 36 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO PRÁCTICA 6.7.- IDENTIFICACIÓN DE PROTEÍNAS CON ÁCIDO NÍTRICO
Material:
Reactivos:
Gradilla y tubos de ensayo. Pinzas de madera.
Disolución de albúmina. Almidón soluble. Ácido nítrico concentrado. Amoníaco concentrado
Procedimiento: Añade a un tubo de ensayo 3 ml de disolución de albúmina (en su defecto, puede batirse ligeramente una clara de huevo en un vaso de precipitados se añaden 100 ml de agua destilada y un poco de cloruro de sodio, se agita y se filtra, utilizando el filtrado como disolución de proteína) y añade 1 ml de ácido nítrico concentrado. Ten mucho cuidado en la manipulación del ácido nítrico concentrado pues se trata de un ácido muy corrosivo. Calienta hasta que el precipitado vire a amarillo y a continuación enfría totalmente (realiza esta operación bajo el grifo de agua). Una vez frío el contenido del tubo, vierte con cuidado y de modo que resbale por la pared interior del tubo de ensayo 1 ml de amoníaco concentrado. El color anaranjado pone de manifiesto la presencia de proteínas. Repite estas operaciones con disolución de almidón. Cuestiones: 1- Describe y explica todas las operaciones y reactivos utilizados en este ensayo.
2.- A la vista de los resultados ¿podrías decir que el almidón es una proteína?
3.- Dibuja y nombra el material utilizado.
PRÁCTICA 6.8.- IDENTIFICACIÓN DE AMONIACO EN CHAMPÚS
Material:
Reactivos:
Gradilla con tubos de ensayo. Varilla de vidrio
Hidróxido de sodio. Agua destilada. Papel indicador de pH. Diversos champús
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 37 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO Procedimiento: Pon un trocito de papel indicador de pH en el extremo de una varilla de vidrio y añade una gota de agua destilada para que el papelito se adhiera a la misma. Pon 1ml de agua destilada en un tubo de ensayo, añade una lenteja de sosa agita para disolver bien y añade una gota de champú. Calienta suavemente y expón el papel indicador a los vapores que salen por la boca del tubo de ensayo. La coloración azul que toma el papel de filtro indica la presencia de amoniaco. Cuestiones; 1.- Describe el procedimiento que has utilizado en la experiencia.
2.- Haz una tabla donde consignes los resultados obtenidos.
3.- Dibuja los materiales empleados y un esquema del trabajo realizado.
PRÁCTICA 6.9.- IDENTIFICACIÓN DE ALMIDÓN EN CEREALES
Material:
Reactivos:
Gradilla con tubos de ensayo. Mortero Varilla de vidrio
Almidón soluble. Agua destilada. Agua yodada (disolver una perla de yodo en alcohol etílico y diluir con agua destilada). Diversos cereales
Procedimiento: Introduce una punta de espátula de almidón soluble en un tubo de ensayo y añade un par de gotas de agua caliente (previamente debes calentar un par de ml de agua destilada en otro tubo de ensayo) y, con la varilla, haz una pasta semifluida. Añade poco a poco un par de ml de agua destilada caliente de modo que obtengas una disolución de almidón. Enfría bajo el grifo esta disolución que has obtenido y, una vez fría, añade tres o cuatro gotas de agua yodada. El color azul intenso que aparece es característico de la reacción yodo-almidón. Calienta el tubo con el complejo azul yodo-almidón y observa como en caliente este color desaparece. Si enfrías el tubo bajo el grifo verás que el color azul reaparece. Tritura ahora unas semillas de cereales, trigo, cebada, arroz... etc y añade en el triturado un par de gotas de agua yodada.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 38 -
LOS MÉTODOS DE LA CIENCIA: 4º DE ESO La aparición de un color azul indica la presencia de almidón. Puedes identificar almidón en muchos alimentos de origen vegetal, pan, pastas, galletas... etc. Cuestiones: 1.- Describe el procedimiento que has utilizado en la experiencia.
2.- Haz una tabla donde consignes los resultados obtenidos.
3.- Dibuja los materiales empleados y un esquema del trabajo realizado.
ACTIVIDADES FINALES: 1.- Cuestiones de la pág. 131 del libro de texto. 2.- Observa a tu alrededor: 1, 2, 3, 5 y 6. 3.- Busca información sobre...: 1, 2, 3 y 4.
IES “FRANCISCO GINER DE LOS RÍOS”. Dpto. de Física y Química. MOTRIL (GRANADA).
- 39 -
路
.
~.