Cecilia Damström: ICE

Page 1

Cecilia Damström

ICE for symphony orchestra

SCORE



Cecilia Damström

ICE for symphony orchestra

Op. 77

2021

SCORE


I N S T R U M E N TAT I O N 2 Flutes 2 Oboes b 2 Clarinets in B Bassoon Contrabassoon 4 Horns in F b Piccolo Trumpet in B 2 Trumpets in C 2 Trombones Bass Trombone Tuba Timpani Percussion (1 player) Snare Drum Triangle (or Bicycle Bell) Tam-tam Vibraphone

Harp Strings (min. 6.6.4.4.2) • Always continuous gliss. starting immediately from the first note.

Score in C

ICE for Sinfonia Lahti is commissioned in honour of Lahti being the European Green Capital 2021. The piece is inspired by melting ice and in the piece we can hear how landscapes and winter become ever shorter, in the end while alarm signals are chiming and all possible breaks are put into action. Through this piece I try to express how global warming as well as the collapse of ecosystems and the ever faster growing tempo of the world, is killing the beautiful snow and ice structures of millions of years, and how the heart of the earth is fighting for its existence through each beat. In this piece I have also tried to describe what happens if we WILL take action: you can hear a rewind, how action has impact and can make us go back to winters. The name ICE stands both for ice and for “In Case of Emergency”.

Duration: 10 min Commissioned by the City of Lahti – European Green Capital 2021 World premiere

6 August 2021; Helsinki Main Library, Finland Sinfonia Lahti, cond. Dalia Stasevska

ISMN 979-0-070-14085-0 Score: GE 14085

Study score: GE 14087

Parts available on hire

Copyright © 2021 Gehrmans Musikförlag AB, Stockholm Stema Specialtryck, Borås

KV/MM 2024


 2 Flutes 

ICE

 Moderato q = ca 80

Op. 77

a 2 Whistletones, free pitch and rhythm, as loud as possible

Misterioso q = ca 60 Cecilia Damström (2021) 

2 Oboes

2 Clarinets in Bb

 

Piccolo Trumpet in Bb

2 Trumpets in C

2 Trombones

Trombone 3 (bass)

 6 3 6        

    

        

Bassoon Contrabassoon

4 Horns in F

Tuba

Timpani Vibraphone

Harp

 

sola

               3 3 

mp

f

3

ff

 Moderato q = ca 80



6

6

3

Misterioso q = ca 60

l. v. sempre





f

 

 

 

f

Violin I



Violoncello

 

 

Contrabass

  

f

    

  f

  

  

    

mp

Copyright © 2021 Gehrmans Musikförlag AB, Stockholm

  

                 

    

 

mp

 



mp

p

 

  



p

 

  

mp

p

        

 

 

GE 14085

 

  f

               3

3

3

    

 

f

    

f

   

f

 

 

3  f     3

f

3

f   

3

   

3

3

  

            3

f

 

 

 3

   

 

       

 

 

3

f

f

  

  

 





mp

mp

  



Violin II

Viola

 

f

 



     

   

Kopiering förbjuden enligt lag! Copying prohibited by law!


4

13 Fl.

 

Ob.

Cl.

 

 

Bsn. Cbsn.

Hr.

Tr.

Trb. T.

Timp.

Vib.

H.

       

       

mp

p

   

 

  

 

    Vl. I

  

 

 

f

   3



 

f

3

   f

 f

   

 

Vc.

 

pp



f

 

   

f

pp

 

   

f

pp

  

 

   

f

pp

  

mp

   3   3 

gliss.

        



gliss.

       



mp

p





f

gliss.



f gliss.

f

gliss.



f

   

                      

     

       

f

 

f

 

f

 

f

 

f

    

f

 

f

 

 

f

 f

 f

 f

    

 



f f

  f

   

 

 

   

p

       

f

gliss.

         

p

p

mp

      

mp

f

pp

 

                     

pp

f

p

mp



 

  

A

          

       

Cb.

  3 

         

   3

   

  

 

  Vl. II

 

 

 

Vla.

A



 

f

    

 

f

   

   

f

    

  





 

   

   

 

 

f

 

 

pp

pp

pp

pp

pp

pp

  

f

 

f

 

f

      

f

 

 3 f      

3

  

3

pp

f

 

 3

3

 

     

pp

   3

3

      f

3

f

      

  

3

mf

f

 

3

f

3

         

 

 

f

3

3

3

f

 3



  

f

   

  f

f

pp

f

f

 gliss. 



f

 

pp

f

 gliss.  

pp

gliss.

f

 

pp

f

 gliss.  

pp

gliss.

f

pp

f

pp

f

pp

 gliss. 

f

pp

f

pp

f

pp

f

pp

f

pp

 gliss. 

pp

  

 



pp



 

gliss.

   

gliss.

pp

   



gliss.

 

pp

 

   

f

pp

 

gliss.

pp

 

gliss.

 

f

pp

pp

 

gliss.

f

pp

 

gliss.

f

 

gliss.

f

pp

 

gliss.



  

gliss.

pp

f

pp

   

 

f

pp

f

pp

 

f

  f

mf

mf

mf

mf



pp

mf

pp



mf

pp

pp

pp

pp

pp

f

f

f

 f

pp

pp

gliss.

 gliss.  

  

 gliss.

pp

f

pp

f

pp

f

pp

  

 gliss.   gliss. 

pp

f

 gliss. 

f

pp

 gliss. 

f

pp

 gliss.  



f

f

pp

  

 

gliss.

pp

pp

GE 14085

 

 

mf



pp

3

pp

 

    

    

 

 

    

f

f

 

    

   

   

f

  





    



    

f

3

f

3

 

pp

pp

f

pp

f

pp

f

 gliss. 

f

f

 

pp

pp

pp

f

pp

f

pp

f

pp

 gliss.   gliss. 

 


 

B 27   

 

Fl.

 

  mp

 

 

mp

 

 Ob.       Cl.    Bsn.    Cbsn.     Hr.

 

Tr. Trb. T.

mp

 

mp

 

 click                      key   p

pp

3

3

pp

   

p

3

3

3

3 3 key click        3

3

 3 p pp click                      key   5 5 5 5  5 p pp key click                                  3

pp

3

3

p

3

3

3

3

3

3

           

pp

p

ppp

3

    

3

mp

ppp

    key  click  

3 3 key click               3

3

Vib.

mp

           

5

Timp.

 C 

     

  

soft mallets

p

H.

 

B

 

Vl. I

     Vl. II

  

   f

  f

  f



f

f

  

Vc.

  f    f   f    f

f

Cb.

  f

    f

f

 

f

   Vla.

        

                      p

mf

mf

                              p  mf

 

C     

                              mf p  mf         

                       mf p

     

    

         p





    mf

     mf

p

p

p

 

p

mf



  mf 

       

              p





   mf 

      

         



    mf

                  p  



     mf

p

p

mf p

mf

 

mf p

p

mf

mf

         p

















GE 14085

mf

        

mf p

mf p



mf



p

              p

p

    

      

mf

mf

p

pp

mf

       

pp

 

mf p mf

 

p

pp

mf

      



pp



p

mf

pp

p

   

p

pp

mf

 

pp

mf

mf p

   

 



pp

mf



p

p

              p

    



 





mf

p

mf

gliss.

p

         

mf

                               p mf  mf

mf

p

mf

                             p mf  mf

pp

  pp

 

mf



ss.

mf s glis

.

s.

 

. gliss

 p               

gliss.

pp

 

mf

 

gliss.

gliss.

f gliss.

f gliss.

f gliss.

f gliss.

f gliss.

gliss.

 gliss. 

pp

     

pp

mf

 

  

fp

 gliss. 

gliss. 

fp

fp

  

 gliss. 

 

mf

pp

fp

fp

   

 gliss. 

   

pp

pp

fp

mf

pp

fp

    mf

    pp

 fp

mf

 fp

 

fp

 gliss.  

fp

fp

        

 gliss. 

       

mf

pp

fp

mf

pp

fp

mf

pp

 

 

fp

gli          ss. 

mf

fp

fp

gli        ss. 

pp

fp



pp

 

pp

 

pp

 

pp

 

pp

 

fp gliss.

f



fp

          

fp



mf

fp gliss.

pp

mf

mf

mf

p

 



mf

mf glis

 



pp

 

mf

g li

    

mf

pp



gliss.

p





gliss.

ss. gli

    

mf

p





gliss.

p

 



mf

pp



 

mf gliss.

mp

mf gliss.

   

    

pp

f

pp

f

pp

fp

  fp


6 

   

  

  

 

 

Ob.

Cl.

Bsn. Cbsn.

D

38 Fl.

 

 

 



con sord. 





f con sord.  



mf

Picc. Tpt.

 Tr.

Trb.

Vib.

 

          

 

    Vl. I

     

mp

 

  gliss.         

fp

gliss.

fp

fp

      fp

fp

fp

 gliss.        fp

fp

fp

f

pp

pp

f

pp

f

fp

pp

fp

fp

fp

fp

f

pp

  

fp

f

 gliss.           fp

fp

fp

f

 gliss.          fp

fp

fp

  gliss.         fp

fp

fp

f

    f

   gliss.          fp

 

Vc.

Cb.

fp

fp

f

 



 

pp

  



pp

 pp

  pp



pp

f

pp

f



pp

f

 

                             

pp

f

f

                             pp

f

3

3

p

3

p

3

p

3

pp

f

pp

f

3

3

3

3

3

pp

pp

   

   

   

  

  

 

 

   

 

   

 

  

 

 

 

 

 

 

 

 

 

 

fff

fff

  

   

fff

pp

fff

fff

  

fff

f

f

  

pp

f

pp

  

f

f

   

  

fff

  

  

f

pp

      f

f gliss.

pp

pp



gliss.

f gliss.

f

    

 p



 gliss. 

f

 gliss. 

f

p

pp

f

p

pp

f

p



p

f

p

  f

 

pp

   gliss. 

 

 

  

f

pp

 gliss. 

f

p

 gliss. 

f

 gliss.  pp

f

p

f

pp

f

 

p

f

pp

f

   gliss. 

p

 

 gliss. 



f

pp

f  gliss. 

p

 

p

f

pp

 gliss. 

p

f

p

pp

p

 

  

 

  

f

f

 

fff

    f

GE 14085

gliss.

 gliss.

pp

pp



pp

f

f gliss.

p

  gliss.  f

 gliss. 

f

f

 

 

 

pp

  

 

   

3

                

 

pp

                 

  

 

3

 

 

fff

f

pp

p

 

  

f

3

pp

3

pp

p

  

 

f

   

f

f

 

f

  

f

 

f

     

f

3

 

fff

    

f

pp

3

 

pp

   

  

fff

f

  

3

3



3

pp

f

p

3                   3

    

pp

3

3

 

f

f

3

fff

fp

pp

                 

fp

pp

pp

fp

3

     



f

3



f

pp

p

 

f

pp

f

3

 

f

D

 

     



pp

3

 

 

pp

 



fp

fp

Vla.

pp

f

  gliss.          

 

f

  gliss.             

 

     

f

                    f pp f                 f pp f                 pp f  f              f pp f

f

 

pp

                 

pp

pp

p

ppp

  

fp

fp

 



  gliss.       

   

p



        

   

fp

fp

 gliss.        

Vl. II

 

f con sord.  

  gliss.       

  

 

ppp

   

pp

H.

pp  f f              f pp f



f con sord.

           



mf con sord.

             f pp f



f con sord.

Hr.



con sord.

Whistletones, free pitch and rhythm, as loud as possible a2

  

pp

 pp

 pp

 pp



pp

       pp      l. v.

 

 

 

 



 



 

pp pp


7

E 49 Misterioso, poco mosso q = ca 80   

 

       

mp

p

Ob.

 

Cl.

        

mp

mp

Cbsn.

 

pp

 

pp

Trb. 1

Trb. 2

Trb. 3

 

T.

  3

 3 

 3 

 3 

E 

 

   



f

 

   

Vl. I

   

   

f

      

f

    

f

  

 



 

f

  

  

Vla.

Vc.

Cb.

 

  

 

             

  3

 

3

  

    

f

f

    

f

    f

 

 

3  f    

3

f

3

3

    

 

 

 

 

 

Vl. II

f

 

 



f

  3

f    

 

  

3

 

f

     

f

  

3

3

3

f

3

        

  

3

 

 

  3

f

  

f



pp

   



pp

f

pp

f

f

 f



  

pp

   

f

pp

 

   

f

pp

gliss.

f

gliss.



f

   div.              

 

f

 

f

 

f

 

f

 f

  f

GE 14085

                  mp p                    p mp

p



mp

      



                  p mp                   con sord.    mp p           con sord.             p mp con sord.      pp con sord.      pp     F       f               f  



f





f



 

     

     

   

f



 

f gliss.



        

   gliss.      

f

 

gliss.

  f

   



gliss.

p



mp

Misterioso, poco mosso q = ca 80

p

         

Hr.

p

         

         

Bsn.

 mp p                      

F

                     mp p                  

Fl.

       

f

 

      f

    f

 

    

f

   f



 

f

  

       

f

 

 

pp

 

f

 

pp

f

pp

f

 

   



pp



pp

f



pp

f

  f

           3

3

   


8

61

G

 Fl. 

Bsn.

Cbsn.

Ob.

Cl.

Trb.

Trb. 3

Hr.

Picc. Tpt.

T.

S.D.  

    Vl. I

  

p

      

senza sord.

 

senza sord.

 

senza sord.

           

senza sord.

ff

senza sord.



    

 

f

 

f

 

3

3

     f

 3

 3

 

3

  

f

 

f

  

3

3

  3

  

    

  3 

  3 

pp

Vc.

  

pp

 

f

 

pp

Cb.

   

 

 

f

 

pp

f

 f

  f



f

  f

   f

  f

pppp

    f

pp

     f

pp

    

    

ff

ff

     ff

       ff

      

 

 

pp

  pp

f

f

f

f

f

f

    gliss.   f

   gliss.  f

   gliss.  pp

pp

    

    gliss. 

pp

pp

f

f

   gliss.  f

pp

f      gliss.    

pp

    gliss.     

pp

f

f

f

f

f

f

pp

    

f

f

 gliss.   f

 gliss.  f

 

pp

f

 gliss.   f

 gliss.  f

 gliss.  f

f

f pp

f pp

f

f

     gliss.  

pp

f pp

f

pp

 

pp

 

f

f

pp

pp

f pp

f pp

G

f pp

gliss.

gliss.

f pp

 

pp

 

f pp

 

f pp

    gliss.     

pp

 

f pp

 

f

pp

f

pp

 gliss.  

pp

    gliss.    

pp

f

pp

pp

 

pp

    gliss.     

 

pp

    gliss.      

 



pp

 

pp

 gliss. 

pp

     

 

f pp

p

ff

     ff

        ff        ff

ff

   

 

            ff        

 

 

 

 

         ff

 

ff

      ff

     

 

 

 

 

 

p

mf



ff

pp

ff

       ff

     ff

ff

     

             ff

ff

      

ff

       ff

 

p

    

ALL STRINGS: sul pont, molto press.

ff

       

 

 

 

ff

  

p

 

 

ff

p

 

ff

ff

 

p



ff



p



ff

ff

p

 

 

ff

p

 

ff

p

ff

p

ff

ff



gliss.

  

 

 

 

 

ff

p

ff

p

ff

ff



 

 

p





gliss.

ff



 

p

pp

 gliss.  

pp

 gliss.  

pp

 gliss.   gliss.  

 

 

 

 

pp

pp

pp

 gliss. 

pp

p

ff

p

ff

pp

pp

f

 gliss.  

pp

f

 gliss.  

pp

f

 gliss. 

pp

f

 

pp

f

gliss.

  gliss.  

pp

f

  gliss. 

pp

f

  gliss. 

pp

f

f

f

 gliss.  

pp

f

 gliss.  

pp

f

 gliss.  

pp

f

f

f

f

 gliss.  

pp

f

 gliss.  

pp

f

  gliss.  

pp

f

pp

f

   gliss. 

pp

f

  gliss  . 

pp

f

GE 14085

p





p



ff



p



ff

 gliss.    gliss.  

ff

 

p

 

ff

 

p

 

ff

p

ff

p

ff

f pp

 gliss.    gliss. f pp

f pp

    gliss. 

ff

gliss.





gliss.









gliss.





gliss.

gliss.





gliss.





gliss.





gliss.





gliss.





gliss.

gliss.







 



 

 

 

gliss.

ff

pp

pp

f

ff



 

pp

  gliss.

p



ALL STRINGS: approx. pitch, free bow changes

ff

 

pp

pp

ff



p

 

pp

f

f pp



ff

 

 gliss.      gliss.  

ff gliss.

p

 gliss.   gliss.  

pp

f

ff

f pp

 gliss.   

 gliss.     gliss.

f

f pp

 

 

 gliss.  

f

 



ff

 gliss.   

  

  

  

  

gliss.

     gliss.  gliss.   

   

   

   

   

gliss.

     gliss.   gliss.  

  

  

  

  

gliss.

pp

pp

pp

f pp

f pp

f pp

ff

ff

ff

p

p

p

ff

ff

ff

p

p

p

ff

 gliss.  

pp

 

ff

 

  



p

f

 gliss. 

 gliss. 

 gliss.     gliss.  

p

  

gliss.

gliss.

f

ff



f

ff

     gliss.   

pp

pp

p

    

f

    gliss.   

    gliss.  

pp

f pp

pp

   gliss.  

pp

     gliss.   

   

    gliss.  

pp

pp

pp

f

mf

 

    gliss.   

    

p

mf

mp

    f

pp

 

     gliss.   

 gliss.   

pp

mp

    

f

pp

gliss.  gliss.  gliss.   gliss. 

pp

mp

    

f

pp

pp

pp



   

pp

 

f

3

f

pp

     

pp

div.

 

pp

  

div.

 

pp

 3  pp    3  pp   

 

Vla.

div.

f

   

f



 

   

   

f

 

 

      

f

    

f

3

 





 

    

 



   

p

ff

pp



gliss. 





gliss. 

ff

  gliss.   p





p

 

      

Vl. II





ff

Timp.





senza sord. ff

Tr.

ff



           ff      senza sord.    





f

senza sord.



 ff

 

 

ff

ff

ff


9

76

 Fl.  

Ob.

 















 

Cl.

1.



ppp

 

  





















Bsn.

Cbsn.

Hr.

Tr.

Trb.

T.

Timp.

Vib.

H.

  Vl. I

  

    

ppp

5 5 6 6 6 6 6                                                                                              mf 3 5 5 5 5 3 5 5 5 5                                                                                                       mf 3 5 5 7 7 7 3 5 5 6 7 7 7                                                                                                                 mf 3 5 3 5 6 6 6 6 6                                                                                                        mf 3 5 5 5 5 3 5 5 5 5                                                                                                         mf 3 5 5 7 7 7 3 5 5 6 7 7 7                                                                                                                    

loco, ord

3

 

3

  

mf

   Vl. II

  





















 

   mf





   mf

3

   mf



 

 

Vla.

Vc.



 



 









 











 

 Cb.

 3



          3

3

mf



3

mf



 3

5 5 6 6 6 6 6                                                                                       3 5 5 5 5     5 5 5 5 5                                                                                                 5 5 7 7 7     5 5 6 7 7 7                                                                                                  3 5     3 5 6 5 6 5 6                                                                                              3 5 5 5 5     5 5 5 5 5                                                                                             5 5 7 7 7     5 5 6 7 7 7                                                                                                     

        

mf

3

 

     3

 

 

 

 

  

 

 

GE 14085


10

84 Fl.

 

Ob.

1.

 

Cl.

 

Bsn. Cbsn.

   

   

 

 

 

 

 

 

consord.

 

  

mf mf con sord.

p

mf mf con sord.

p

mf mf con sord.

p

   



 

mf mf con  sord. 



3

f

p

3

3

3

3

3

mf

p

f

3

p

f

3

p

3

3

pp

f

 

  p

3

3



p

3

3

pp

f

pp

 

p

 

 

 

 

 

 

 

 

 

 

 

                3

 

                3

pp

3

 

3

p

3

pp

pp

p 3

f

p

 

mf

3

3

                          

 mf

3





pp

                

p

p



3

                            

mf mf con  sord. 

con sord

p

3

   



mf

f

3

3

 

                

  

mf mf con sord.

 

f

  



3

pp

                

   

pp

 

 

 

      

 

 

pp

H Grave, meno mosso q = ca 60

       pp l. v.  

I Misterioso, mosso q = ca 100

col  legno

                         

 

                        

 

col legno

                       

 

col legno

                        

 

col legno

 

col legno

                                   



                                                                                                                       

Vl. II

Vla.

Vc.

Vl. I

Cb.

pp

Tr.

H.

 

 

Vib.

  

Hr.

Timp.

 

 

  

T.

 

a 2 Whistletones, free pitch and rhythm, as loud as possible

pp

 

Trb.

   

 

 

Picc. Tpt.

 

I Misterioso, mosso q = ca 100

H Grave, meno mosso q = ca 60

 

                   

      

      

      

      

pp



pp

pp



pp



pp

 

 

 

 

 

col legno



pp

     

 GE 14085

 

                   

arco   ord.



f

 arco   ord. 

  arco  

 

  

ord.

   arco   ord.     arco  

    f

ord.

arco ord.

f

            



 

f

    f

  f          3 3  f         3  3 f         f      

f





  3

 



f

           f          f       f      3 3  f      3 3  f

  3

    

    

3

   

   3

3

  

  

f

  

3

f



  

f        f      f      f     3  f    3  f

   

pp

pp

   pp

    pp

    pp

    pp

  3

3

 


11

97

 

Fl.

Ob.

Cl.

Bsn.

Cbsn.

 

       

       

mp

p

p

p

p

 

        

      

  

 

 

Trb. 1

Trb. 2

Trb. 3

T.

H.

Vl. I

mp

p

                  

 

con sord.

   

       

 

  mp                             mp                         mp                          mp                          mp                      mp  

 Vl. II

  

       

f

 f

 f

f

 f

        Vc.    Cb.     

      

f

  

f

   f

  

mp

  

mp



 

 

 

   

 

 

 

p

p



p

  

p

 

 

ppp

  





f

f



f

 f



   

   

  

f

   

 

p

ppp

  

mp

f

         

 

f

   

  p

 

 

 

 

 

     

    

f

f

  

 

  

   f

  



f



f

   

 3

 

3

    

f

    

 

 

  

  

  

    

f

   f

 3

  

3

        

f

 

f

   

  

  

 

 

 

3

  

f

pp

 

  f

3

 f

  3

 3

f

GE 14085

pp

 

3

 

 

f

pp

f

pp

  

3

f

 

3

 

pp

 

3

     

f

  

 

pp

 

f

 

  



   

mp



   

  

 

 

 

f

      

 

  

 

f



                                 

   

mp

pp

pp



mp

f

                  mp p                   con sord.   p mp           con sord.          

      

Vla.



 

       

pp

p

pp

 

 

mp

       



        

Timp.

      

mp

       



mp

 mp                    

 

Hr.

          

  


12

104

J

    

 

    

 

    

 

    

 

    

 

    

 

    

 

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fl. 

Bsn.

Cbsn.

 

senza sord.

Ob.

Cl.

Hr.

Picc. Tpt.

Tr.

Trb. 3

T.



pp

S.D.  

  Vl. I

  

 

  

Vla.

   3

    

 

pp

f



f



 

   

f

 

 



  



pp

    

pp

mp

 



 

 

fff

p

mp

mp

p

mp

ff

p

ff

 





mp

  



   

f

pp

f

pp

f



  

pp

f



  

pp

f



pp

  



  

pp

f



  

pp

f

 gliss. 

f

pp

      

f

 gliss.  

pp

f

 gliss.  

pp

f

 gliss.  

pp

f

 gliss. 

f

pp

 

 

f

pp

f



 gliss. 

f

f

pp



 gliss. 

f

f

pp



 gliss. 

f

pp



   

pp

f



   

pp

f



pp

f



f

gliss.

gliss.



f

 

 

  

f

pp



mf

f

mp

gliss.

f

 

f

mp

 g

f

f

pp

f



   

pp

f

 gliss.  f

 gliss.   f

 gliss.  

pp

f

 gliss.  

pp

f

 gliss. 

pp

f

 gliss.  

pp

f

  gliss. 

pp

f

  gliss. 

pp

f

  gliss.  

pp

f

pp

f

pp f

pp

ff

p

ff

p

pp f

ff

pp

 

pp f

p

ff

f

pp

ff

                  

 

pp f

p

pp

f

pp

ff

                   

pp f

pp

f

pp f

pp

ff

                   

pp f

pp

    gliss.  f

pp

f

   

 

pp

f

f

pp

    gliss. 

pp

f

pp

f

   

 

pp

f

f

pp

   

 

pp

f

pp



pp

f

 

 

pp

f

f

      gliss. 

pp

f

pp

f

       gliss. 

pp

f

pp

f

       gliss.  

pp

f

pp

f

f

pp

f

pp

     gliss.   pp

f

pp

ff

ff



p



ff

 

 

p

ff

p

 

 

 

pp

p

ff

   gliss.  

 

pp f

     gliss.  

p

pp

p

f

pp

pp

   

pp f

pp

ff

ff

pp f

pp

pp

p

ff

ff

GE 14085

pp

ff



 



 



 



 g

f

mp

lis s.

 g

 g

 lis s.

   p

    p

   p

gliss.

gliss.

f

lis s.



f

mp

lis s.

 gliss. 

mp

 gli ss.

 g 

























 gli ss.

gliss.

gliss.

gliss.

gliss.

gliss.

gliss.

f



gli s

gliss.

gliss.

gliss.









































































 







 



 



 

 



 





 

gliss.

gliss.

ff

   

. gliss

ff

  ff

gliss

.

f

  s.





 



gliss.

mp



ff

ff

       gliss. 

pp f



 

ff

 

ff

 

       gliss.   

pp f



 

 

       gliss.   

gliss.

ff

    gliss.  ff

 

ff

p

pp f

pp f

gliss.

ff

 

 

ff

 

 

   gliss.  pp

 

ff

 

pp f

pp

 

                     pp

 

mp

  gliss. 

 

pp f

f

gliss.



fff

   

pp

lis s.

ALL STRINGS: sul pont, molto press. approx. pitch

                  

pp f

f

   

pp

pp f

   



pp

                     

gliss.

f

gliss.

 

pp

 

  

pp

 

 

gliss.

f

pp

 

pp

gliss.

  

gliss.

 

 

pp

f

 

  

f

gliss.

 

  

pp

f

  

  

f

gliss.

 

pp

pp

f

 

 

pppp

  

gliss.

 

gliss.



pp

f



  

   

pp

f

gliss.

 



 



  

gliss.

 

mp



pp mp pp



 

mp



fff senza sord.

mp pp mp pp

 

mp pp

mp pp

 

pp

pp

 

mp

fff



mp

fff

 

  

pp

fff

mp

fff

  

pp

 

senza sord.

mp

pp

 

 

  

pp

f

 

 

 

pp

3

pp Cb.

 

   

Vc.

  3

f

Vl. II

pp

3

fff

approx. pitch

J



p

 

p



pp

                 

mp pp mp senza sord.

 pp                      

 

. iss

gl

H.



  

Timp.

  

 


13

118  

Fl.

 

Whistletones, free pitch and rhythm, as loud as possible a2

Ob.

  

Cl.

 

  

Bsn.

 

 

 

ppp

 

Cbsn.

Hr.

 

Picc. Tpt.

 

Tr.

 

Trb. 3

T.

Timp.

  

mf S.D.  

H.



             ff

         

ALL VIOLINS:

 loco, ord    



mf

 



mf





  

mf



 

mf



  



mf



 

3

 

 

mf







mf

 

  

 

Vc.

 

Cb.

     

3



3



  

  



3

    

 

 

3

3

  

     3

               5

5

5

5

    

      

                   



 

3

3



       3

mp



  





 



 

 

 

p



 





 



 

 

slightly ugly sound (scratchy, sul pont, much pressure)

6 6 6 6                                                       3 5 5 5 5 5 5 5 5                                                                                           5 5 7 7 7 5 5 6 7 7 7                                                                                                      3 5 3 5 6 6 6 6 6                                                                                               3 5 5 5 5 5 5 5 5                                                                                     5 5 7 7 7 5 5 6 7 7 7                                                                                                         



3

mf

Vla.

mf

Vl. II

     

      

mf



3

3

 

3



mf

3

 

3

3

mf

Vl. I

  

  

3

   

3

3

               5

5

5

                     5

5

                              5

6

6 6 6 6                                                  5 5 5 5 5 5 5 5                                                                           7 7 7 5 6 7 7 7                                                                                5   5 6 5 6 5 6                                                                                          5 5 5 5   5 5 5 5                                                                      7 7 7   5 6 7 7 7                                                                                                      5

                              5

6

     

     

GE 14085


14

K Poco panico, mosso q = ca 110 

124

a2

 Fl.   Ob.

Cl.

  

 

Bsn.

Cbsn.

fff

fff

fff

 

Picc. Tpt.

Trb. 1

Trb. 2

Trb. 3

T.

3

   

       

          

   

    

         

       

  

   

      

      

 

3

fff

       

 

        

  fff

3

     

3

fff

3

       

 

fff

Hr.

Tr.

  

3

3

       

 

gliss.

p

mf

 S.D.   

 

 

 3     

 

  

      

  

3

       3 senza sord.         

senza sord.

ff

 

 ff

  



   



pp

  

  

  

  

  

                  

  

 

 

 

p

mf

 

gliss.

ff

 

3

gliss.



      

ff

pp

  

gliss.

3

  

3

ff Timp.

3

gliss.

 



p

 3       3                                   p fff ff mp mf approx. pitch  g  lis  g s.  gliss.    gli lis    s.   gl    s is s.    s    .      g H. fff   g liss  g . lis  gliss.        s.   gliss.   lis  s.       Poco panico, mosso q = ca 110 approx. pitch K                gliss. more ugly sound (scratchy, sul pont, much pressure) loco, ord.  3 5 3 5 6                                                               pp f pp f f pp f pp ff f     gliss.                  3 5 5 3 5 5                                                              pp f pp f f pp f pp ff f          gliss.                  3 5 5 7 3 5 5 6 7                                                                                  pp f pp f pp f pp ff f f      Vl. I        gliss.          3 5 3 5 6                                                              f pp f pp f pp f pp ff f     gliss.                3 5 5 3 5 5                                                           pp f pp f pp f pp ff f  f         gliss.                  3 5 5 7 3 5 5 6 7                                                                                     pp pp pp f pp f  f   f   ff f       gliss.  3 5 3 5 6                                             f pp f pp f pp f pp ff f            gliss.        3 3 5 5 5 5 5                                                          pp f pp f pp f pp f ff f                   gliss.  5 5 7 3 3 5 5 6 7                                                                              pp f pp pp f pp f f ff f     Vl. II              gliss.  3 5 3 5 6                                             pp f pp ff f pp f pp f f            gliss.  gliss.  3 3 5 5 5 5 5                                                       pp f pp f f pp f pp ff                        f              gliss.  5 5 7 3 3 5 5 6 7                                                                                 pp f pp f pp f pp ff f f            gliss.     Vla.               f pp f pp f pp f pp ff            gliss.      Vc.              iss gl

.

f

 Cb.     f

pp

f pp

f

        

pp

f

pp

f

pp f pp

ff

        

pp f pp

ff

gliss.

 



 GE 14085


15

L 132 a 2 Whistletones, free pitch and rhythm, as loud as possible

 Fl.   Ob.

Cl.

 1.



 

Bsn.

a 2 Whistletones, free pitch and rhythm, as loud as possible

Cbsn.

Hr.

 

Picc. Tpt.

Tr.

Trb.

T.

Timp.

Tri.  

  

f

  

f

 

    

Flzg.

 

gliss.

ff Flzg.



gliss.

ff Flzg.



gliss.

ff

 

mf

ff



f

       

                    

                       

                        

                    

Vl. I

   



             

                   

                        

                     

 Vl. II

 



   



              



f

  f



f

  f

  f

  f

 

f

Vc.

 

f

Cb.

pp

ff

pp f

pp

ff

pp f

pp

pp f

ff



pp ff

           

f

pp f

          f

                    

ff

             f

pp

             f

pp f

           

f

                         

Vla.



f

  f

pp f

pp

     pp f

pp

ff

ff

pp

f

pp

ff

    gliss. 

pp

f

pp

   

pp

f

pp

   

pp

f

pp

ff

 

ff



ff

    gliss. 

pp

f

pp

ff

      gliss. 

pp f

pp

pp

f

pp

pp f

pp

3

3

3

3

3

3

3

3

3

3

3

                                                 



pitch approx. 

















    



gliss.

 

gliss.

 

gliss.

 

glis s

.

gliss .

gliss .

gliss

gliss

.

gliss.

gliss.

gliss.



gliss.



gliss.



gliss.



gliss.

gliss.

gliss.



3 3



gliss.

 



p



 

3

 

  

  

f

loco



 

3

  



ugly sound

                                5

5

6

3 5 5 5 5                                                        

5 5 7 5 5 6 7                                                                

3

 



 

3

  

3

              

.

5 5 6                                 5

5

                            5

5

      

5 5 7 5 5 6 7                                                                   

glis s.

glis s.

glis s.

glis s.

gliss

.

gliss .

3

ff

      gliss.  

ff

      gliss.  

gliss .

 

     gliss.  

3

    

             



    



L                

3

   

gliss.

3

    

   

3

gliss.

3

    

gliss.

     gliss.

   

3

 

 

     3

5 5 6                                 

3 5 5  5 5 5                                                         5 5 7 5 5 6 7                                                                3

 

 

3

     3

5  5 6                                 5

5

                                               5

5

5

      

5 5 7  5 5 6 7                                                                 

gliss.



gliss.



gliss.



ff

GE 14085


16

140 M Fl.

  

Ob.

Cl.

Bsn.

Cbsn.



 



p

p

 

Hr.

 

Tr.

Trb.

T.

  

Timp.

gliss.

f

Tri.  

  3

ff



                                                 



p 3

  

f

3

   3

3

 

 

3

  

   3

3

  

3

 

                                    3

3

   

3

 

 approx. pitch 

fff

ss. gli

H.

 

    Vl. I

           Vla.

  

    

       

glis s.

glis

s.

gl i ss.

glis s.

glis s.

glis

s.

gli ss.

gli

ss.

glis

gli ss

gli ss

s.

.

.

gli ss

.



gliss



gliss .



gliss

.



gliss .



gliss.



gliss.

.

ff





                                                                                                                                                                                                                                                                                                           

gliss.

ff



                                                                                                                                                                                                                                                                                                                                                   

ff

ff

  ff

as ugly as possible

6

5   5 6                                                                                                 5 5   5 5                                                                                                 7 5 6 7                                                                                             5   5 6                                                                                                 5 5   5 5                                                                                           7 5 6 7                                                                                                 

ff

                                                                                                                                                                                                                                                                                                                                                                  

ff

Cb.

                                                                                                  5 5 5 5                                                                                                   5 7 6 7                                                                                              5 5 6                                                                                                           5 5 5 5                                                                                                      5 7 6 7                                                                                                   5

5

gliss.

ff

 

Vc.

 ALL STRINGS: M ord. approx. pitch loco

Vl. II

                                                                                                                                                                                                                                        GE 14085

                           

                                                                                                                                                                                                                                                                                                                                               

                                                                                                            

                                       

                                                                               


17

149 Fl.

 

Ob.

Cl.

  



ppp







Bsn.

Cbsn.



mp

mp

Hr.

 

Tr.

Trb.

T.

Timp.

                

f T.-t.  

H.

ALL VIOLINS: ord.

 

 

pp

quite ugly

ALL STRINGS: as ugly as possible

5 5 6 6 6 6 6                                                                                ff         mf 3 5 5 5 5 3 5 5 5 5                                                                                                                     mf 3 5 5 7 7 7 3 5 5 6 7 7 7                                                                                                                                                  Vl. I                 mf 3 5 3 5 6 6 6 6 6                                                                                                      mf 3 5 5 5 5 3 5 5 5 5                                                                                                         mf 3 5 5 7 7 7 3 5 5 6 7 7 7                                                                                                                                                          mf 3 5         3 5 6 6 6 6 6                                                                                                      mf 3 3 5 5 5 5 5 5 5 5 5                                                                                                                              mf 5 5 7 7 7 3 3 5 5 6 7 7 7                                                                                                                                                  Vl. II mf 3 5 3 5 6 5 6 5 6                                                                                                                       mf 3 3 5 5 5 5         5 5 5 5 5                                                                                                            mf 5 5 7 7 7 3 3 5 5 6 7 7 7                                                                                                                                                       mf                                                                                           Vla.                                                                                                                                Vc.                                                                           Cb.                                      

   

3

 

3

  

GE 14085


18

N 154

 Fl.  

Ob.

Cl. Bsn.

Cbsn.

 



fff









 























fff

fff

fff

 

 

mf

 

Trb.

Trb. 3

fff

fff

Picc. Tpt.

Tr.

T.

Timp.

 

gliss.

 

Tri.

T.-t.  

H.

N  

3       

    

 3        

    

ff

 3        

    

 3        

    

 3         

     

 3          

    

ff

ff

 3           

    

 3        

    

 

3

gliss.



 Cb.    

gliss.





gliss.



         

         

      

        

ff sub.

      fff

 

    

         



pp

           

mf



  

ff sub.

   

         

           

 



pp

f



   

       

                   

           pp



f

                  



ff sub.

     





pp

mp



mp



pp







pp

mp

mp

 

mp

 

pp



                

p



ff



p



ff

 

 

pp



                                    

 

p

 

ff

 

p

  

ff

 



                                    

p



ff



p



ff

 



                  

 

p

 

ff

 

p

ff

pp



                  

p

ff

p



 

  gliss.  

gliss.



gliss.

gliss.

gliss.

gliss.

gliss.

  gliss.   gliss.  



f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

                 

f

pp

f

pp

f

pp

f

pp

                 

f

pp

f

pp

f

pp

f

pp

f

pp

f

pp

                                  

p

 

ff

 

p

 

ff

pp

p



ff



p



ff



                                   pp

f

pp

f

pp

f

pp

f

 

p

 

ff

 

p

 

ff

pp

f

pp

f

pp

f

pp

f

p



ff



p



ff



                

pp

f

pp

f

                

pp

f

pp

f

 

p

 

ff

 

p

 

ff

                 

pp

f

pp

f

                 

pp

f

pp

f

p

ff

p

ff

pp

f

pp

f

pp

f

pp

f



glis s.

pp

 

gliss.

.

f

                 



glis s

pp



gliss.     

pp

f

 

gliss.

gliss.

ff

 

pp

 

gliss.

glis s.

  

pp

f

 

 gliss.  



 

pp

                                   

 

gliss.

gliss.

            fff

mf

ff

gliss.

gliss.

       

fff

pp

  

 

             fff      

      

p

gliss.

fff

mf

 

gliss.

mf

pp

ff

gliss.

gliss.

pp

 

gliss.

mf

fff

p

gliss.

       

 

gliss.

 gliss.  

gliss.

O               

gliss.

  gliss.  



gliss.

 gliss.  

fff

 

gliss.

gliss.

        

  

gliss.      gliss.      gliss. 

  

ff

 gliss.  

 

3

ff

ff

 

3

gliss.

Vc.

3

ff

ff

gliss.

gliss.

 

gliss.     gliss.     gliss. 

   

Vla.



fff

  gliss.  

3

    

ff

gliss.

gliss.

pp

3

 3        

 3         

 

 

3

ff

Vl. II

fff



ss. gli

3

ff

approx. pitch

3

ff

     3     

3

ff

ff

3

    

3

 3          Vl. I



 

ff

glis s.

ff

fff

let vibr.

ALL STRINGS: approx. pitch

gliss.

 

f

ff

gliss.

mf

  

mp S.D. 

gliss.

         

Hr.

mf

fff

         O 

 

  

pp

   ff

  

pp

   ff

 

   

pp

    ff

   

pp

  

 

pp

ff

pp

ff

  

  

GE 14085

  

ff

  

f pp f                 

pp

f

pp

f

                

                                  

                                pp pp f f pp pp f f                               pp pp f pp f f pp f                          pp

f

pp

f

pp

f

pp

f


19

166 Fl.

 

Ob.

Cl.

rit.

 

               

               

Trb.

T.

Bsn.

Cbsn.

Hr.

Tr.

Timp.



pp S.D. 

 Tri.  

H.





mp

 

pp





pp

mp



mp



 





mp

 

 

               

pp con sord.

pp con sord.

pp con sord.

                pp

                pp

mp

p

 

 

 

                                       

rit.

 

 



Vl. II

                                             f

pp

f

pp

f

pp

Vla. div. pp

f

pp

f

pp

f

pp

f



pp

f

pp

f

pp

                                       pp            

Vc.

Cb.

pp

pp

f



 

f

 

pp

f

pp

f

pp

pp

  

f

pp

f

pp

  pp

pp

f

f

pp

f

f

 

 

pp



f

f

pp

f



f

GE 14085

f

f

pp

pp



   f                                                     f pp f pp f                                                                                           f pp f pp f                                                                                                                         f pp f pp f                                                                                                                f pp f pp                                                                     f                                            f pp f pp  f                                                                p pp f pp f pp f f                                                                            p pp f pp f f  pp f                                                                           p f pp f pp f  pp f                                                                       p pp f pp f f  pp f                                                                    3 3 pp f pp f  pp f p f                                                                      3 3  pp f pp f pp f p f                                                  

Vl. I



pp

 

1.2.  con  sord.  

 

p

con sord.

 

f

       



 

f

 f

  

 

f

 

3

 

f

f

3

f

         


20

P 173

 

                  pp

f                           

Fl.

                                                    

  

mf

      

          mf

Hr.

         mf

          mf

Tr.

 

Trb. 1

       

mf

        

Trb. 2

T.

Timp.

mf

H.

P

      

f

         

pp

f

Vc.

Cb.

         

                                     

 

 

pp

    

 

 

 

 

 

f

 

 

f

 

f



f

 f



f

 

pp

   

pp

      

  

pp

  

Vl. II

Vla.

       



       

 

 

       

 

pp

p

Vl. I

f

 

pp

      

pp

  

      

f

                         



pp

                         

Cl.

f

pp

Ob.

Bsn.

      

 

               

  

  

 

 

  

 

f

f

f

     

 

3

 

 

  

3

pp

 

pp

 

pp

GE 14085

   3

  

3

     

 

   

 

 

3

f

  

3

3

3

l. v. sempre

 

3

         

   

 

   f

f

f

f

3

    

f

         

 

 

                       3     3  

pp

f

pp

f

pp

  

  

pp

f

pp

 

f

 

f

  

gliss.

  

 



f

gliss.

3

  

gliss.

3



 

3

3

 

gliss.



   

  

gliss.



 

 

gliss.

3

   

 



pp

pp

    

    

 

    f

  3

f

  

f

  

    



3

   



 

f

f

f

  

 

  3

  

3


21 tone 182 whistle a2

 Fl.  

Q Misterioso q = ca 60

Ob.

Cl.

 

Tri.  

Bsn.

Cbsn.

Hr.

Tr.

Trb.

T.

Timp.

6

3

H.

         

  

 Vl. I

 

 

 

      

    

6

6

f

 



f

 

 

f

 

   

   

f



 

f

 

f

    

 

Q Misterioso q = ca 60



  

3



 

6

 





f

 

 

f

 

  

  

  

     f

  

 f

f

Vl. II

Vla.

Vc.

Cb.

  

 

 

  

   

f

f

3

  

    

 3

 

f

 

    

   

  f

 

f

  3

 

3

  

 

f

  3

 

3

         3



  

      

3

f

3

3

 

3



GE 14085

       

  

 

 

 

f

  



f

 





3

f

   


22

190 Fl.

 

Ob.

Cl.

 

Tri.  

Bsn. Cbsn.

Hr.

Tr.

Trb.

T.

Timp.

H.

 





f

  f



 

f

 

Vl. II

 

  f

 

  f

 

 

 

f

    

 3

3

 

gliss.

pp

f

  

gliss.

pp



gliss.

pp



gliss.

pp



gliss.

pp

gliss.



 

3

3

    3 

6

p

3

     

  

 GE 14085

 3 

 

p



     



p



 

p

 

p

 

  

 

 

   

p

    6     



 

p

 

6

f

pp

f

  

    

f

  

6

f

  

f

 

Cb.

 

Vc.

 

Vla.

  

3                  3 3



f

  

 mp

   

3

3

  

f

6

3

6

6

               

f

   

 



6

  3 3

     

     

p

l. v. sempre

Vl. I

 3

f

 

 

 



   p

    p

 

  

  



GE 1 4 0 8 5 ISMN 979-0-070-14085-0

9 790070 140850


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.