Examen rapido 1 calculo diferencial

Page 1

1. Evalué el límite si existe

 h  5 lim h 0

2

 25

h

Solución

 h  5 lim

2

 25

h 2  10h  25  25  lim h 0 h 0 h h 2 h  h  10  h  10h lim  lim  lim h  10 h 0 h 0 h 0 h h lim h  10  0  10  10 h 0


limit

IIh-5M^2-25M h

• function to find limit of: • value to approach:

0

Also include: specify variable

Limit:

Hh - 5L - 25

È specify direction È include second limit Step-by-step solution

2

lim h®0

h

- 10

Plot: -6

-4

-2

2

4

6

-5

-10

Hh from -6 to 6L

-15

Series expansion at h=0:

h - 10

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 9, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company

1


1 1  x 2 lim x2 x  2 Solución

1 1 2 x    x  2 2 x lim x 2  lim 2 x  lim  lim x 2 x  2 x 2 x  2 x 2 2 x  x  2  x 2 2 x  x  2  1 1  x 2 2 x 4

lim


limit

• function to find limit of: • value to approach:

I1 x-1 2M Ix-2M 2

È specify direction È include second limit

Also include: specify variable

Limit:

Approximate form

lim x®2

1 x

-

1 2

x-2

-

Step-by-step solution

1 4

Plot: 1.5

2.0

2.5

3.0

-0.2 Hx from 1 to 3L

-0.3 -0.4 -0.5

Series expansion at x=2: 1 4

- +

x-2 8

-

1 16

Hx - 2L2 +

1 32

Hx - 2L3 -

1 64

Hx - 2L4 +

1 128

Hx - 2L5 + OIHx - 2L6 M

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 9, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company

More terms

1


2. Encuentre el límite si existe. Si no lo hay explique porque

1 1  lim    x 0 x x  Solución Tenemos que

 x, si x  0 x   x si x  0

1 1  2 1 1  lim     lim    lim  No existe   x 0  x x  x 0  x  x  x 0 x


x2  1 3. Sea F ( x )  x 1 a. Hallar i. lim F ( x) x1

Solución x2  1 x2  1 lim  lim  lim  x  1  2 x 1 x  1 x 1 x  1 x 1 ii.

lim F ( x) x1

Solución x2  1 x2  1 lim  lim  lim   x  1  2 x 1 x  1 x 1   x  1 x 1 b. ¿Existe lim F ( x) x1

Solución El lim F ( x) no existe debido a que lim F ( x)  lim F ( x)  x1

c. Trazar la gráfica de F ( x) Solución

x1

x1


limit

• function to find limit of: • value to approach:

Ix^2-1M x-1 1

Also include: specify variable

È specify direction È include second limit

Input:

x2 - 1

lim x®1

x - 1¤

z¤ is the absolute value of z »

Limit:

Htwo-sided limit does not existL

One-sided limits:

x2 - 1

lim-

x®1

x - 1¤ x2 - 1

lim x®1+

Plot:

x - 1¤

-2 2

4 3 2 1 -1

1

2

3

Hx from -1 to 3L

-1 -2

Series expansion at x=1: Hx-1L2 +2 Hx-1L x-1¤

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 9, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company

1


4. Halle el limite trigonométrico

sen  0   tan 

a. lim

Solución

lim

sen

sen sen  0   lim   0   tan   0 sen 1 sen 1 1 1  lim lim  0  cos   0 cos 1 1  1  1 1 2 lim


limit

• function to find limit of:

senx Hx+tanxL

• value to approach:

0

Also include: specify variable

È specify direction È include second limit

Limit:

Approximate form

sinHxL lim x®0

x + tanHxL

Step-by-step solution

1 2

Plot: 1.0 0.5

-6

-4

-2

2

4

6

-0.5

Hx from -6 to 6L

-1.0

Series expansion at x=0: 1 2

-

x2 6

-

x4 720

More terms

+ OIx 6 M

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 9, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company

1


cot 2 x x0 csc x

b. lim

Solución

cos 2 x cos 2 x cot 2 x lim  lim sen2 x  lim 2senx cosx x 0 csc x x 0 x 0 1 1 senx senx senx cos 2 x cos 2 x cos 2  0  1 lim  lim   x 0 2 senx cos x x 0 2cos x 2cos  0  2


limit

• function to find limit of:

cot2x cscx

• value to approach:

0

Also include: specify variable

È specify direction È include second limit

Limit:

Approximate form

cotH2 xL lim x®0

cscHxL

Step-by-step solution

1 2 cotHxL is the cotangent function » cscHxL is the cosecant function »

Plot: 2 1

-6

-4

-2

2

4

6

-1

Hx from -6 to 6L

-2

Series expansion at x=0: 1 2

-

3x 4

2

4

-

x 16

6

-

7x 160

More terms

+ OIx 7 M

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 9, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company

1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.