ex Resuelva y '' 2y ' y x Solución Aquí n 2 y yh c1e c 2xe por lo tanto x
x
yp v1e x v 2 xe x x x Dado que y1 e ,y2 xe y (x) e / x de la ecuación tenemos x
v '1 y1 v '2 y 2 0
v '1 y '1 v '2 y '2 (x)
v '1 e x v '2 xe 0
v ' e
v '1 e
x
2
x
xe
x
ex x
Resolviendo este conjunto de ecuaciones, obtenemos v '1 1 y v'2 1/ x . De este modo,
v1 v '1 dx 1dx x 1 v 2 v '2 dx dx ln x x Sustituyendo estos valores obtenemos
yp xe x xe x ln x Por lo tanto, la solución general es
y yc yp c1e x c 2 xe x xe x xe x ln x y c1e x c 3 xe x xe x ln x c 3 c 2 1
y'' -2y'+y=e^x x
Input:
y ¢¢ HxL - 2 y ¢ HxL + yHxL
ãx x
ODE classification:
second-order linear ordinary differential equation Alternate forms:
y HxL + yHxL 2 y HxL + ¢¢
¢
y ¢¢ HxL 2 y ¢ HxL - yHxL +
ãx x ãx x
Alternate form assuming x is positive:
ãx x Iy ¢¢ HxL - 2 y ¢ HxL + yHxLM
Differential equation solution: x
x
Approximate form
Step-by-step solution
x
yHxL c1 ã + c2 ã x + ã x logHxL logHxL is the natural logarithm »
Plots of sample individual solutions:
yH1L 1
y¢
y
y
x
yH1L 0
y¢
y
x
y ¢ H1L 0
y
y ¢ H1L 1
Generated by Wolfram|Alpha (www.wolframalpha.com) on March 23, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company
1
y'' -2y'+y=e^x/x
Sample solution family: y 60 50
Hsampling yH1L and y ¢ H1LL
40 30 20 10 x 1.5
2.0
2.5
3.0
Possible Lagrangian:
LIy ¢ , y, xM
1
-ã-2 x y 2 + ã-2 x y ¢ 2 +
2
2 ã-x y x
Generated by Wolfram|Alpha (www.wolframalpha.com) on March 23, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company
2
Solve -2
â yHxL
+
âx
â2 yHxL âx
2
ãx x
+ yHxL
:
The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving
â2 yHxL âx2
-2
â yHxL âx
+ yHxL 0:
Assume a solution will be proportional to ãΛ x for some constant Λ. Substitute yHxL ãΛ x into the differential equation: â2 âx
2
IãΛ x M - 2
Substitute
â âx
â2
IãΛ x M Λ2 ãΛ x and
âx2 Λx
Λ2 ãΛ x - 2 Λ ã
IãΛ x M + ãΛ x 0
+ ãΛ x 0
â IãΛ x M âx
Λ ãΛ x :
Factor out ãΛ x :
IΛ2 - 2 Λ + 1M ãΛ x 0 Since ãΛ x ¹ 0 for any finite Λ, the zeros must come from the polynomial: Λ2 - 2 Λ + 1 0
Factor:
HΛ - 1L2 0 Solve for Λ: Λ 1 or Λ 1 The multiplicity of the root Λ 1 is 2 which gives y1 HxL c1 ã x , y2 HxL c2 ã x x as solutions, where c1 and c2 are arbitrary constants.
The general solution is the sum of the above solutions: yHxL y1 HxL + y2 HxL c1 ã x + c2 ã x x
Determine the particular solution to
â2 yHxL âx2
+ yHxL - 2
â yHxL âx
parameters:
List the basis solutions in yc HxL: yb1 HxL ã x and yb2 HxL ã x x
Compute the Wronskian of yb1 HxL and yb2 HxL: ãx
WHxL
â Hã x L âx
Let f HxL
ãx x
â Hã x âx
xL
ãx ãx x ã2 x x x ã ã + ãx x
ãx : x
Let v1 HxL -à
f HxL yb2 HxL WHxL
â x and v2 HxL à
f HxL yb1 HxL WHxL
â x:
The particular solution will be given by: y p HxL v1 HxL yb1 HxL + v2 HxL yb2 HxL
Compute v1 HxL:
v1 HxL -à 1 â x -x
Compute v2 HxL: 1 v2 HxL à â x logHxL x The particular solution is thus:
y p HxL v1 HxL yb1 HxL + v2 HxL yb2 HxL -Hã x xL + ã x x logHxL
Simplify:
y p HxL ã x x HlogHxL - 1L
The general solution is given by:
yHxL yc HxL + y p HxL c1 ã x + c2 ã x x + ã x x HlogHxL - 1L
Simplify the arbitrary constants: Answer:
yHxL ã x x logHxL + c1 ã x + c2 ã x x
ãx x
by variation of
t t cos 2 2
Resuelva y '' 6y ' 25y 2sen Solución La ecuación característica es
2 6 25 0 Usando la formula cuadrática encontramos que sus raíces son:
6
6
2
4 25
2
3 i4
Estas raíces son un par conjugado complejo, de modo que la solución general es:
y c1e3t cos4t c 2e3tsen4t Aquí (t) tiene la forma siguiente, con la variable independiente t reemplazando a x,k1 2,k 2 1 y
1 (x) k1senx k 2 cos x donde k1,k 2 y son 2
constantes conocidas. Se asume una solución de la forma
yp Asenx Bcos x Donde A y B son constantes a ser determinadas Donde tenemos
t t yp Asen Bcos 2 2 A t B t y 'p cos sen 2 2 2 2 y ''p
A t B t sen cos 4 2 4 2
Sustituyendo los resultados en la ecuación diferencial obtenemos
A A t B t t B t t t 4 sen 2 4 cos 2 6 2 cos 2 2 sen 2 25 Asen 2 Bcos 2 t t 2sen cos 2 2 O de manera equivalente
99 99 t t t t A 3B sen 3A B cos 2sen cos 4 4 2 2 2 2 Igualando los coeficientes de los términos similares tenemos
99 99 A 3B 2 : 3A B 1 4 4 Luego tenemos que A 56 / 663 y B 20 / 663 de modo que tenemos que la solución particular es
yp
56 t 20 t sen cos 663 2 663 2
Y la solución general es
y yc yp c1e3t cos 4t c 2e3t sen4t
56 t 20 t sen cos 663 2 663 2
y'' -6y'+25y=2senHt 2L-cosHt 2L
Input:
y ¢¢ HtL - 6 y ¢ HtL + 25 yHtL 2 sin
t
t - cos
2
2
ODE classification:
second-order linear ordinary differential equation Alternate forms:
y ¢¢ HtL + 25 yHtL + cos
t 2
6 y ¢ HtL + 2 sin
y ¢¢ HtL 6 y ¢ HtL - 25 yHtL + 2 sin y ¢¢ HtL - 6 y ¢ HtL + 25 yHtL -
t
t 2 t
- cos
2
1
-
+ä ã
2 1
ät 2
-
2
ät
+ä ã2 2
Differential equation solution:
Approximate form
yHtL c1 ã3 t sinH4 tL + c2 ã3 t cosH4 tL +
56
t
663
20 -
sin 2
Step-by-step solution
t cos
663
2
Plots of sample individual solutions:
yH0L 1
y¢
y
y
t
yH0L 0
y¢
y
t
y ¢ H0L 0
y
y ¢ H0L 1
Generated by Wolfram|Alpha (www.wolframalpha.com) on March 23, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company
1
y'' -6y'+25y=2sen(t/2)-cos(t/2)
Sample solution family: y 100 80
Hsampling yH0L and y ¢ H0LL
60 40 20 t 0.2
0.4
0.6
0.8
1.0
1.2
-20
Possible Lagrangian:
LIy ¢ , y, tM
1
-25 ã-6 t y 2 + ã-6 t y ¢ 2 + 2 ã-6 t y 2 sin
2
t
t - cos
2
Generated by Wolfram|Alpha (www.wolframalpha.com) on March 23, 2014 from Champaign, IL. © Wolfram Alpha LLC— A Wolfram Research Company
2
2
Solve -6
â yHtL
+
ât
â2 yHtL ât2
+ 25 yHtL 2 sinI 2 M - cosI 2 M : t
t
The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving
â2 yHtL ât2
-6
â yHtL ât
+ 25 yHtL 0:
Assume a solution will be proportional to ãΛ t for some constant Λ. Substitute yHtL ãΛ t into the differential equation: â2 ât
2
IãΛ t M - 6
Substitute
â ât
â2
IãΛ t M + 25 ãΛ t 0
IãΛ t M Λ2 ãΛ t and
â IãΛ t M ât
ât2 Λt
Λ2 ãΛ t - 6 Λ ã + 25 ãΛ t 0
Λ ãΛ t :
Factor out ãΛ t :
IΛ2 - 6 Λ + 25M ãΛ t 0 Since ãΛ t ¹ 0 for any finite Λ, the zeros must come from the polynomial: Λ2 - 6 Λ + 25 0
Solve for Λ: Λ 3 + 4 ä or Λ 3 - 4 ä The roots Λ 3 ± 4 ä give y1 HtL c1 ãH3+4 äL t , y2 HtL c2 ãH3-4 äL t as solutions, where c1 and c2 are arbitrary constants.
The general solution is the sum of the above solutions: yHtL y1 HtL + y2 HtL c1 ãH3+4 äL t + c2 ãH3-4 äL t
Apply Euler's identity ãΑ+ä Β ãΑ cosHΒL + ä ãΑ sinHΒL:
yHtL c1 Iã3 t cosH4 tL + ä ã3 t sinH4 tLM + c2 Iã3 t cosH4 tL - ä ã3 t sinH4 tLM
Regroup terms:
yHtL Hc1 + c2 L ã3 t cosH4 tL + ä Hc1 - c2 L ã3 t sinH4 tL
Redefine c1 + c2 as c1 and ä Hc1 - c2 L as c2 , since these are arbitrary constants: yHtL c1 ã3 t cosH4 tL + c2 ã3 t sinH4 tL
Determine the particular solution to
â2 yHtL
+ 25 yHtL - 6
ât2
â yHtL ât
variation of parameters:
List the basis solutions in yc HtL:
2 sinI 2 M - cosI 2 M by t
yb1 HtL ã3 t cosH4 tL and yb2 HtL ã3 t sinH4 tL
Compute the Wronskian of yb1 HtL and yb2 HtL: ã3 t cosH4 tL
â Iã3 t ât
WHtL
ã3 t sinH4 tL
â Iã3 t ât
cosH4 tLM
ã3 t cosH4 tL
sinH4 tLM
ã3 t sinH4 tL
3 ã3 t cosH4 tL - 4 ã3 t sinH4 tL 4 ã3 t cosH4 tL + 3 ã3 t sinH4 tL Let f HtL 2 sinI 2 M - cosI 2 M: t
t
f HtL yb2 HtL
Let v1 HtL -à
4 ã6 t
WHtL
f HtL yb1 HtL
â t and v2 HtL à
WHtL
â t:
The particular solution will be given by: y p HtL v1 HtL yb1 HtL + v2 HtL yb2 HtL
Compute v1 HtL: v1 HtL -à
I-cosI 2 M + 2 sinI 2 MM sinH4 tL
39 cosI
t
t
4 ã3 t
ât
7t 9t 7t 9t M - 119 cosI 2 M - 156 sinI 2 M + 68 sinI 2 M 2
2652 ã3 t
Compute v2 HtL: v2 HtL à
cosH4 tL I-cosI 2 M + 2 sinI 2 MM
-156 cosI
-
t
t
4 ã3 t
ât
7t 9t 7t 9t M + 68 cosI 2 M - 39 sinI 2 M + 119 sinI 2 M 2
2652 ã3 t
The particular solution is thus:
y p HtL v1 HtL yb1 HtL + v2 HtL yb2 HtL cosH4 tL I39 cosI I-156 cosI
7t 9t 7t 9t M - 119 cosI 2 M - 156 sinI 2 M + 68 sinI 2 MM 2
-
2652
7t 9t 7t 9t M + 68 cosI 2 M - 39 sinI 2 M + 119 sinI 2 MM sinH4 tL 2
2652
Simplify: y p HtL -
t
4 5 cos 663
t - 14 sin
2
2
The general solution is given by: Answer:
yHtL yc HtL + y p HtL
c1 ã3 t cosH4 tL + c2 ã3 t sinH4 tL -
t
4 5 cos 663
t - 14 sin
2
2
t