TM-4-3

Page 1

Computing a t-test for the Difference between Two Means of Paired Samples Frequently, we are interested in comparing “before� and "after" scores for a group in order to evaluate the effectiveness of a training program or a teaching technique. Or, we may have administered a test to "matched pairs" of students. Matched pairs is when you select pairs of subjects with identical characteristics and assign one of them to an experimental group and the other to a control group in order to ensure the groups are equal. For either of these two situations (same group or matched groups), a t-test for difference between two means for paired samples may be appropriate. We will discuss the assumptions necessary for its use before we look at a specific example.

Criteria for Selecting a t-Test for the Difference between Two Means A t-test is selected for testing hypotheses regarding samples if certain assumptions can be made. Perhaps the most important of these is that the scores or measurements of the population(s) about which conclusions will be drawn (boys who want to throw the shot-put; outfielders; infielders) would form a normal or near normal distribution. If it is known that the measurement on the population differs markedly from normal, a different test should be selected. The t-test for the differences between two means for paired samples is used for test-retest situations with a single group. It is also used when two samples have been matched on some characteristic so that they are assumed to be "identical," The t-test for the difference between two means for independent samples is used when the scores of one sample are in no way dependent on the scores of the other sample. (See table 4-5) Table 4-5 How to choose a t test for the difference between 2 means

t-test for independent samples 2 independent samples Normally distributed population(s)

t-test for paired samples Test-retest of same sample 2 samples matched on some characteristic Normally distributed population(s)

Suppose a coach advocates a weight training program for shot putters, because he believes that weight training will enhance their ability to throw the shot-put farther. To support his position, he conducts the following experiment. He selects 10 boys and measures how far each can throw the shotput. After participating in a weight training program for six weeks, each boy is retested in the shotput. The coach reasons that, if the difference between the "before" and "after" distances is statistically significant, he can safely conclude that a weight training program is beneficial to boys who wish to throw the shot-put. (Note that he will use statistics to draw a conclusion about the population of boys, who wish to throw the shot-put from the actual experience of a small sample of boys he drew from that population.) He assumes that, if the training program has no effect, the population’s mean score on the test before training (M1) will be about equal to the population mean score on the test after training (M2). The null hypothesis (HO) is indicated by: HO : M1=M2. If, however, the weight training program has the desired effect of increasing the distance of the shot put, he expects M1 to be less than M2. The alternate hypothesis (HA) is denoted: HA: M1 < M2. The coach selects the .05 level of significance as the dividing line between chance differences and differences due to the training program. The degrees


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.