m2

Page 1

CHAPTER 2

Limits and Continuity SECTION 2.1 1.

The function f (x) is graphed. lim f (x) = x→0−

A. 0

B. 4

C. 2

D. undefined

2.

Answer true or false. For the function graphed lim f (x) is undefined. x→2

x2 − 9 x2 − 9 by evaluating f (x) = at x = 4, 3.5, 3.1, 3.01, 3.001, 2, 2.5, x→3 x − 3 x−3 2.9, 2.99, and 2.999.

3. Approximate the lim

B. −9

A. 6

D. −6

C. 0

4. Answer true or false. If lim f (x) = 6 and lim f (x) = 6, then lim f (x) = 0. x→0+

5. Approximate the A. 1

lim

x→−6−

x→0−

x x by evaluating f (x) = at appropriate values of x. x+6 x+6

B. 5

7. Approximate the limit by evaluating f (x) = A. 1

C. ∞

B. 0

6. Approximate the limit by evaluating f (x) = A. 1

x→0

D. −∞

5x 5x at appropriate values of x. lim− = sin x x→0 sin x 1 C. D. ∞ 5 sin x sin x at appropriate values of x. lim = x→0 x x

B. −1

C. 0 √

8. Approximate the limit by evaluating f (x) = √ x+1−1 lim = − x x→0 1 A. B. 0 2

x+1−1 at appropriate values of x. x

C. ∞

1

D. ∞

D. −∞


2

True/False and Multiple Choice Questions

9. Use a graphing utility to approximate the y-coordinates of any horizontal asymptote of 6x − 8 . y = f (x) = x+2 A. 6

B. 1

D. −4

C. None exist.

10. Use a graphing utility to approximate the y-coordinate of any horizontal asymptote of sin x y = f (x) = . x A. 0

C. −1 and 1

B. 1

D. −1

11. Use a graphing utility to approximate the y-coordinate of any horizontal asymptote of x3 + 5 y = f (x) = . x−3 A. 0

B. None exist.

D. −1 and 1

C. 1

12. Answer true or false. A graphing utility can be used to show f (x) =

5 1+ x

x has a horizontal

asymptote. 13. Answer true or false. A graphing utility can be used to show f (x) =

1 10 + 2x

2x has a horizontal

asymptote.  4 − 1 4−x   14. Answer true or false. lim is equivalent to lim−  x . 3 x→−∞ 3 + x x→0 +1 x 

15. Answer true or false. f (x) =

x3 has no horizontal asymptote. −2

x5

16. Approximate the horizontal asymptote of f (x) = A. It does not exist. 17.

5 − 2x . 3+x

B. y = 0

C. y = −2

D. y = 2

B. 0

C. It does not exist.

D. −4

sin(8x) = x→0 sin(2x) lim

A. 4


Section 2.2

3

SECTION 2.2 1. Given that lim f (x) = 3 and lim g(x) = 5, find, if it exists, lim [2f (x) − 3g(x)]2 . x→a

x→a

A. −81 C. 9 2.

x→a

B. 81 D. It does not exist.

lim 5 =

x→3

A. 3

B. 5

C. 8

D. 15

C. 12

D. 1

3. Answer true or false. lim 9x = 18 x→2

4.

x2 − 36 = x→−6 x + 6 lim

A. −∞ 5.

B. −12

10 = x+5

lim

x→−5

B. −∞ D. It does not exist.

A. +∞ C. 0 6. Find lim+ f (x) where f (x) = x→0

7.

8.

A. 0

B. 3

C. −3

D. It does not exist.

lim

x→5+

x = x−5

A. −∞

B. ∞

C. 0

D. It does not exist.

lim

x→4−

3 = x−4

A. ∞ C. It does not exist. 9.

|3x| . x

lim

x→6

B. 0 D. −∞

3x − 2 = x−6

A. ∞ C. It does not exist.

B. 0 D. −∞


4

True/False and Multiple Choice Questions

10.

Use the graph of f (x) above. lim f (x) = x→−1

B. −1 D. 0

A. 1 C. It does not exist. 11.

Use the graph of f (x) above. lim f (x) = x→1

B. −1 D. 1

A. 0 C. It does not exist. 12. Let f (x) =

x3 , x − 2,

x≤2 . lim f (x) = x > 2 x→2+

A. 8 C. 0

B. 4 D. It does not exist.

13. Let g(x) =

x3 − 3, 5

x ,

x≤1 . lim g(x) = x > 1 x→1

A. 5 C. 3 14.

B. 1 D. It does not exist.

16 − x = lim √ x−4

x→16

A. 8

B. 0

C. −8

D. It does not exist. √

15. Answer true or false. lim

x→0+

x2 + 25 − 5 1 = . x 4


Section 2.3

5

SECTION 2.3 1. Answer true or false.

6x2 − 6x + 5 =0 x→+∞ 3x2 + 2x + 9 lim

5x3 + 4x2 − 3x + 8 = −5 x→−∞ x3 + 2 √ x2 + 9 =2 3. Answer true or false. lim x→+∞ x − 7 √ 9x2 + 5 = −3 4. Answer true or false. lim x→−∞ x+3

2. Answer true or false.

5. Answer true or false. 6.

7.

lim

x→+∞

lim

x→−∞

A. 0

B. 3

C. 1

D. It does not exist.

4x3 − 2 = x→−∞ x3 lim

B. −∞

2x2 = x→−1 x8 − 2x2 − x B. −∞ D. It does not exist.

x+5 = lim √ x−3

x→9

B. −∞ D. It does not exist.

A. +∞ C. 84

10.

lim

x→−∞

20x10 − 2x5 + 2 = 5x10 + x5 − 3

A. +∞ C. 2 11.

C. ∞

lim

A. +∞ C. 0 9.

1 =0 3x − 2

4x − 3 = x4 − 3

A. 4 8.

lim

B. −∞ D. It does not exist.

lim (x6 − 400x5 − x4 + x)

x→+∞

A. +∞ C. −500

B. −∞ D. It does not exist.

D. −4


6

True/False and Multiple Choice Questions

√ 3 12.

x→+∞

A. 13.

x3 = 3x

lim

1 3

√ 3

lim

x→+∞

B. +∞

C. −∞

D. 0

B. +∞

C. −∞

D. 0

27x3 = 3x

A. 1

√ 14. Answer true or false.

15.

lim

x→+∞

x2 − 7 + 2 does not exist. x

18x3 + 5 = x→−∞ 6x3 − 2 lim

A. −3

B. 3

C. 0

D. 18


Section 2.4

7

SECTION 2.4 1. Find a least number δ such that |f (x) − L| < if 0 < |x − a| < δ. lim 10x = 50; = 0.1 x→5

A. 0.1

B. 0.01

C. 0.5

D. 0.025

2. Find a least number δ such that |f (x) − L| < if 0 < |x − a| < δ. lim 3x − 5 = 1; = 0.1 x→2

A. 0.033

B. 0.33

C. 3.0

D. 0.3

3. Answer true or false. It can be shown that if |f (x) − L| < when 0 < |x − a| < δ, |x2 − 9| < if |x − 3| < δ for arbitrarily small positive . x2 − 25 = −10; = 0.001 x→−5 x + 5

4. Find a least number δ such that |f (x) − L| < if 0 < |x − a| < δ. lim A. 0.001

B. 0.000001

C. 0.005

D. 0.025

5. Find a least positive number N such that |f (x) − L| < if x > N . A. N = 100

B. N = 1,000

lim

x→+∞

C. N = 10

D. N = 10,000

6. Find a greatest negative number N such that |f (x) − L| < if x < N . A. N = −100,000

100 = 0; = 0.1 x

B. N = −10,000

C. N = −100

7. Answer true or false. It is possible to prove that lim

1 = 0. x3 + 9

8. Answer true or false. It is possible to prove that lim

1 = 0. 4x + 16

9. Answer true or false. It is possible to prove that lim

3x = 0. 5x + 2

x→+∞

x→−∞

x→+∞

10. Answer true or false. It is possible to prove that lim

x→3

x2

10 = 0; = 0.1 x→−∞ x lim

D. N = −10

1 = +∞. −9

11. To prove that lim (x − 2) = 3 a reasonable relationship between δ and would be x→5

A. δ = 5

B. δ =

C. δ =

12. Answer true or false. To use a δ- approach to show that lim

x→0+

would be to change the limit to lim x2 = 0.

D. δ =

1 .

1 = +∞, a reasonable first step x2

x→+∞

−1 = −∞. x→4 |x − 4|

13. Answer true or false. It is possible to show that lim 14. To prove that lim f (x) = 9 where f (x) = x→3

3x,

x<3

x + 6, x ≥ 3

a reasonable relationship between δ

and would be A. δ = 3

B. δ =

C. δ = + 3

D. δ = 2 + 3.


8

True/False and Multiple Choice Questions

15. Answer true or false. It is possible to show that lim

x→0

16. If lim

x→4

x = 0. 5

x + 3 = 5 and ε = 0.01, find a smallest positive number δ such that |f (x) − 5| < 0.01 if

0 < |x − 4| < δ. A. 0.01

B. 0.5

C. 0.1

D. 0.04

17. If lim 10x = 40 and ε = 0.01, find a smallest positive number δ such that |f (x) − 40| < 0.01 if x→4

0 < |x − 4| < δ. A. 0.01

B. 0.1

C. 0.001

D. 0.0001


Section 2.5

9

SECTION 2.5 1.

On the interval of [−10, 10], where is f not continuous? A. −2, 2

C. −2

B. 2

D. nowhere

2.

On the interval of [−10, 10], where is f not continuous? A. 3

B. 0, 3

C. 0

D. nowhere

3. Answer true or false. f (x) = x7 − 2x5 + 3 has no point of discontinuity. 4. Answer true or false. f (x) = |x2 − 4| has points of discontinuity at x = −2 and x = 2. 5. Find the x-coordinates for all points of discontinuity for f (x) = A. 5, 7

B. −7

D. −5, −7

C. 7

6. Find the x-coordinates for all points of discontinuity for f (x) = A. 0

x−5 . x2 − 12x + 35

9x2 + 36 . |3x + 6|

C. −2

B. 2

D. −2, 2

7. Find the x-coordinates for all points of discontinuity for f (x) = A. 1

B.

√ 3

2

C. 1,

√ 3

x3 + 2, x ≤ 1 . −5, x>1

2

D. None exists.

8. Find the value of k, if possible, that will make the function continuous. x + 2k, x≤1 f (x) = kx2 + x + 1, x > 1 A. 1

B. −1

C. 2

D. None exists.

x+5 has a removable discontinuity at x = 1. x−1 x≤2 x3 , is continuous everywhere. 10. Answer true or false. The function f (x) = 2 x + 4, x > 2 9. Answer true or false. The function f (x) =


10

True/False and Multiple Choice Questions

11. Answer true or false. If f and g are each continuous at c, f /g may be discontinuous at c. 12. Answer true or false. The Intermediate-Value Theorem can be used to approximate the locations −3x3 + 2x + 1 . of all discontinuities for f (x) = x 13. Answer true or false. f (x) = x2 − 3x + 1 = 0 has at least one solution on the interval [−1, 0]. 14. Answer true or false. f (x) = x4 − 2x2 + 3 = 0 has at least one solution on the interval [0, 1]. 15. Use the fact that

√ 4

A. 1.65

8 is a solution of x4 − 8 = 0 to approximate B. 1.66

C. 1.68

√ 4

8 with an error of at most 0.005. D. 1.69

2x − 5, if x ≤ 2 . Find the value for the constant k that will make the function conkx + 3, if x > 2 tinuous everywhere.

16. f (x) =

A. −2

B. 0

C. 2

D. −1

if x ≤ 0 . Find the value for the constant k that will make the function con3x + k, if x > 0 tinuous everywhere.

17. f (x) =

A. 2

x2 − 2,

B. −2

C. 0

D. 1


Section 2.6

11

SECTION 2.6 1. Answer true or false. f (x) = tan(x2 − 3) has no point of discontinuity. 2. A point of discontinuity of f (x) = π 2

1 is at |0.5 − sin x|

π 3 5 4 3. Find the limit. lim sin = cos x→+∞ x x A.

A. 0 4. Find the limit. lim

x→0−

π 4

D.

π . 6

B.

C.

B. 1

C. −1

D. +∞

C. 1

D. −∞

sin3 x = x3

A. +∞

B. 0 sin(7x) = x→0 sin(9x)

5. Find the limit. lim A. +∞

B. 0

6. Find the limit. lim

x→0

A. 1

1 − cos x = 6 1 B. 6

7 9

D. 1

C. 3

D. 0

C. −∞

D. 0

C. +∞

D. −∞

C.

sin2 x = x→0 tan2 x

7. Find the limit. lim A. +∞

B. 1

8. Find the limit. lim

x→0

sin x = sin(−x)

A. −1

B. 1

9. Find the limit. lim− tan x→0

1 = x B. −1 D. does not exist

A. 1 C. −∞ x2 = x→0 sin x

10. Find the limit. lim A. 0

B. 1

C. −1

D. +∞

11. Answer true or false. The value of k that makes f continuous for f (x)

sin x , x≤0 is 0. x cos x + k, x > 0


12

True/False and Multiple Choice Questions

sin x sin2 x = 1 and that lim = 1 guarantees that x→0 x x→0 x2

12. Answer true or false. The fact that lim sin2 x = 1 by the Squeeze Theorem. x→0 x lim

13. Answer true or false. The Squeeze Theorem can be used to show lim x + 1 = 1 utilizing lim x = 0 x→0

and lim 1 = 1.

x→0

x→0

14. Answer true or false. The Intermediate-Value Theorem can be used to show that the equation y 5 = cos x has at least one solution on the interval [−5π/6, 5π/6]. 15.

lim

x→0

x sin x +2 3x 3 sin x

A. 1

= B. 2

16. Find all points of discontinuity, if any, for f (x) = A. x = 2 C. x = 0 17.

lim

x→0

C.

1 2

1 . 5 − 2 sin x B. x = π D. None exist.

sin 4x = x

A. 0 C. 4

B. 1 D. It does not exist.

D. 0


Chapter 2 Test

13

CHAPTER 2 TEST 1.

The function f is graphed. lim f (x) = x→−2

B. −2

A. 2

C. 0

D. undefined

x2 − 49 x2 − 49 by evaluating f (x) = at x = −6, −6.5, −6.9, −6.99, −6.999, x→−7 x + 7 x+7 −7, −7.5, −7.1, −7.01, and −7.001.

2. Approximate lim

B. −7

A. 7

D. −14

C. 14

3. Use a graphing utility to approximate the y-coordinate of the horizontal asymptote of 10x + 3 . y = f (x) = 2x − 5 3 3 A. 5 B. C. − D. −5 5 5 3x 3 has a 4. Answer true or false. A graphing utility can be used to show that f (x) = 12 + 3x horizontal asymptote. 5. Answer true or false.

5 x4 is equivalent to lim . x→−∞ x4 x→0− 5 lim

6. Given that lim f (x) = 5 and lim g(x) = −5, find lim [6f 2 (x) − g(x)]. x→a

A. 0 7.

x→a

B. 150

C. 155

D. 145

B. −1

C. 7

D. Does not exist

B. 0

C. +∞

D. Does not exist

C. 0

D. Does not exist

lim 7 =

x→6

A. 1 8.

x→a

x = x→3 x − 3 lim

A. 1 √ 9. Let f (x) = A. 1

x, x ≤ 1 . lim f (x) = √ 3 x, x > 1 x→1 B. −1

10. Find a least number δ such that |f (x) − L| < if 0 < |x − a| < δ. lim 2x = 20; < 0.01 x→10

A. 0.01

B. 0.005

C. 0.05

D. 0.0025


14

True/False and Multiple Choice Questions

x2 − 81 = −18; < 0.001 x→−9 x + 9

11. Find a least number δ such that |f (x) − L| < if 0 < |x − a| < δ. lim A. 0.001

B. 0.000001

C. 0.006

12. Answer true or false. It is possible to prove that lim

x→−∞

D. 0.03

1 = 0. x7 + 2

13. To prove lim (7x + 2) = 16, a reasonable relationship between δ and would be x→2

A. δ = 7

B. δ = 7

D. δ = − 7.

C. δ =

14. Answer true or false. It is possible to show that lim (x2 + 2) = 2. x→+∞

15. Find the x-coordinate of each point of discontinuity of f (x) = B. −3, 8

A. 3

16. Answer true or false. f (x) =

x−3 . x2 + 5x − 24

C. −8, 3

D. −3, −8

1 has a removable discontinuity at x = 2. x2 − 4

17. Answer true or false. f (x) = x2 − 3 = 0 has at least one solution on the interval [1, 4]. 18. Find lim

x→0

sin(2x) . sin(−5x) 2 5

C. −

B. −1

C. 1

B. −

A. 0

5 2

D. not defined

sin3 x . x→0 tan2 x

19. Find lim A. 0

20. Answer true or false. lim

x→0

1 − cos x =0 sin x

D. undefined


SOLUTIONS

SECTION 2.1 1. B 13. F

2. F 3. A 4. T 5. C 6. B 14. T 15. F 16. C 17. A

7. A

8. A

9. A

10. A

11. B

12. T

SECTION 2.2 1. C 13. D

2. B 3. T 4. B 14. C 15. F

5. D

6. B

7. B

8. D

9. C

10. C

11. D

12. C

5. T

6. A

7. A

8. A

9. C

10. C

11. A

12. A

2. A 3. T 4. A 5. B 6. C 14. B 15. T 16. D 17. C

7. T

8. T

9. F

10. F

11. B

12. T

7. A

8. A

9. F

10. T

11. T

12. T

7. A

8. A

9. D

10. A

11. F

12. F

2. D 3. A 4. F 5. F 6. C 7. C 14. F 15. C 16. F 17. T 18. B

8. D 19. A

9. A 10. B 20. T

11. A

12. T

SECTION 2.3 1. F 13. A

2. F 3. F 4. T 14. F 15. B

SECTION 2.4 1. B 13. T

SECTION 2.5 1. A 13. T

2. A 3. T 4. F 5. A 6. C 14. F 15. C 16. A 17. B

SECTION 2.6 1. F 13. F

2. D 3. A 4. C 5. C 6. B 14. F 15. A 16. D 17. C

CHAPTER 2 TEST 1. D 13. A

15


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.