sol3

Page 1

CHAPTER 3

The Derivative EXERCISE SET 3.1 1. (a) mtan = (50 − 10)/(15 − 5) = 40/10 = 4 m/s

(b)

v (m/s) 4

t (s) 10

2. (a) (b) (c) (d)

20

(10 − 10)/(3 − 0) = 0 cm/s t = 0, t = 2, and t = 4.2 (horizontal tangent line) maximum: t = 1 (slope > 0) minimum: t = 3 (slope < 0) (3 − 18)/(4 − 2) = −7.5 cm/s (slope of estimated tangent line to curve at t = 3)

3. From the figure: s

t t0 t1

t2

(a) The particle is moving faster at time t0 because the slope of the tangent to the curve at t0 is greater than that at t2 . (b) The initial velocity is 0 because the slope of a horizontal line is 0. (c) The particle is speeding up because the slope increases as t increases from t0 to t1 . (d) The particle is slowing down because the slope decreases as t increases from t1 to t2 . 4.

s

t t0

t1

5. It is a straight line with slope equal to the velocity. 6. (a) (b) (c) (d)

decreasing (slope of tangent line decreases with increasing time) increasing (slope of tangent line increases with increasing time) increasing (slope of tangent line increases with increasing time) decreasing (slope of tangent line decreases with increasing time) f (4) − f (3) (4)2 /2 − (3)2 /2 7 = = 4−3 1 2 f (x1 ) − f (3) x21 /2 − 9/2 = lim = lim x1 →3 x1 →3 x1 − 3 x1 − 3

7. (a) msec = (b)

mtan

x21 − 9 (x1 + 3)(x1 − 3) x1 + 3 = lim = lim =3 x1 →3 2(x1 − 3) x1 →3 x →3 2(x1 − 3) 2 1

= lim

70


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.