CHAPTER 6
Applications of the Definite Integral in Geometry, Science, and Engineering EXERCISE SET 6.1
2
1. A = −1
4
2. A =
2 (x2 + 1 − x)dx = (x3 /3 + x − x2 /2) = 9/2 −1
4 √ 3/2 2 ( x + x/4)dx = (2x /3 + x /8) = 22/3
0
0 2
2 (y − 1/y )dy = (y /2 + 1/y) = 1 2
3. A =
2
1
1 2
2 (2 − y + y)dy = (2y − y /3 + y /2) = 10/3 2
4. A = 0
3
2
0
4
(4x − x2 )dx = 32/3
5. (a) A =
16
(b) A =
0
√ ( y − y/4)dy = 32/3
0
y (4, 16) y = 4x y = x2 5 x 1
6. Eliminate x to get y 2 = 4(y + 4)/2, y 2 − 2y − 8 = 0, (y − 4)(y + 2) = 0; y = −2, 4 with corresponding values of x = 1, 4. 4 1 √ √ √ [2 x − (−2 x)]dx + [2 x − (2x − 4)]dx (a) A = 1 0 1 4 √ √ = 4 xdx + (2 x − 2x + 4)dx = 8/3 + 19/3 = 9 0 1 4 (b) A = [(y/2 + 2) − y 2 /4]dy = 9
y
y = 2x – 4 x
(1, -2)
−2
1
7. A =
√ ( x − x2 )dx = 49/192
y
1/4
y = √x
(1, 1) y = x2 x
1 4
231
(4, 4)
y2 = 4x