Economie régénérative
Problème systémique
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Systemic breakdown SY
M E ST
Système économique actuel : Croissance Compétition Opacité
D’un point de vue biologique : Croissance Compétition Opacité = Cancer
Actual energy consumption :
Source : https://futureearth.org/2015/01/16/the-great-acceleration/
Source : https://futureearth.org/2015/01/16/the-great-acceleration/
www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development
www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development
www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development
www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development
www.ted.com/talks/johan_rockstrom_let_the_environment_guide_our_development
Sensibilité aux conditions initiales (Ilya Prigogine) La glace fond à 0°C Principe d’Archimède
"We are close to the tipping point where global warming becomes irreversible. Trump's action could push the Earth over the brink, to become like Venus, with a temperature of two hundred and fifty degrees, and raining sulphuric acid," S.W. Hawking 2017
https://www.bbc.com/news/science-environment-40461726
S’inspirer du vivant (Nature Based Solutions)
Solution(s) (éco-)systémique (Pourquoi)
Image : Sciencealert.com
Comparaison des modes de rĂŠsolution entre technologie (a) et vivant (b) (Vincent et al., 2006)
Current human systems Simple Linear resource flow Disconnected and mono-functional RĂŠsistance au change Lots of garbage Long-lasting toxins Often centralized and monoculture Dependent on fossil fuels Designed to maximize a single goal Extractive Uses global resources
Biological systems Complex Circular resource flow Dense and symbiotic interconnection Adaptive No waste Rare persistent toxins Distributed and miscellaneous Runs on solar energy Optimized as a complete system Regenerative Uses local resources
Image : https://animalaxy.fr/wp-content/uploads/2020/03/iStock-1126771381.jpg
La nature n’a pas besoin de nous. 
 Nous avons besoin de la nature.
Evolution
(R) ou Re-Love-ution
Evolution Changer de paradigme (de manière de penser)
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Du point de vue des cosmologistes/ astrophysiciens => Devenir HUMBLE Image : https://writescience.files.wordpress.com/2015/04/cosmology_theoryexperiment.jpg
EVOLUTION
+0--
0+ 00 -0
++ +0 +-
PARASITISME
COMMENSALISME
ANTIBIOSE
NEUTRALISME
COMMENSALISME
COMPETITION
AMENSALISME
PREDATION
EVOLUTION
SYMBIOSE
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Source : https://www.ted.com/talks/kate_raworth_a_healthy_economy_should_be_designed_to_thrive_not_grow#t-819319
Croissance Compétition Opacité
Climax (écologique) Coopération Clarté
Outils & Méthodologie De la compétition à la coopération (Comment)
1+1=3 (?)
3 niveaux
Source : Thèse P.E. Fayemi
3 piliers
6 principes
EVOLVE TO SURVIVE
ADAPT TO CHANGING CONDITIONS
BE LOCALLY ATTUNED AND RESPONSIVE
INTEGRATE DEVELOPMENT WITH GROWTH
BE RESOURCE EFFICIENT (MATERIAL AND ENERGY)
USE LIFE-FRIENDLY CHEMISTRY
Continually incorporate
Appropriately respond to
Fit into and integrate
Invest optimally in
Skillfully and
Use chemistry that
and embody information
dynamic contexts.
with the surrounding
strategies that promote
conservatively take
supports life processes.
environment.
both development and
advantage of resources
growth.
and opportunities.
to ensure enduring performance. Replicate Strategies
Incorporate Diversity
Leverage Cyclic
Self-Organize
Use Low Energy
Break Down Products
that Work
Include multiple forms,
Processes
Create conditions to allow
Processes
into Benign Constituents
Repeat successful
processes, or systems to
Take advantage of
components to interact in
Minimize energy
Use chemistry in which
approaches.
meet a functional need.
phenomena that repeat
concert to move toward
consumption by reducing
decomposition results in
themselves.
an enriched system.
requisite temperatures,
no harmful by-products.
pressures, and/or time
Integrate the
Maintain Integrity
Unexpected
through Self-Renewal
Use Readily Available
Build from the
Incorporate mistakes in
Persist by constantly
Materials and Energy
Bottom Up
ways that can lead to
adding energy and matter
Build with abundant,
Assemble components
Use Multi-Functional
Assemble relatively few
new forms and functions.
to heal and improve the
accessible materials while
one unit at a time.
Design
elements in elegant ways.
system.
harnessing freely available energy.
Reshuffle Information
for reactions.
Small Subset of Elements
Meet multiple needs with Combine Modular and
one elegant solution.
Embody Resilience
information to create
through Variation,
Use Feedback Loops
Fit multiple units within
Recycle All Materials
new options.
Redundancy, and
Engage in cyclic
each other progressively
Keep all materials in a
Decentralization
information flows to
from simple to complex.
closed loop.
Maintain function
modify a reaction
following disturbance by
appropriately.
Nested Components
Fit Form to Function Select for shape or
of duplicate forms,
Cultivate Cooperative
processes, or systems
Relationships
that are not located
Find value through
exclusively together.
win-win interactions.
Do Chemistry in Water Use water as solvent.
Exchange and alter
incorporating a variety
Build Selectively with a
pattern based on need.
Pour objectiver les solutions : BEFORE
AFTER
Adapt to changing condition Incoroporate Diversity Maintain inegrity through self renewal Embody resilience through variation, redundancy and decentralization
3 2 1 0
6 2 1 3
Be locally atuned and responsive Leverage cyclic process Use readily available materials and energy Use feedback loops Cultivate cooperative relationship
3 1 1 1
10 3 2 2 3
Use Life Friendly chemmistry Break down products in begnin constituents Build selectively with a small subset of elements Do chemistry in water
1 0 0 1
5 1 1 3
Evolve to survive Replicate strategies that work integrate the unexpected Reshuffle information
2 1 0 1
5 2 1 2
Integrate development with growth Self organize Build from bottom-up Combine modular and nested component
3 1 1 1
6 2 3 1
Be resource efficient use low energy process Use multi functional design Recycle all materials Fit form to function
2 0 0 2 0
6 1 2 2 1
ECOTOPIA Adapt to changing condition Be locally atuned and responsive Use Life Friendly chemmistry Evolve to survive Integrate development with growth Be resource efficient
3 3 1 2 3 2
6 10 5 5 6 6
Adapt to changing condition 0.9 0.8 0.7 0.6
Be resource efficient
0.5 0.4
Be locally atuned and responsive
0.3 0.2 0.1 0
Integrate development with growth
Use Life Friendly chemmistry
Evolve to survive 9 12 9 9 9 12
0,66666667 0,83333333 0,55555556 0,55555556 0,66666667 0,5
0,33333333 0,25 0,11111111 0,22222222 0,33333333 0,16666667
VALUES 0-1-2-3
Cahier de charge de la nature 1.Utiliser seulement l’énergie nécessaire et disponible 2.Recycler tous les matériaux 3.Optimiser plutôt que maximaliser 4.S’adapter aux conditions changeantes et développer la résilience 5.Promouvoir les bénéfices mutuels 6.Echanger l’information 7.Utiliser une chimie respectant la vie (sortir du heat, beat & treat) 8.Utiliser principalement les ressources abondantes 9.Etre à l’écoute et répondre aux conditions locales 10.Intégrer le développement avec la croissance
Design2Biology
Biology2Design
Résumé: 1.Définir la problématique 2.Biologiser la question 3.Rechercher des modèles/mentors 4.Abstraire la stratégie 5.Emuler les techniques 6.Evaluer la pertinence
Systèmes : Points de leviers (ou la force du papillon)
Source : The sustainability institute (d.meadows@darthmouth.edu) dixit Jay Forrester
Points de leviers (Par ordre croissant d’efficience) 12. Constantes, paramètres, données (subsides, taxes, normes) 11. Tailles des tampons et autres stocks stabilisateurs (relatifs aux flux) 10. Structure des stocks matériels et flux (réseau de transport, …) 9. Temps de délai (relatif à la vitesse de changement) 8. Force des boucles de rétroaction négative (ubiquitaire) 7. Gestion des boucles de rétroactions positives (risques) 6. Structure des flux d’information (qui a accès à quelles infos) 5. Règles du système (incitants, contraintes, amendes, …) 4. Possibilité de changer, ajouter ou auto-organiser un système (Intelligence Collective) 3. Objectif du système (Profit vs Bien commun, …) 2. Paradigme ou mentalité d’où provient le système (école) 1. Le pouvoir de transcender les paradigmes Source : The sustainability institute (d.meadows@darthmouth.edu) dixit Jay Forrester MIT
Flux entrant
Etat d’un système
Flux sortant
Flux entrant
Etat d’un système
Perception d’un état
Contradiction
Objectif
Flux sortant
Exemple : une baignoire 12. Robinet - Baignoire - Bonde (ou compte en banque) 11. Petite baignoire avec un gros robinet ou l’inverse (une rivière ou un lac) 10. Structure de la plomberie (réseau de distribution d’eau, …) 9. Chauffe eau à coté ou 4 étage plus bas (eau chaude) 8. Maintenir l’homéostasie (ubiquitaire, émotions, main invisible,… ) 7. Inondation (?) (= auto-renforcement de catastrophes…) 6. Compteur d’eau ou d’électricité (qui a accès à quelle info) 5. Remplir la baignoire à moitié (incitants, contraintes, amendes, …) 4. Froid ou chaud? Pleine ou vide? (croissance ou climax?) 3. Prendre un bain (ou abreuver des vaches) 2. Paradigme ou mentalité d’où provient le système (Ecole) 1. Le pouvoir de transcender les paradigmes
Exercice Prenez un exemple concret dans votre vie : • Gestion des besoins essentiels : air, eau, nourriture, énergie,… (cf Maslow) • Entreprise : distillerie, café, alimentaire, papier, … • Aménagement urbain (métro) ou territorial • 20 min puis retour (courte présentation/discussion)
Exemples De la compétition à la coopération
1+1=3
Gestion de l’eau RIP
Bonjour Toilettes sèches
Toilettes à eau
Collecte eau de pluie
IN
OUT
Filtra/on Pré-filtration (feuilles, branches, …)
(50µ, 10µ & Charcoal)
Potabilisation
Processus
Usage
Stockage (mouvement)
Eau de lavage (Sols, vaiselle, …)
Eau d’usage domestique
Eau potable, de cuisine
(sdb, douche)
Schéma général simplifié de la gestion de l’usage domestique de l’eau
Infiltra/on
Arrosage & autres usages
Epuration naturelle
www.eautarcie.org
rt > epo ss R Proce Place f o ius Gen
n atio reci App
s ’ e r atu
N AT E
S GIE
R STO
STR
W
FO
R
N MA
M the in
OF
ING
TE WA
E TT ME A L IL
US NI GE
AG
E AC PL
VA
R
EY LL
T EC OJ PR
RT PO RE
1
©
3 201
B io
m im
ic ry
O re
gon
Ecosystème régénératif simplifié
Simple?
bigh.farm
MĂŠtro de Amsterdam
Uraeus0610
Uraeus0610
Uraeus0610
Uraeus0610
Fog&Fungi
Fog&Fungi
Fog&Fungi
Fog&Fungi
Fog&Fungi
Références
Merci pour votre attention Stephan G. Hoornaert Morpho-Biomimicry Research & Innovation Center www.morpho-biomimicry.be biomimicry.be@gmail.com +32 486 477 015