11_

Page 1

Short Paper Proc. of Int. Conf. on Advances in Computer Engineering 2012

Dynamical Switching between EEG and ECG for Emotion Recognition in Living Space Kanlaya Rattanyu1, and Makoto Mizukawa2 1

Shibaura Institute of Technology/Graduate School of Functional Control System Engineering, Tokyo, Japan Email: m709502@shibaura-it.ac.jp 2 Shibaura Institute of Technology/Department of Electrical Engineering, Tokyo, Japan Email: mizukawa@sic.shibaura-it.ac.jp

Abstract—This paper presents our approach for emotion recognition based on wireless and wearable multichannel of Electroencephalogram (EEG) and Electrocardiogram (ECG) sensors for mobility and convenience of users’ daily life. We took advantages of the combining that EEG gave more precise recognition rate and ECG was more stable with less noise. In the ECG module, we propose to use the ECG’s inter-beat features together with within-beat features. In order to reduce the feature space, post hoc tests in the Analysis of Variance (ANOVA) were employed to select the set of eleven most significant features. Our designed system applied EEG’s power density spectral and fractal dimension (FD) features in normal situation and using ECG features when EEG signal degrades. We conducted experiments on 18 subjects according to Mirror Neural System (MNS) theory to elicit emotion. For simultaneous classification of six emotional sates: anger, fear, disgust, sadness, neutral, and joy, the Correct Classification Ratio (CCR) was 74.1% in EEG module and 60.6% in ECG module.

increase of heart rate associated with fear (e.g., [8]) and anger (e.g., [7]), and increase of heart rate variability associated with stress (e.g., [5]). However some results were controversial: sadness has been found to sometimes lead to an increase of heart rate (e.g., [11]) and sometimes to a decrease (e.g., [8]). II. EQUIPMENTS There are many biological signals related with emotion. The sensors were selected based on three important criteria. The first criterion was that it’s signals had to be strongly related with the human emotion. The second criterion was that the sensor had to adhere to human skin without discomfort. The last criterion was that the sensor had to be wearable and convenient for use in notmal daily life. A. Wireless ECG Sensor (RF-ECG) RF-ECG was used to measure an elctrocardiogram (ECG) signal generated by electrical activity of the heart muscle. The sensor is a low weight (12 g) and small-sized sensor (40 mm × 35 mm × 7.2 mm). This sensor can record and wirelessly transmit ECG signals to the server with 204 Hz. The wireless RF transmitter had an open area range of up to 15 m.

Index Terms—emotion recognition, EEG, ECG, ANOVA

I. INTRODUCTION Although EEG and ECG are commonly used for emotion recognition, there are some remaining issues. For EEG, the quality of data depends on user activities and sensor set up. For example, artifacts will stem from muscle activities when user moves. Signal from sensor may be weak over some short periods when user changes their head position which make EEG sensor loosens. To overcome the above issue, this paper proposes dynamic switching between sensor/data sources when EEG signal degrades. The ECG signal has an advantage over the EEG signal in that the ECG’s amplitude is quite large compared with the EEG signal. The amplitude of ECG signals is measured in mV. For a typical adult human, the EEG signal is about 10-100 µV in amplitude when measured from the scalp. However the main limitation of emotion recognition by using only ECG signal was the number of emotional categories. Facial feature expression can categorize emotions into many categories, while most successful studies by using ECG signals classify only few categories such as positive/ negative feeling[1-3], feeling of being stressed/relaxed [4, 5], or fear/neutrality [6]. Some studies (e.g., [7–10]) overcome this limitation by combining ECG with other physiological signals that are related to organs that are affected by the Autonomic Nervous System(ANS). Among these studies, some correlations between emotion and ECG can be identified: © 2012 ACEEE DOI: 02.ACE.2012.03. 11

B. EEG Emotiv EPOC Headset The Emotiv EPOC headset was selected to measure elctroencephalogram (EEG) signals that present information regarding brain activity and global information about mental activites and emotional states. The neuroheadset consists of 14 electrodes following the American Electroencephalographic Society Standard. It also integrates two internal gyroscopes to provide user head position information. III. METHODOLOGY To achieve EEG signals without artifacts: (1) the user must avoid moving in the EEG signal acquisition; and (2) filters or some signal processing algorithms can be accomplished to remove artifacts from the EEG signals acquired. Although we have filters to remove the artifacts, removing artifacts entirely is impossible in the existing data acquisition processes. It is better to avoid them. Most successful researches [11-16], the participants were asked to keep less movement as possible while measuring EEG. As this reason our system was designed for dynamical switching between sensors when EEG signal degrade. We employed emotion recognition using ECG 85


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
11_ by ides editor - Issuu