Full Paper Proc. of Int. Conf. on Advances in Civil Engineering 2012
Top Soil Erosion Control Using Geojute Abdul Jabbar Khan1 and Tarik Habib Binoy2 1
Professor, Bangladesh University of Engineering and Technology (BUET)/Department of Civil Engineering, Dhaka, Bangladesh. Email: ajkhan66@gmail.com. 2 Research Student, Bangladesh University of Engineering and Technology (BUET)/Department of Civil Engineering, Dhaka, Bangladesh. Email: tarikhabib.ce@gmail.com the rain drop impact energy, reduce surface runoff and reduce total soil loss. It may be emphasized that the vegetations should be correctly selected, i.e. they must be environment friendly, fast growing, bushy type and deep and widely spread rooted. The plants/trees must grow up as canopy so that they cover most of the ground. Such vegetations may be appreciated to hold grounds via a ‘natural soil nailing’ action. Geojute is an open mesh type of jute geotextiles manufactured abundantly in the mills of Bangladesh and in India. Usually, 350 gsm, 500 gsm and 700 gsm geojutes of 1.2m width are available in the production line. Geojutes have a typical ground cover ratio of 50%~60% and an absorption capacity of 2.5~3.5 times of their air dry weight [1]. They can usually survive two monsoons without biodegradation.
Abstract—Top soil erosion of side slopes of road embankments and hill slopes is very common in the tropical regions. Most of the top soil erosion occurs when the surface of the slope is denuded or deforested due to man-made activities. The impact energy of the rain drops loosens the top soil and infiltration of water into the top soil layer makes it heavier to slide down the slope. Such erosion does hardly occur when the slope surface is covered with vegetation canopy. But, it takes 6~9 months time for the vegetation cover to grow on a barren surface. For the interim period, geojute, an open mesh type of naturally biodegradable jute geotextile, may be used in order to inhibit the top soil erosion. By the time the geojute overlay decomposes and become nutrient for accelerated vegetation growth, vegetation canopy gets established. Eventually, it becomes a sustainable and eco-friendly solution for reducing top soil erosion of the exposed slope surface. In this paper, some case studies undertaken in the sub-continent have been cited and a laboratory simulation test setup established at the Bangladesh University of Engineering & Technology (BUET) has been presented. The test results show how geojute overlay may improve overall stability of a slope and significantly reduce volume of erosion and surface runoff.
II. BACKGROUND Jute geotextiles have been used extensively in India since 1987 and gaining acceptance in Bangladesh recently. The major areas of application of jute geotextiles are separation, filtration, initial reinforcement and top soil erosion control. Geojute was first used for mine spoil stabilization in 1987 at Uttaranchal in India and soil erosion was reduced to 0.8 kg/ m2. By 1990, entire area was stabilized. Hill slopes were also protected at Darjeeling by Dept of forest, Govt. of West Bengal in 1988. After that geojute was used in sand dune stabilization at Digha sea beach, West Bengal in 1988; river bank protection at Nayachar, West Bengal in 1989; control of top soil erosion at Assam in 1995; land slide management at Sikkim in 2004; bridge approach at Raidighi, West Bengal in 2007; road embankment at Gujrat in 1998; railway embankment at Assam in 1997 and hundreds of other projects in India [2]. In Bangladesh also, hill slopes and road side slopes have been stabilized using geojute aided vegetation establishment system [3]. Furthermore, [4] & [5] also performed some field trials on application of geojute in India for topsoil erosion control. To date, no laboratory simulation test has been undertaken in the sub-continent in order to systematically identify the efficacy of geojute in reducing soil loss, surface runoff and improving overall stability of slopes. Recently, an attempt has been made at the laboratory of BUET to assess and evaluate these features. Details of the laboratory test setup, test results and materials used are presented in the following sections.
Index Terms— Geojute, Rain drop, Soil erosion, Surface runoff, Overall stability.
I. INTRODUCTION In road construction, the side slopes of a road embankment are often cladded with thick layer of clay in order to inhibit raincut erosion of the erodible dredge fill soils of embankment. However, the additional amount of the clay soil required for this purpose is becoming increasingly difficult, expensive and detrimental to eco balance.In the hilly areas, naturally balanced hill slopes often get disturbed either due to road construction activities or by the characteristic native farming method in which they burn trees and vegetations of the slopes in order to get a barren piece of land. Due to these man-made activities, the slopes become highly vulnerable to top soil erosion. Other than the disruption of the road network activities, the soils of the hills lose a lot of nutrients every year. This leaves serious impact on the growth of native agriculture.In order to address such erosion of top soil, a sustainable, eco-friendly and aesthetic solution would be ensured by landscaped vegetation cover. However, it takes about 6~9 months for the vegetation cover to grow. For the interim period, a geojute overlay may be used to withstand
© 2012 ACEE DOI: 02.AETACE.2012.3.15
146