Poster Paper Proc. of Int. Conf. on Advances in Computer Engineering 2011
Performance Evaluation of Coded and Adaptive Filter assisted MRC in Faded Wireless channels using Semi Analytic and Monte Carlo Approach Atlanta Choudhury Dept. of Electronics and Communication Engineering Tezpur University,Tezpur-784028, Assam, India. atlanta.ayush.choudhury@gmail.com
Kandarpa Kumar Sarma .Dept. of Electronics and Communication Technology Gauhati University, Guwahati-781014, Assam, India kandarpaks@gmail.com Abstract- The work is related to performance evaluation of the use of error correction coding and adaptive equalization as an aid to Maximal Ratio Combining (MRC) in faded wireless channels using Semi Analytic and Monte Carlo approach. Modulation techniques used in this work are Bipolar Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) and Differential Phase Shift Keying (DPSK) in Gaussian, multipath Rayleigh and Rician fading channels. The work considers the use of Least Mean Square (LMS), adaptive filter blocks as part of a MRC set-up and is tested under SNR variation between -10 to 10 dB . The results generated justify the use of the adaptive equalizer block as an aid to the MRC setup.
the best combination for the considered experimental framework. Though the work considers RLS filters also, for practical purposes the LMS - based adaptive filters are preferred due to their overall efficiency [3].The performance of these approaches are evaluated using Semi Analytic and Monte Carlo approach. II. WIRELESS CHANNELS AND BASIC CONSIDERATIONS OF MAXIMAL_RATIO COMBINING (MRC) T ECHNIQUE Wireless communication utilizes modulation of electromagnetic (radio) waves with a carrier frequency varying from a few hundred megahertz to several gigahertz depending on the system. Therefore, the behavior of the wireless channel is a function of the radio propagation effects of the environment. In such an environment the following may happen [1] [2]: 1. Multiple delayed receptions of the transmitted signals due to the reflections of buildings, hills, cars and other Obstacles, etc. 2. Absence of a line-of-sight (LOS) path and prominence of non-LOS (NLOS) components. 3. Varying attenuation, time delay, phase shift etc in each path 4. Constructive and destructive addition of the constituent paths due to multiple phase shifts resulting in fluctuations in the signal strength. These factors act together to give rise to a phenomenon known as fading. The stochastic nature observed in wireless channels can be described by the Rayleigh and Rician fading which represent the absence and presence of a LOS component respectively. In such condition, the diversity techniques are used to improve reliability of reception. Out of several diversity techniques MRC is preferred due to the fact that it maximizes the correct reception and reduces intersymbol interference (ISI). In MRC, the signals from all of the M branches are weighted according to their signal voltage to noise power ratios and then summed. It uses linear coherent combining of branch signals so that output SNR is maximized [1] [2]. The following section provides a brief outline of the theoretical basis of the MRC technique. The individual branch signals are:
Keywords: AWGN, Rayleigh, Rician, MRC, LMS, block code, Monte Carlo, Semi Analytic approach
I. INTRODUCTION Diversity combining is one of the most widely employed techniques in digital communications receivers for mitigating the effects of multipath fading. It contributes significantly towards improving the overall system performance. The most popular diversity techniques are equal-gain combining (EGC), maximal-ratio combining (MRC), selection combining (SC) and a combination of MRC and SC, called generalized selection combining (GSC) [1] [2]. This work is related to the design of an MRC scheme assisted by coding and coding adaptive equalization block so as to investigate the performance of the combination in Gaussian and multipath slow fading channels. The work uses Bipolar Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) and Differential Phase Shift Keying (DPSK) modulation in Gaussian, Rayleigh and Rician fading channels with SNR variation in the range -10 to 10 dB range. The objective is to determine the appropriate combination of MRC and adaptive filters such that better BER values are obtained for the given modulation techniques and the channel types. The work considers performance difference in terms of BER rate obtained using both using MRC, MRC - Equalizer and coding -MRC-Adaptive-Equalizer combination. Here Least Mean Square (LMS), N-LMS and Recursive Least Square (RLS) adaptive filters are taken as part of the set-up to determine Š 2011 ACEEE DOI: 02.ACE.2011.02.179
177