Uncertainty assessment of streamflow simulation

Page 1

Uncertaintyy assessment of streamflow simulation on ungauged catchments using a distributed model and the Kalman filter based MISP algorithm

Authors: Juan Camilo Múnera1, Félix Francés1, Ezio Todini2 Technical University of Valencia (Spain) Research Institute of Water Engineering and Environment Research Group of Hydrological and Environmental Modeling http://lluvia.dihma.upv.es (1)

University of Bologna (Italy) Earth Sciences and Environment Department htt // http://www.geomin.unibo.it/ i ib it/ (2)

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Introduction 

IImportant t t role l off Predictive P di ti U Uncertainty t i t (PU) on flood fl d forecasting f ti and d decision making:  Flow simulations and forecasting made from models are not error free  Growing G i interest i i assessing in i uncertainty i off predictions/simulations di i / i l i  Severe economic and social consequences derived from flood emergencies

Developed methods and tools to assess flood forecasting uncertainty at gauging stations:  Hydrologic Uncertainty Processor (Krzysztofowicz, 1999)  Bayesian Model Averaging (Raftery, (Raftery 1993; Raftery et al, al 2003; 2005)  Model Conditional Processor (Todini, 2008)  And others statistical approaches…

2

How to estimate PU at ungauged sites?

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Introduction 

Our proposal: Combining simulations of the hydrological distributed model TETIS (Vélez et al, 2001; Francés et al, 2007) with the MISP technique (Mutually Interactive State-Parameter Estimation) (Todini, 1978)  Distributed models: advantage of simulating flows at any point throughout the spatial domain  MISP is a Kalman filter based algorithm, which:

Performs the state-parameter estimation of a discrete time dynamic system

Makes alternative use of two interacting filters in parallel, parallel both with minimum variance

Filtering Scheme:  Model predictions at an ungauged site are assumed as imperfect observations

(as random variables)  Incorporating observations and simulations at a gauging station as on-line instrumental variables correlated with flow at the ungauged site  Log transformation of all input data to improve Gaussian assumptions of the K.F.  Inclusion of a cross covariance term in the covariance matrix of the measurement error (assumption of spatially correlated errors)

3

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Hydrological model TETIS 

Developed at Technical University of Valencia since 1994

Spatially distributed in regular cells  Reproduces spatial variability of hydrological processes  Reduces spatial scale effects with regard to lumped models  Allows to exploit all available physical and environmental spatial information Flow

Hillslope

Gully

Main river

Separate runoff modeling on slopes and channels  Each tank drains into the topographical downstream corresponding tank.  Drainage area thresholds defined for each type of tank

 4

Nonlinear channel routing scheme (geomorphologic ( kinematic wave). ) EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Hydrological model TETIS 

Robust and p parsimonious model:  Adequate simulation of initial state (includes

balance at all times)  6 storage tanks (state variables)  5 external outflows (3 horizontal responses) 

Potential problem in distributed models:  Calibration of high number of parameters in each

cell from an outflow hydrograph.  Proposed solution: Split Effective Parameters

Structure (Frances et al, 2007): 

5

Phase I: Parameter estimation from all physical and environmental information at each cell

H u (i ) 

Phase II: Global correction factors for each parameter map (effective parameters)

H u (i )  R 1

Calibration

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Production parameters at each cell (v (v.7) 7)

6

Vegetation cover index: (t)

Crop factor

Maximum static capacity: Hu

Initial abstractions + upper soilil capillary ill capacity it

Overland flow velocity: v

Hill slope stationary velocity

Interflow velocity: kss

Horizontal macropore upper soil permeability

Base flow velocity: kb

Upper aquifer permeability

Infiltration capacity: ks

Vertical upper soil permeability

Percolation capacity: p y kp

Vertical deep p soil p permeability y

Underground losses capacity: kpp Lower aquifer permeability

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Calibration Process Parameter estimation normallyy through g comparison p between simulated and observed values of some state variables 50

0

Ppt Mean Simulated Observed

40

Balance Error

BE (%) 

Root mean square Error

 Si  Q i   Qi

RMSE 

9:10:00

 Statistical Objective Functions:

6:10:00

10

5:10:00

9

0

4:10:00

8

5

3:10:00

7

10

2:10:00

6

15

1:10:00

5

20

0:10:00

4

21:10:00

 Graphic comparison

3

25

23:10:00

Model performance assessment:

2

30

22:10:00

Discharge[m³/s]

35

1

Precipitation [m m]

45

8:10:00

 Traditionally: Discharge at the basin outlet

7:10:00

Time [hours]

 100

1 n

n

 Q

 Si 

2

i

i 1

 Q  S  NSE  1   Q  Q 

2

Efficiency Index (Nash-Sutcliffe)

i

2

i

7

i

m

Automatic calibration of correction factors: SCE-UA (Duan et al., 1992; Sorooshian et al, 1993) EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Mutually interactive parameter estimation (MISP) 

The first filter performs the minimum variance state estimation, estimation given the parameters set : x t   t t 1x t 1  t 1w t 1

z t  H t xt  vt where:

xt: State vector (nx1) Measurement vector (mx1) zt: : State transition matrix (nxn) , H: Compatibility matrices vt, wt: Normal independent processes

The second one performs the minimum variance parameter estimation, given the state estimate, both at the present and previous time steps.  t   t 1  t*1w *t 1 z *t  H *t  t  v *t where:

8

t: Parameter vector (px1) EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Mutually interactive parameter estimation (MISP) 

Equations required to accomplish a calculation cycle: Parameters update:

State update: v t  z t  H t xˆ t t 1  v t 1

K t  Pt t 1 H Tt H t Pt t 1 H Tt  R t t

1

xˆ t t  xˆ t t 1  K t v t

Pt t  I  K t H t Pt t 1

Time update: xˆ t 1 t   t 1 t xˆ t t  t 1 w t Pt 1 t   t 1 t Pt t  Tt 1 t  t 1 Q t t tT1

9

 t  H t K t  t R t  H t K t C t t K Tt H Tt C t   H t Ptt 1 H t T  R t t

 

K t  Ptt 1 H t T C t 

1

ˆ t  1 t  ˆ t t  1  K t  t  t 1 w  Pt 1 t  Ptt  1  K t C t  K t T  t 1 Q  t 1

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Mutually interactive parameter estimation (MISP) 

Equations required to accomplish a calculation cycle: Parameters update:

State update: v t  z t  H t xˆ t t 1  v t 1

K t  Pt t 1 H Tt H t Pt t 1 H Tt  R t t

1

xˆ t t  xˆ t t 1  K t v t

Pt t  I  K t H t Pt t 1

Time update: xˆ t 1 t   t 1 t xˆ t t  t 1 w t Pt 1 t   t 1 t Pt t  Tt 1 t  t 1 Q t t tT1

 t  H t K t  t R t  H t K t C t t K Tt H Tt C t   H t Ptt 1 H t T  R t t

 

K t  Ptt 1 H t T C t 

1

ˆ t  1 t  ˆ t t  1  K t  t  t 1 w  Pt 1 t  Ptt  1  K t C t  K t T  t 1 Q  t 1

ˆ t t ) is used as  The estimation of the state vector provided by the first filter ( x observations in order to estimate the parameter vector . observations, 

 Optimality is reached after a series of runs through the historical data, as model

residuals become less and less correlated.  At the th same time, ti it is i possible ibl to t estimate ti t the th unknown k noise i statistics: t ti ti 10

w , v, Q, R

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


MISP implementation 

System equations (matrix form):

x t   t t 1x t 1  t 1w t 1

z t  H t xt  vt

 z 1 t    1     z 2 t    0    z 3 t   0

Parameter equation:  t   t 1  t*1 w *t1 z *t  H *t  t  v *t

11

Q 2 t   11 12 Q   2   t  1   1 0 Q1t    0 0   Q1t 1   0 0 Q s1    0 0 t    Q  s1t 1   0 0

t

12   Q 2 t 1    0 0 0 0   Q 2 t  2    w 2 t 1  12  22 12  22   Q1t 1      t 1  w1t 1   1 0 0 0   Q1t  2    w s1  t 1  3 3  Q   0 0 1  2 s1t 1   Q 0 0 1 0   s1t  2   Q 2  t   Q  2 t 1    v 1 t   0 0 0 0 0   Q   1 t  0 1 0 0 0     v 2 t   Q1t 1   v3  0 0 0 1 0  t     Q s1t    Q  11   s1t 1   1 Ungauged  2  Site (2)    Gauged  3 site (1)  1  3   2 t 11

12

11

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Case study: simulation at Baron Fork 

Distributed Model Intercomparison Project (DMIP2), NOAA/NWS.  Series of experiments to guide NOAA/NWS research into advanced hydrologic

models for river and water resources forecasting. 

Study basins: Baron Fork river and Peacheater Creek (tributary)  Complete description (Smith et al, 2004)  Availability of cartographic information of physical and environmental parameters  Concurrent time series (1995-2002) of discharges, radar precipitation (NEXRAD),

temperature and ETP from Reanalysis (NCEP-NCAR) 

Basin areas  Baron Fork: 795 km2  Peacheater: 65 km2

12

g g Site ((2)) Ungauged Peacheater Creek Gauged Site (1) Baron Fork at Eldon

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


TETIS model calibration ď Ž

Calibration results, Baron Fork at Eldon (oct/2001-sep/2002) 500

Observed Flow

450

Statistical Index BE (%):

-14.6

400

RMSE

6.61

350

NSE:

Flow (m3/s)

Simulated Flow (Tetis model)

((m3/s): )

0.91

300 250 200 150 100 50

Date

13

02/10/2002 2

01/09/2002 2

02/08/2002 2

02/07/2002 2

02/06/2002 2

02/05/2002 2

02/04/2002 2

02/03/2002 2

31/01/2002 2

31/12/2001 1

01/12/2001 1

31/10/2001 1

01/10/2001 1

0

B.F. Eldon

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


TETIS model calibration ď Ž

14

Calibrated correction factors (cell parameters) for the DMIP2 case study

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


TETIS model validation ď Ž

Temporal validation results, Baron Fork at Eldon (oct/1996-sep/2001) 1000

Statistical Index

Observed Flow 900

Simulated Flow (Tetis model)

800

BE (%):

-11.2

RMSE

14.89

((m3/s): )

NSE:

0.83

Flow (m3//s)

700 600 500 400 300 200 100

01/10/99

01/08/99

01/06/99

01/04/99

30/01/99

01/12/98

01/10/98

01/08/98

01/06/98

01/04/98

30/01/98

30/11/97

01/10/97

01/08/97

01/06/97

01/04/97

30/01/97

30/11/96

01/10/96

0

B.F. Eldon

Date

15

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


TETIS model validation ď Ž

Spatial validation results, (Peacheater Cr. At Christie (oct/1996-sep/2002) 50.0

Statistical Index

Observed Flow

45.0

Simulated Flow (Tetis model) 40.0

9.3

RMSE

0.88

((m3/s): )

NSE:

35.0

0.67

30.0

3

Flow (m m /s)

BE (%):

25.0 20.0 15.0 10.0 5.0

01/10/2001

31/08/2001

01/08/2001

01/07/2001

01/06/2001

01/05/2001

01/04/2001

01/03/2001

30/01/2001

30/12/2000

30/11/2000

30/10/2000

30/09/2000

31/08/2000

31/07/2000

01/07/2000

31/05/2000

01/05/2000

31/03/2000

01/03/2000

30/01/2000

31/12/1999

30/11/1999

31/10/1999

01/10/1999

0.0 Peacheater Cr.

Date

16

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, ď Ž

MISP results, Peacheater Cr. (oct/1996-sep/2002) 50.0

Observed flow unknown)

(assumed

Updated flow (MISP K.F.) 40.0

Statistical Index BE (%)

9.3

RMSE

0.83

((m3/s))

NSE

0.71

Flow (m 3/s)

30.0

20.0

10.0

Peacheater Cr.

02/10/01

01/09/01

02/08/01

02/07/01

02/06/01

02/05/01

02/04/01

02/03/01

31/01/01

31/12/00

01/12/00

31/10/00

01/10/00

31/08/00

01/08/00

01/07/00

01/06/00

01/05/00

01/04/00

01/03/00

31/01/00

31/12/99

01/12/99

31/10/99

01/10/99

0.0

Date

17

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, Peacheater Creek (15/03/2002 – 29/04/2002) 20 0 20,0

500 0 500,0 Observed flow Peacheater (assumed unknown)

18,0 16,0

400,0

Updated flow Peach Peach. (MISP K K.F.) F)

14,0

Flow (m3/s)) Peacheater C Cr.

450,0

Simulated flow Peach. (Tetis)

350,0

Observed flow (Baron Fork)

12,0

300,0

10,0

250,0

8,0

200,0

6,0

150,0

4,0

100,0

2,0 ,

50,0 ,

Flow (m3//s) Baron Fo ork

Peacheater Cr.

29/04/2002

24 4/04/2002

19/04/2002

4/04/2002 14

09/04/2002

4/04/2002 04

30/03/2002

25/03/2002

20/03/2002

0,0

15/03/2002

0,0

B.F. Eldon

Date

18

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, Peacheater Creek, uncertainty bounds (15/03/2002 – 29/04/2002)

30 0 30,0

Observed flow Peacheater (assumed unknown) Updated flow Peach. (MISP K.F.)

25,0

Lower Uncert. Limit (5%)

Flow (m3/s)

20,0

Upper Uncert. Limit (95%)

15,0

10,0

5,0

Peacheater Cr.

29/04/2002

24/04/2002

19/04/2002

14/04/2002

09/04/2002

04/04/2002

30/03/2002

25/03/2002

20/03/2002

15/03/2002

0,0 B.F. Eldon

Date

19

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, 

Peacheater Creek (06/03/1999 – 17/05/1999) 15 0 15,0

300

Observed flow Peacheater (assumed unknown) Simulated flow Peach. (Tetis) 12,0

240

U d t d fl Updated flow P Peach. h (MISP K K.F.) F)

9,0

180

6,0

120

3,0

60

Flow (m3/s) Baron Fo ork

Flow (m3/s) Peacheater C Cr.

Observed flow Baron Fork

Peacheater Cr.

0,0 15/05/1999 1

10/05/1999 1

05/05/1999 0

30/04/1999 3

25/04/1999 2

20/04/1999 2

15/04/1999 1

10/04/1999 1

05/04/1999 0

31/03/1999 3

26/03/1999 2

21/03/1999 2

16/03/1999 1

11/03/1999

06/03/1999 0

0 B.F. Eldon

Date

20

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, 

Peacheater Creek, uncertainty bounds (06/03/1999 – 17/05/1999) 25,0

Observed flow Peacheater (assumed unknown) Updated flow (MISP K.F.) 20,0

Lower Uncert. Uncert Limit (5%)

Flow (m3/s s) Peacheaterr Cr.

Upper Uncert. Limit (95%) 15,0

10,0

5,0

Peacheater Cr.

15/05/1999

10/05/1999

05/05/1999

30/04/1999

25/04/1999

20/04/1999

15/04/1999

10/04/1999

05/04/1999

31/03/1999

26/03/1999

21/03/1999

16/03/1999

11/03/1999

06/03/1999

0,0 B.F. Eldon

Date

21

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, 

Peacheater Creek (15/06/2000 – 10/07/2000) 60

1800 Observed flow (unknown)

Simulated flow (Tetis)

50

1500

Updated flow (MISP K.F.)

Qobs3_BF

30

900

20

600

10

300

Baron Fork

1200

Flow (m3//s)

Flow (m3/s) Peacheaterr Cr.

40

Peacheater Cr.

22

10//07/2000

05//07/2000

Date

30//06/2000

25//06/2000

20//06/2000

0 15//06/2000

0

B.F. Eldon

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Results application of MISP Results, 

Peacheater Creek, uncertainty bounds (15/06/2000 – 10/07/2000) 120 0 120,0

Observed flow Peacheater (assumed unknown) Updated flow Peach. (MISP K.F.)

100,0

Lower Uncert. Limit (5%)

Flow (m3//s) Peacheaterr Cr.

80,0

Upper Uncert. Limit (95%)

60,0

40,0

20,0

Peacheater Cr.

10 0/07/2000

05 5/07/2000

30 0/06/2000

25 5/06/2000

20 0/06/2000

15 5/06/2000

0,0 B.F. Eldon

Date

23

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Conclusions

24

A methodology gy based on the Kalman filter MISP algorithm g is p presented,, aimed to improve predictions performed with a distributed hydrological model at ungauged sites and to estimate the related predictive uncertainty.

The observed and simulated discharges at the basin outlet are used as instrumental variables in the Kalman filter implementation.

Importance of including a cross covariance error term in matrix R.

The results of the proposed approach are considered very satisfactory. The NSE was improved from 0.67 to 0.71 for the Peacheater Creek (assumed as ungauged site).

The Kalman filter based MISP approach allows assess the predictive uncertainty associated i d to the h model d l prediction di i (simulation ( i l i or forecasting f i mode). d )

The uncertainty band is strongly affected by model performance, and is expected that any improvement i t off the th model d l would ld reduce d predictive di ti uncertainties. t i ti EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Thank you for your attention!

Contact:

Juan Camilo MĂşnera E-mail: juamues1@doctor.upv.es juancmunera@yahoo.es

25

Technical University of Valencia (Spain) Research Institute of Water Engineering and Environment Research Group of Hydrological and Environmental Modeling http://lluvia.dihma.upv.es

EGU Leonardo Conference Series on the Hydrological Cycle FLOODS IN 3D: PROCESSES, PATTERNS, PREDICTIONS Bratislava, Slovakia, 23-25 November 2011


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.