Fast Hyperspectral Unmixing in Presence of Nonlinearity or Mismodeling Effects
Abstract: This paper presents two novel hyperspectral mixture models and associated unmixing algorithms. The two models assume a linear mixing model corrupted by an additive term whose expression can be adapted to account for multiple scattering nonlinearities (NL), or mismodeling effects (ME). The NL model generalizes bilinear models by taking iinto nto account higher order interaction terms. The ME model accounts for different effects, such as endmember variability or the presence of outliers. The abundance and residual parameters of these models are estimated by considering a convex formulation suit suitable able for fast estimation algorithms. This formulation accounts for constraints, such as the sum-to-one sum and nonnegativity of the abundances, the nonnegativity of the nonlinearity coefficients, the spectral smoothness of the ME terms and the spatial sparseness sparsene of the residuals. The resulting convex problem is solved using the alternating direction method of multipliers whose convergence is ensured theoretically. The proposed mixture models and their unmixing algorithms are validated on both synthetic and real images showing competitive results regarding the quality of the inference and the computational complexity when compared to the state-of-thestate art algorithms.