Joint Flow Routing and DoF Allocation in Multihop MIMO Networks
Abstract: Recently, degree-of-freedom (DoF)-based models have been widely used to study MIMO network performance. Existing DoF-based models differ in their interference cancellation (IC) behavior and many of them suffer from either loss of solution space or possible infeasible solutions. To overcome these limitations, a new DoF-based model, which employs an IC scheme based on node-ordering was proposed. In this paper, we apply this new DoF IC model to study a throughput maximization problem in a multihop MIMO network. The problem formulation involves joint consideration of flow routing and DoF allocation and falls in the form of a mixed-integer linear program (MILP). Our main contribution is an efficient polynomial time algorithm that offers a competitive solution to the MILP through a series of linear programs (LPs). The algorithm employs a sequential fixing framework to obtain an initial feasible solution and then improves the solution by exploiting: 1) the impact of node ordering on DoF consumption for IC at a node and 2) route diversity in the network. Simulation results show that the solutions obtained by our proposed algorithm are competitive and feasible.