Optimal Spectrum Auction Design With 22-D D Truthful Revelations Under Uncertain Spectrum Availability
Abstract: In this paper, we propose a novel sealed sealed-bid bid auction framework to address the problem of dynamic spectrum allocation in cognitive radio (CR) networks. We design an optimal auction mechanism that maximizes the moderator's expected utility, when the spectrum is not available with certainty. We assume that the moderator employs collaborative spectrum sensing in order to make a reliable inference about bout spectrum availability. Due to the presence of a collision cost whenever the moderator makes an erroneous inference, and a sensing cost at each CR, we investigate feasibility conditions that guarantee a non non-negative negative utility at the moderator. Since the moderator fuses CRs' sensing decisions to obtain a global inference regarding spectrum availability, we propose a novel strategystrategy proof fusion rule that encourages the CRs to simultaneously reveal truthful sensing decisions, along with truthful valuations tto o the moderator. We also present tight theoretical bounds on instantaneous network throughput achieved by our auction mechanism. Numerical examples are presented to provide insights into the performance of the proposed auction under different scenarios.