Design and Implementation of Enhanced Artificial BEE Colony Algorithm for Single Phase Shunt Active

Page 1

DesignandImplementationofEnhanced ArtificialBEEColonyAlgorithmforSingle PhaseShuntActiveFilter

Murugan.M

AssistantProfessor,GovernmentCollegeofEngineering,Bodinayakkanur,marimurugan81@gmail.com

VinodA

AssistantProfessor,GovernmentCollegeofEngineering,Dharmapuri,vinodnash@gmail.com

Abstract:Inthisresearchpaperanewhybridoptimizationapproach,namedEnhancedArtificialBeeColonyAlgorithm (EABC)foridentifyingtheoptimalcontrollergainforsinglephaseShuntActivePowerFilter(SAPF)isproposed.The proposedalgorithmEABC,optimizesthecontrollergainvaluesinordertoimprovethetimedomainspecificationand integralperformancemeasuresofPIcontrollerinSAPF.InthisNovelhybridEABC,amodifiedversionofParticleSwarm optimisation(MPSO)isintegratedwithArtificialBeeColony(ABC)algorithmtoimprovetheoptimisationeffortsofABC andthishybridizationgreatlyimprovestheconvergencecharacteristicsofconventionalABC.ThisnovelhybridABCis appliedforminimizationofvariousIntegralperformancemeasuressuchasIntegralSquareError(ISE),Integralabsolute Errors(IAE)andtimeweightedintegralperformancemeasures.Theproposedoptimisationapproachisimplementedusing MATLABandvariousexperimentationwascarriedouttostudyaboutsteady-stateanddynamicoperatingconditions.The experimentalresultsestablishthattheproposedcontrollerdesignoutperformstheclassicalPI,andABC-PIcontrollerwith improvedsettlingtime,lesspeakovershootofDClinkvoltageandTHDofsourcecurrentwithinalimit.

Keywords:SAPF,ABC,EnhancedABC

I.INTRODUCTION

Theusageofpowerelectronicequipmentinindustries, commercialanddomesticapplicationshaveresultedinhuge currentharmonics.Thisnonlinearloadcausesharmonic propagationoverelectricalnetwork.Thepropagationof generatedharmonicsreducesthesystem‟sefficiency,poor powerfactor,createsadditionalheatinglossesandcause malfunctioningofmanysensitiveequipment‟sthatis connectedtothepowersystem.Toeliminatetheharmonics, passivefilter,activefilterandhybridfilterscanbeused.In commercialandindustrialapplications,thepassivefilters aremostcommonlyusedduetoitssimpledesign,high efficiencyandminimumcostrating.However,thesefilters areveryhugeinsizeanddoesnotfiltersallharmonic frequencies.Thesenumerouslimitationsofpassivefilters singlefrequencytunedfiltersmadetheresearchersto concentrateonactivefilters.Inseriescombinationoffilters. Thefilterhastobedesignedwithmorecurrenthandling capacityasthefilterhastocarrytheloadcurrent.Hencethe

SAPFforharmonicmitigationisgainingitspopularityvery rapidly.TheSAPFextractstheharmoniccurrentandinject backthenegativeharmonicsequenceintotheelectric networkandmakesthesupplycurrenttothesinusoidal shapewithfundamentalfrequency.Inrecentyearstheusage ofpowerelectronicbaseddevicesinthehomeappliances hasincreasedrapidly[1].Hencethisresearchisfocusedon thedesignofsinglephaseshuntactivefilters.

ThesinglephaseSAPFconsistingofavoltagesource inverter.ADClinkcapacitoractastheconstantvoltage sourcetotheinverterandtheinvertergeneratesthenegative sequencecompensationcurrent.Thecompensationcurrentis injectedtothegridatthepointofcommoncoupling.The extractionoftheharmonicsismainlydependingon controllingDClinkcapacitorvoltageataconstantvalue[2]. TomaintaintheDClinkCapacitorVoltagevariouscontrol algorithmswereproposedbytheresearcherssuchas AdaptiveNeuroFuzzyInferenceSystem,FuzzyLogic Controller,NeuralNetworkBasedModelPredictive

Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 52
ISSN2394-3777(Print) ISSN2394-3785(Online)

Controllers,andModelPredictiveControllers[3].These Controllershavehugecomputationcomplexityandthey involvelotofmathematicalcalculationstopredictthefuture behavioroftheplantandtogeneratecontrolaction.Over thesecontrolalgorithmstheProportionalandIntegrator(PI) controltechniquesverysimpletoimplementandcanbe implementedeasilyandalsothisalgorithmrequiresveryless mathematicalcalculationsfordeterminingthecontrolaction. DuetheseadvantagesthePIcontrolismostwidelyusedin theindustries.Intheliteraturethegainforthecontroller usedintheSAPFwasfoundusingTrialanderrorsearchor mathematicalapproaches[4].Thistrialanderrorand mathematicalapproachdoesn‟talwaysguaranteethe optimalvalue.[5]proposedasystem,thispaperpresentsan effectivefieldprogrammablegatearray(FPGA)-based hardwareimplementationofaparallelkeysearchingsystem forthebrute-forceattackonRC4encryption.Thedesign employsseveralnovelkeyschedulingtechniquesto minimizethetotalnumberofcyclesforeachkeysearchand useson-chipmemoriesoftheFPGAtomaximizethe numberofkeysearchingunitsperchip.

Inveryrecentyearsvariousbioinspiredglobal optimizationtechniqueshavebeenusedtofindoptimal proportionalandintegralgain.SomeofthemareGenetic Algorithm(GA),AntColonyOptimizationtechnique, particleswarmoptimization(PSO),BacterialForaging(BF) technique,GravitationalsearchAdaptiveTabusearchand GeneticAlgorithm,EnhancedBacterialforagingapproach, cuckoosearchalgorithm.InthesealgorithmstheABC optimizationalgorithmisbelievedtoexcellentoptimization capabilitiesandmostlikelytofindaglobalminimumpoint optimizationalgorithmwhencomparetootherevolutionary techniques.Alsoinotheroptimizationtechniquesthereis morenumberofalgorithmparametersthatdirectlyinfluence theperformanceofthealgorithm.InGAifthevalueof Crossoverrateandmutationrateisnotcorrectlysetthenthe qualityoftheresultsbecomeworseandthealgorithmmay evendiverge.Similarly,inACO,thepheromoneevaporation anddepositionrate,Numberofants,numberoftours,hasto besetcorrectlyandthereisnostraightguidanceavailableto selectthevaluesforthesealgorithmparameters.ButinABC thenumberofalgorithmparametersisminimumandthe

optimizationeffortisbetterthanotheroptimization algorithms.Becauseoftheseadvantages,sinceits introductiontheABCisfounditsapplicationinalmostall engineeringfields.InABCalgorithmunconstrained optimizationproblemsyieldsgeneralization[8].However, conventionalABCalgorithmssufferfrompoorconvergence ratebecauseoflessexplorationandexploitation.

Thepaperisorganizedasfollows:Insection2,thebrief literaturereviewandthemajorcontributionoftheresearch ispresented.InSection3theABCbasedControllerdesign forSAPFisdescribed.Insection4thedesignofnovel hybridoptimizationtechniqueisproposedandthecontroller performancesarepresentedtoshowtheeffectivenessofthe proposedcontrollerdesign.Finally,thepaperendswith logicalaconclusioninsection5.

II.LITERATUREREVIEW

ImprovetheconvergencerateofexistingABC,the EnhancedABCalgorithmisproposed.InproposedEABC algorithmanovelmethodbasedontheparticleswarm optimizationisusedtoimprovethequalityofthefood sourceidentifiedbythehoneybees.Somepositiveaspectof proposedEABCisimprovementoflocalsearchby providingguidancebyusingbirdflockingbehavior.The proposedalgorithmEABCisdescribedinthesection3.[6] proposedasystem,LowVoltageDifferentialSignaling (LVDS)isawaytocommunicatedatausingaverylow voltageswing(about350mV)differentiallyovertwoPCB traces.Itdealsabouttheanalysisanddesignofalowpower, lownoiseandhighspeedcomparatorforahighperformance LowVoltageDifferentialSignaling(LVDS)Receiver.The circuitofaConventionalDoubleTailLatchType Comparatorismodifiedforthepurposeoflow-powerand lownoiseoperationeveninsmallsupplyvoltages.The circuitissimulatedwith2VDCsupplyvoltage,350mV 500MHzsinusoidalinputand1GHzclockfrequency.LVDS Receiverusingcomparatorasitssecondstageisdesigned andsimulatedinCadenceVirtuosoAnalogDesign EnvironmentusingGPDK180nm.Bythisdesign,thepower dissipation,delayandnoisecanbereduced.

Themaincontributionofthisresearchoverprevious researchworkarelistedasfollows:

Asingleobjectivefunctionbasedontheintegral performancecriteriacostfunctionisdesignedtofindout theoptimalvaluesofcontrollerfornonlinearSAPF.

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 53

AHybridnovelABCalgorithmisproposedtoincrease theconvergencecharacteristicsofconventionalABCby combiningParticleswarmoptimisationisdesigned.

AdetailedanalysisontheproposedEABCPI,ABCPI andConventionalPIcontrollerbasedSAPFisdonein MATLAB/Simulinksystemenvironment.

III.IMPLEMENTATIONOFARTIFICIALBEECOLONY ALGORITHMFOROPTIMALPIGAIN SELECTION

Metaheuristic-populationbasedoptimizationalgorithm ArtificialBeeColony(ABC)isbasedonswarmintelligence. Comparedtootheroptimisationtechniquessuchas simulatedannealing(SA),ACO,GAandDE,theABC algorithmhassimpleimplementationstructurewithless numberofalgorithmparametersandalsoinherent convergenceagility.

Thealgorithmreliesonbeesforagingbehaviourofthe honeybee.Thecolonyconsistsofthreemaingroupofbees namelyemployed,onlookerandscoutbees.Thepopulation sizeofthecolonydecidesthenumberofemployedbeeand otherbees.Halfofthepopulationismadeasemployedbees. Theremainingincludesonlookerbeesandscoutbees.

Numberoffoodsources=10

MaximumIteration=1000

Traillimit=100

Initiallyresettrialcounters.

Step2:Identifyrandomfoodsource.Iftherandomly identifiedfoodsourcevalueishigheror lowerthantheboundconstrainthenthefoodsource isresettledtosatisfytheboundconstraintsof controllerparameters.

Step3:Basedontheobjectivefunctionvalue,theidentified foodsourcesarepassedtofitnessfunctiondetermine it‟sthefitnessvalue.

Step4:EMPLOYEDBEEPHASE

Producemutantsolutionsbasedonfollowing relationship

Whererisarandomnumberbetween0and1,xmin,j isthelowerboundlimitofoptimisationparameterj

InitiallytheEmployeebeesearchestheavailabilityfood,x max,jistheupperboundlimitofoptimisation sourcearoundthefoodsourceintheirmemory,inthe meantimeemployeebeesendthenectarinformationabout theallidentifiedfoodsourcestoonlookerbees.The onlookerbeeswillselectthefoodsourcethathashighnectar valuesfoundedbytheemployedbees,andalsocarryoutthe additionalsearch.Scoutbeesarerequestedtoreplacethe abandonedfoodsourcesbyrandomsearch.

IntheproposedapproachamodelofsinglephaseSAPF isdevelopedinMATLABSimulinkandtheABCis implementedintheMATLABscript.AsABCisiterative theMATLABscriptpassesthefoodsourcestotheSimulink toevaluatethefitnessvalueofthefoodsourceoneachcost functionevaluation.ThedetailedstepsofABCalgorithmfor optimalPIcontrollerdesignaredescribedasfollows:

Step1:Allalgorithmparametersareinitialized

ChoosetheupperandlowerboundforPIcontroller parameters(Kp,Ki)

Colonysize=20

parameterj,“i”isthenumberoffoodsourcesandjis thedimensionoftheoptimisationproblem.Eachfood sourceisevaluatedtofindthefitnessandobjective value.Agreedysearchisappliedbetweensolution“i” andwithitsnewvariant.Ifthemutantsolutionis better,thenreplacethesolution“i”withthemutant andresetthetrialcounterof„i‟andifthesolution„i‟ didnotimprovedthentrialcounterof“i”is incremented.Eachfoodsourceisassignedwitha probabilitythatisproportionaltothequalityandA foodsourcewiththemoreprobabilityisselectedby theemployedbees.

Step5:ONLOOKERBEEPHASE

Calculatethenewsolutionsbasedonthefollowing relationship.Wherejarethenumberofparameters tobeoptimised.

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 54
xi,j xmin,jr*(x max,jxmin,j) (1)

Ifthecontrollerparametersareoutofbound constraintsthemargin,thenthesolutionsoutof boundareshiftedintothemargin.Ifthemutant resultisbetterthanthecurrentsolution,replacethe currentsolutionwithmutant.Findoutthesolution thathasminimumobjectivefunction.Ifthesolution „i‟cannotbeimproved,increaseitstrialcounter.A foodsourceischosenwiththeprobabilitywhichis proportionaltoitsquality.

Step6:SCOUTBEEPHASE

Iftheemployedbeeandonlookerbeecannotable toincreasethefitnessandthesolutionthathas moretrailcountervaluemorethanthe“traillimit” isdroppedandscoutbeeisrequestedtoidentifythe randomfoodsourcetoreplacetheunimprovedfood source.

Step7:RepeatSteps4,5and6togetthebestvaluesfor controllergains.Optimisationcanbeterminatedif maximumnumberofiterationisreached.

Thenumberofparametertobeoptimisedinthe controllerdesignforSAPFistwo.TheProportional gainandintegralgainofthePIcontrollerarethe parametersoftheoptimisationproblem.The objectivefunctionsarevariousintegral performancecriteriaaregiveninthefollowing relationships.

InthisstudytheISEistakenascostfunctionand optimisationiscarriedout.Theresultsofsimulationare discussedintheSimulationResultssection.

1.ImplementationofEnhancedartificialbeecolony algorithmforoptimalPIgainselection

ThedetailedimplementationdetailsofEnhancedABC algorithmarepresentedinthissection.Inconventional ABCalgorithmthescoutbeereplacestheabandonedfood sourcerandomly.Thisrandomreplacementmaynotidentify thegoodfoodsource.Toimprovethesearchingabilityof thescoutbeeanovelapproachisproposedtoguidethe selectionofnewfoodsource.

Fig.1.ABCoptimizationFlowchart

Theproposedguidedapproachusesamodifiedparticle swarmoptimizationmethodwherethesocialandcognitive attractionfactorsareadaptivelychanged.Thepseudocode ofproposedenhancedABCandalgorithmareshownin below.TheflowchartofABCandEABCalgorithmwith optimalPIgainvalueselectionofSAPFisshownin followingFig.1and2.ThealgorithmparametersofABC andenhancedABChavebeengiveninTable1.andTable2 respectively.

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 55 vi,j xi,ji,j(xi,jxk,j)  ITAEt.e(t)dt (2) Wherei,jisthevelocityinformation 0 IntegralSquaredError  ISEe(t)2dt aboutthefoodsourcesfromtheemployedbee.
IntegralAbsoluteError  IAEe(t)dt 0 IntegralTimeAbsoluteError 0 IntegralTimeSquaredError  ITSEte(t)2dt 0

Initialvalues

PopulationsizePS 10 Swarmsize20

Particlelength2

Cognitiveattractionfactor1

Socialattractionfactor1

No.ofIterationofPSO20

NumberofCyclesinABC100

TheHybridABChasthefollowingsteps:

StepsforEABCPITuningmethodtoSAPF

Thesteps1-4aresimilartoconventionalABCalgorithm

Step1:AllPITuningparametersareinitialized

Step2:Resettrialcounters

Step3:EmployedBeePhase

Step4:OnlookerBeePhase

Step5:ModifiedScoutBeePhase

InitializethePSOparameterssuchascognitiveattraction C1=1socialattraction,C2=1,velocities.Thepbestsandgbest areinitializedtozero.

Step6:selectthebestfoodsourcefromthecolonyand createanewsolutionparticleneartoit.And evaluatecostofeachindividualparticle.For everyindividual,comparethepbestvaluewithits costfunctionvalue.Ifthevalueofpbestisgreater thanthecurrentfitness,thenassignthecurrent

fitnesstopbest.Thebestfitnessamongthecurrent fitnessvalueisassignedtoglobalbest(gbest).

Step7:repositiontheparticleusingnewvelocity„v‟ofeach individual vj[i+1]=vj[i]+c2*r*(pb-Current_Par)+c2* r*(gb-Cu_sol)

Where,

J=1,2…n,(n-Numberofparticles)

Vj–Velocityofparticlej

C1-Cognitiveattractionfactor

C2–Socialattractionfactor

rand–Randomnumberbetween0and1 Pb–pbestofparticlej

gb–gbestofthegroup

Cu_sol-currentsolution

r-randomnumber

Step8:Applyboundconstrainsonthevelocityupdatevalue vj[i+1]tomaintainintherangeofparticle betweenupperandlowerboundofcontroller parameters

Step9:Updatethepositionofeachindividual new_position[i+1]=persent_position[i]+vj[i+1]

Step10:Ifthenumberofiterationsreachesthemaximumset valuethendothestep11,otherwisegotothestep 7.

Step11:Terminatethevelocityupdateandaddthelatest gbesttothepopulation

Step12:RepeatSteps2,to12untilgetthebestsolutionof controllerparametersandTerminatetheiterativeprocess, whenthereisnoanyfurtherexecutionofiteration. Thisadditionalguidancetothescoutbeeincreasesthe convergencerateandthequalityofthefoodsource identifiedbythescoutbee.

2.SimulationResultsandDiscussions

MATLABsoftwareisusedtosimulateSimulinkmodel ofsinglephaseSAPF.TheerrorbetweenreferenceDCLink voltageandactualDClinkvoltageisusedasaninputsignal forPIcontroller.

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 56
Fig.2.ProposedEnhanced-ABCoptimizationFlowchart Table.1EABCParameters.

ThegainvaluesofthePIcontrollerstatesthevoltage responseanddampingfactor,theminimumvalueofgains forthePIcontrollercanbecalculatedusingEq.3and4.

Fig.3.FoodsourcefromscoutbeeofEABCalgorithm Fromtheplotitisclearthatthegeneratedfoodsource fromscoutbeeofEABCalgorithmisbetterthanthe integralGains,CrepresentsthecapacitanceofDClink capacitor,representsdampingfactor(0.707)and representsangularfrequency.SAPFishighlynonlinear systemandmainlydependsonsystemparametersandload conditions.HencecalculatedPIcontrollerparametersdon‟t meetthesystemrequirementinallconditions.Sointhis proposedworkABCoptimizationisusedtooptimizethe gainvaluesofPIController.TheISEerrorcriterionfunction exhibitslessovershootandfastersettlingtimewhen comparetoIAE,ITAEandITSE.

TheISEerrorcriterionisusedasobjectivefunction“j” foroptimizationisrepresentedbythefollowingequation

conventionalABCalgorithm.Becauseoftheimprovement intheoptimizationeffortsmadebyScoutbeetheproposed EABCconvergessoquicklyattheminimumpoint.

TheStatisticalanalysisofconvergenceplotispresentedin thetable.FromthestatisticalvaluesofEABCsuchaslow

mean,lowminimumvalueitisveryclearthattheproposed algorithmachievesbetterresultsincontrollerdesign.The

WhereristheerrorsignalgeneratedbyacomparatornumericalvaluesofthestatisticalanalysisoftheScoutbee whichisequaltothedifferencebetweenreferenceDClinkfitnesscurveareshowninTable2 voltage

ref time.

Vdcandtisthe

Thissectionpresentsvariousperformanceanalysesof singlephaseSAPFusingdifferentcontrollerdesignmethods suchasconventionalPI,ABCandEnhancedABCbasedPI controllers.TheproposedofflineEABCbasedPIand conventionalalgorithmshavebeenimplementedusing Matlabprogramminglanguage.Insimulationtheminimum objectivefunctionachievedduringeachiterationis monitoredforestimatingtheoptimizationeffortsandalso thequalityofthefoodsourceidentifiedbythescoutbeeis alsomonitored.Theobservedvaluesareplottedinfig.3

TheproposedEABCbasedoptimumcontrollerdesign yieldsbettercontrollerparametervaluesandthisdesign outperformstheconventionaltuningandconventionalABC basedController.ThecorrespondingoptimizedPIgain values(kp,ki)foundtobe0.33and4.29respectively.To

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 57 ofEABCalgorithm r
kp2C Where kiC (4) kprepresentsproportionalgain, (3) kirepresents
t
JISE(e2t)dt o
Fig.4.StatisticalAnalysisofFoodsourcefromscoutbee Thisisclearlyindicatedintheconvergenceanalysisplot.
e r Vdc,ref e Vdc
Vdc,
andactualDClinkvoltage
Table2:statisticalanalysisoftheScoutbeefitness ParameterABCEABC Mean 8.7552.499 Median6.1992.5 Standarddeviation5.890.02 Minimumvalue3.3862.452 Maximumvalue31.512.666

simulatetheharmonicsourceinthesystemasinglephaseH bridgeinverterisconsideredasnonlinearload.Andthis nonlinearloadisconnectedtothesystematthepointof commoncoupling.Beforeturningonthefilter compensationiszeroandtheTHDforthesourcecurrentis 28.47%.AfterturningONthesinglephaseSAPF,the harmonicsareeliminatedto3.53THDandthisiswellbelow thestandardgivenbyIEEEfromsupplycurrent.

Table3PerformanceassessmentofSinglephaseSAPFfor conventionalPI,ABC-PIandEABC-PI.

Sourceresistance&InductanceRs&Ls0.1Ω&1mH SupplyfrequencyF50Hz

DClinkvoltage Vdc200V

DClinkcapacitanceCdc800µF Filterresistance&InductanceRf&Lf0.01Ω&5mH AverageSwitchingFrequencyFsw10kHz

ACsideresistanceRc0.01Ω ACsideinductanceLc1mH DCsideresistanceRLdc28Ω DCsideinductanceLLdc160mH

IV.CONCLUSION

InthismanuscriptanewnovelhybridABCoptimization algorithmisappliedtoPIcontrollerofsinglephaseSAPF hasbeenproposedfornonlinearcontrollerdesignandits performanceisvalidated.Thesimulationandexperimental resultshavebeencarriedoutforthethreecontrolmethods, theConventionalPI,ABC-PIandEABC-PIcontrol methods.Fromtheresultsithasbeenfoundthatproposed hybridEABCcontrolleroutperformstheABCand conventionalPIinallperformanceindicessuchasISE,IAE, ITAE,ITSEandothertimedomainperformancemeasures suchasSettlingtime.

Theconclusionpointsarrivedfromthesimulationstudy arelistedbelow.

1.TheProposedcontrollerdesignEffectively compensatesthecurrentharmonicsandreactive power.

2.TheproposedEABCoptimizedcontroltechnique reducesthesupplycurrentTHDwellbelow5%.

3.SAPFwithEABCoptimizedcontrollerisfoundtobe superiortotheSAPFdesignedbyABCoptimizedPI controllerandconventionalPIcontrollerinall operatingconditions.

4.AgoodcompromisebetweentheTHD,settlingtime andpeakovershootwereobtainedwithISE consideringascostfunctions.

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 58
PerformanceTypeofController IndicesConventional PI ABCPI (ISE) EABCPI(ISE) Kp0.1050.250.30 Ki0.656.94.2 Vdc_Ts(ms)670122103 %THD3.83.563.53 %Mp04.8571.1758 ISE155.461.720760.2501 IAE6.211.89951.6452 ITAE0.96560.36460.3507 ITSE8.4510.63510.5503
Fig.5.DClinkCapacitorvoltage
Parameters SymbolValue
Table4.Single‐phaseSAPFparameters
Supplyvoltage Vs100V(rms)
APFparameters
Loadparameters

REFERENCES

[1].AtaideMV,PomilioJA.,“Single-phaseshuntactivefilter:Adesign procedureconsideringharmonicsandEMIstandards‟InIndustrial Electronics”,ProceedingsoftheIEEEInternationalSymposium, Vol.2,1997,pp.422-427.

[2].Chatterjee,K.,Fernandes,B.G.,&Dubey,G.K.(1999).An instantaneousreactivevolt-amperecompensatorandharmonic suppressorsystem.IEEETransactionsonPowerElectronics,14(2), 381-392.

[3].Sasaki,H.,&Machida,T.(1971).AnewmethodtoeliminateAC harmoniccurrentsbymagneticfluxcompensation-considerations onbasicdesign.IEEETransactionsonPowerApparatusand Systems,(5),2009-2019.

[4].Zainuri,M.A.A.M.,Radzi,M.A.M.,Soh,A.C.,Mariun,N.,& Rahim,N.A.(2016).DC‐linkcapacitorvoltagecontrolfor single‐phaseshuntactivepowerfilterwithstepsizeerror cancellationinself‐chargingalgorithm.IETPower Electronics,9(2),323-335.

[5].ChristoAnanth,MuthamilJothi.M,M.Priya,V.Manjula,“ParallelRC4 KeySearchingSystemBasedonFPGA”,InternationalJournalof AdvancedResearchinManagement,Architecture,Technologyand Engineering(IJARMATE),Volume2,SpecialIssue13,March 2016,pp:5-12.

[6].ChristoAnanth,BincyPChacko,“AnalysisandDesignofLow VoltageLowNoiseLVDSReceiver”,IOSRJournalofComputer Engineering(IOSR-JCE),Volume9,Issue2,Ver.V(Mar-Apr. 2014),PP10-18.

[7].Patnaik,S.S.,&Panda,A.K.(2013).Real-timeperformance analysisandcomparisonofvariouscontrolschemesforparticle swarmoptimization-basedshuntactivepowerfilters.International JournalofElectricalPower&EnergySystems,52,185-197.

[8].Karaboga,D.,&Ozturk,C.(2011).Anovelclusteringapproach: ArtificialBeeColony(ABC)algorithm.Appliedsoft computing,11(1),652-657.

ControlofElectricalDrives,PowerElectronicsConverter andRenewableEnergySystems.Ihavemoreteaching experiencebothinUG&PGlevelandalsoresearch experience.Ihavepublishedseveralpapersininternational journals.Ihavepresentedmorepapersininternational conferenceproceedingsandseveralpapersinnational conferenceproceedings.Ihaveguidedseveralundergraduate projectsandpostgraduateprojects.

VINODARUNACHALAMis

AssistantProfessoratCollegeofElectronicsand CommunicationEngineering,GovernmentCollegeof Engineering,Dharmapuri.HeholdsMasterofEngineering withspecializationinVLSIDESIGNatAnnaUniversityof TechnologyCoimbatore.Hisresearchareasaremedical imageanalysis,VLSIDESIGN,GeneticAlgorithmsand image/SignalProcessing.HeisamemberofISTE.He publishedmanypaperinreputedjournals.Hecanbe contactedatemail:vinodnash@gmail.com

Dr.M.Murugan,currentlyworkingas anAssistantProfessor,DepartmentofElectricaland ElectronicsEngineering,GovernmentCollegeof Engineering,Bodinayakkanur.Myareaofinterestsare

ISSN2394-3777(Print) ISSN2394-3785(Online) Availableonlineatwww.ijartet.com InternationalJournalofAdvancedResearchTrendsinEngineeringandTechnology(IJARTET) Vol.5,Issue01,January2018 AllRightsReserved©2018IJARTET 59

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.