I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
On The Enestrom –Kakeya Theorem and Its Generalisations 1,
M. H. Gulzar
1,
Department of Mathematics University of Kashmir, Srinagar 190006
Abstract Many extensions of the Enestrom –Kakeya Theorem are availab le in the literature. In this paper we prove some results which generalize some known results .
Mathematics Subject Classification:
30C10,30C15
Key-Words and Phrases : Comp lex nu mber, Polynomial , Zero, Enestrom – Kakeya Theorem 1. Introduction And Statement Of Results The Enestrom –Kakeya Theorem (see[7]) is well known in the theory of the distribution of zeros of polynomials and is often stated as follo ws: n
Theorem A: Let
P( z ) a j z j be a polynomial of degree n whose coefficients satisfy j 0
an an1 ...... a1 a0 0 . Then P(z) has all its zeros in the closed unit disk
z 1.
In the literature there exist several generalizations and extensions of this resu lt. Joyal et al [6] extended it to polynomials with general monotonic coefficients and proved the following result: n
Theorem B : Let
P( z ) a j z j be a polynomial of degree n whose coefficients satisfy j 0
an an1 ...... a1 a0 . Then P(z) has all its zeros in
z
a n a0 a0 an
.
Aziz and zargar [1] generalized the result of Joyal et al [6] as follows: n
Theorem C: Let
P( z ) a j z j be a polynomial of degree n such that for some k 1 j 0
kan an1 ...... a1 a0 . Then P(z) has all its zeros in
z k 1
kan a0 a0 an
.
For polynomials ,whose coefficients are not necessarily real, Govil and Rahman [2] proved the following generalization of Theorem A : n
Theorem C: If
P( z ) a j z j is a polyno mial of degree n with Re( a j ) j and Im(a j ) j , j=0,1,2,……,n, j 0
such that where
n n1 ...... 1 0 0 ,
n 0 , then P(z) has all its zeros in
||Issn 2250-3005(online)||
||January || 2013
Page 225
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
z 1 (
n
2
n
)( j ) . j 0
Gov il and Mc-tume [3] p roved the following generalisations of Theorems B and C: n
P( z ) a j z j be a polynomial of degree n with Re( a j ) j and Im(a j ) j , j=0,1,2,……,n.
Theorem D: Let
j 0
If for some
k 1,
k n n1 ...... 1 0 ,
then P(z) has all its zeros in n
k n 0 0 2 j j 0
z k 1
.
n
n
P( z ) a j z j be a polynomial of degree n with Re( a j ) j and Im(a j ) j , j=0,1,2,……,n.
Theorem E: Let
j 0
If for some
k 1,
k n n1 ...... 1 0 ,
then P(z) has all its zeros in n
k n 0 0 2 j j 0
z k 1
n
.
M. H. Gu lzar [4] proved the follo wing generalizations of Theorems D and E: n
P( z ) a j z j be a polynomial of degree n with Re( a j ) j and Im(a j ) j , j=0,1,2,……,n.
Theorem F: Let
j 0
0, n n1 ...... 1 0 ,
If for so me real nu mber
then P(z) has all its zeros in the disk n
z
n
n 0 0 2 j j 0
n
.
n
Theorem G: Let
P( z ) a j z j be a polynomial of degree n with Re( a j ) j and Im(a j ) j , j=0,1,2,……,n. j 0
0, n n1 ...... 1 0 ,
If for some real nu mber
then P(z) has all its zeros in the disk n
z
n
n 0 0 2 j j 0
n
.
In this paper we give generalization of Theorems F and G. In fact, we prove the following : n
Theorem 1: Let
P( z ) a j z j be a polynomial of degree n with Re( a j ) j and Im(a j ) j , j=0,1,2,……,n. If j 0
for some real numbers
, 0 , 1 k n, ank 0,
||Issn 2250-3005(online)||
||January || 2013
Page 226
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
and
nk 1
n n1 ... nk 1 nk nk 1 ... 1 0 , nk , then P(z) has all its zeros in the disk n
z and if
an
n ( 1) n k 1 n k 0 0 2 j j 0
an
,
nk nk 1 , then P(z) has all its zeros in the disk n
z
an
n (1 ) n k 1 n k 0 0 2 j j 0
an
Remark 1: Taking 1 , Theorem 1 reduces to Theorem F. Taking k=n ,and 1 in Theorem 1, we get a result due to M.H. Gulzar [5, Theorem 1] . If
a j are real i.e. j 0 for all j, we get the following result: n
P( z ) a j z j be a polynomial of degree n. If fo r some real numbers , 0 ,
Corollary 1: Let
j 0
1 k n, ank 0,
an an1 ... ank 1 ank ank 1 ... a1 a0 , and
ank 1 ank , then P(z) has all its zeros in the disk
z and if
an
a n ( 1)a nk 1 a nk a0 a0 an
,,
ank ank 1 , then P(z) has all its zeros in the disk
z
an
a n (1 )a nk 1 a nk a0 a0 an
If we apply Theorem 1 to the polynomial –iP(z) , we easily get the follo wing result: n
Theorem 2: Let
P( z ) a j z j be a polynomial of degree n with Re( a j ) j and Im(a j ) j , j=0,1, 2,……,n. j 0
, 0 , 1 k n, ank 0, n n1 .... nk 1 nk nk 1 .. 1 0 , nk , then P(z) has all its zeros in the dis k
If for some real nu mbers
and
nk 1
n
z and if
an
n ( 1) n k 1 n k 0 0 2 j j 0
an
,
nk nk 1 , then P(z) has all its zeros in the disk n
z
an
Remark 2: Taking
n (1 ) n k 1 n k 0 0 2 j j 0
an
1 , Theorem 2 reduces to Theorem G.
||Issn 2250-3005(online)||
||January || 2013
Page 227
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 n
P( z ) a j z j be a polynomial of degree n such that for some real numbers , 0 ,
Theorem 3: Let
j 0
1 k n, ank 0, and ,
an an1 ... ank 1 ank ank 1 ... a1 a0 and
arg a j If
2
, j 0,1,......, n.
ank 1 ank (i.e. 1 ) , then P(z) has all its zeros in the disk [ a n (cos sin ) a n k (cos sin cos sin 1)
z If
a 0 (cos sin 1) 2 sin
an
n 1
a
j 1, j n k
j
]
an
ank ank 1 (i.e. 1), then P(z) has all its zeros in the disk [ a n (cos sin ) a n k (cos sin cos sin 1 )
z
a 0 (sin cos 1) 2 sin
an
n 1
a
j 1, j n k
j
]
an
Remark 3: Taking
1 in Theorem 3 , we get the follo wing result: n
Corollary 2: Let
P( z ) a j z j be a polynomial of degree n. If fo r some real number 0 , j 0
an an1 ...... a1 a0
,
then P(z) has all its zeros in the disk n 1
z
an
[ a n (cos sin ) a0 (cos sin 1) 2 sin a j ] j 1,
an
.
(k 1)an , k 1, we get a result of Shah and Liman [8,Theorem 1].
Remark 4: Taking
2. Lemmas For the proofs of the above results , we need the following results: n
Lemma 1: .
Let P(z)=
a z j
j 0
arg a j
ta j a j 1
j
be a polynomial of degree n with complex coefficients such that
, j 0,1,...n, for some real . Then for some t >0, 2 t a j a j 1 cos t a j a j1 sin .
The proof of lemma 1 follows fro m a lemma due to Govil and Rah man [2]. Lemma 2.If p(z) is regular ,p(0) 0 and
p( z ) M in 1 log
1
log
z 1, then
the
number
of
zeros
of
p(z)in
z ,0 1, does
not
exceed
M (see[9],p 171). p(0)
||Issn 2250-3005(online)||
||January || 2013
Page 228
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
3. Proofs Of Theorems Proof of Theorem 1: Consider the polynomial
F ( z) (1 z) P( z)
(1 z )(a n z n a n1 z n1 ...... a1 z a0 ) a n z n1 (a n a n1 ) z n ...... (a nk 1 a nk ) z nk 1 (a nk a nk 1 ) z nk (ank 1 ank 2 ) z nk 1 ...... (a1 a0 ) z a0 ( n i n ) z n 1 ( n n 1 ) z n ...... ( n k 1 n k ) z n k 1 ( n k n k 1 ) z n k ( n k 1 n k 2 ) z n k 1 ...... ( 1 0 ) z 0 n
i ( j j 1 ) z j i 0 j 1
If
nk 1 nk , then nk 1 nk , and we have F ( z) ( n i n ) z n1 z n ( n n1 ) z n ...... ( nk 1 nk ) z nk 1 ( nk nk 1 ) z nk ( 1)ank z nk ( nk 1 nk 2 ) z nk 1 ...... n
(1 0 ) z 0 i ( j j 1 ) z j i 0 . j 1
For
z 1,
F ( z ) an z n1 z n ( n n1 ) z n ( n1 n2 ) z n1 ...... ( nk 1 nk ) z nk 1
( n k n k 1 ) z n k ( 1)a n k z n k ( n k 1 n k 2 ) z n k 1 ...... n
( 1 0 ) z 0 i ( j j 1 ) z j i 0 j 1
1 1 n z a n z ( n n 1 ) ( n1 n2 ) ...... ( nk 1 n k ) k 1 z z 1 1 1 ( n k n k 1 ) k ( 1) n k k ( n k 1 n k 2 ) .... k 1 z z n 1 1 ( 1 0 ) n 1 n0 i ( j j 1 ) n j i n0 z z z z j 1 z
n
a z n
n n1 n1 n2 ...... nk 1 nk
n k n k 1 1 n k n k 1 n k 2 ...... 1 0 n
0 j j 1 0
j 1
z
n
a z n
n
n1 n1 n2 ...... nk 1 nk nn k nk 1 n
1 nk nk 1 nk 2 ...... 1 0 0 2 j
j 0
n n z a n z n ( 1) n k 1 nk 0 0 2 j j 0
>0 ||Issn 2250-3005(online)||
||January || 2013
Page 229
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
if n
a n z n ( 1) nk 1 nk 0 0 2 j j 0
This shows that the zeros of F(z) whose modulus is greater than 1 lie in n
z
an
n ( 1) n k 1 n k 0 0 2 j j 0
an
.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n
z
an
n ( 1) n k 1 n k 0 0 2 j j 0
an
.
Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in n
z If
an
n ( 1) n k 1 n k 0 0 2 j j 0
an
.
nk nk 1 , then nk nk 1 , and we have F ( z) ( n i n ) z n1 z n ( n n1 ) z n ...... ( nk 1 nk ) z nk 1 ( n k n k 1 ) z n k (1 ) n k z n k 1 ( n k 1 n k 2 ) z n k 1 ...... n
(1 0 ) z 0 i ( j j 1 ) z j i 0 . j 1
For
z 1,
F ( z ) an z n1 z n ( n n1 ) z n ( n1 n2 ) z n1 ...... ( nk 1 nk ) z nk 1
( n k n k 1 ) z n k (1 ) n k z n k 1 ( n k 1 n k 2 ) z n k 1 ...... n
( 1 0 ) z 0 i ( j j 1 ) z j i 0 j 1
1 1 n z a n z ( n n1 ) ( n1 n2 ) ...... ( nk 1 nk ) k 1 z z 1 1 1 ( n k n k 1 ) k (1 ) n k k 1 ( n k 1 n k 2 ) k 1 .... z z z n 1 1 ( 1 0 ) n 1 n0 i ( j j 1 ) n j i n0 z z z z j 1 z
n
a z n
n n1 n1 n2 ...... nk 1 nk
n k n k 1 1 n k n k 1 n k 2 ...... 1 0 n
0 j j 1 0
j 1
z
n
a z n
||Issn 2250-3005(online)||
n
n1 n1 n2 ...... nk 1 nk nn k nk 1 ||January || 2013
Page 230
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1 n
1 nk nk 1 nk 2 ...... 1 0 0 2 j
j 0
n n z a n z n (1 ) n k 1 nk 0 0 2 j j 0
>0 if n
a n z n (1 ) nk 1 nk 0 0 2 j j 0
This shows that the zeros of F(z) whose modulus is greater than 1 lie in n
z
an
n (1 ) n k 1 n k 0 0 2 j j 0
an
.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in n
z
an
n (1 ) n k 1 n k 0 0 2 j j 0
an
.
Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in n
z
an
n (1 ) n k 1 n k 0 0 2 j j 0
an
.
That proves Theorem 1. Proof of Theorem 3: Consider the polynomial
F ( z) (1 z) P( z)
(1 z )(a n z n a n1 z n1 ...... a1 z a0 ) a n z n1 (a n a n1 ) z n ...... (a nk 1 a nk ) z nk 1 (a nk a nk 1 ) z nk (ank 1 ank 2 ) z nk 1 ...... (a1 a0 ) z a0 . If
ank 1 ank , then ank 1 ank , 1 and we have, for z 1 , by using Lemma1,
F ( z ) an z n1 z n ( an an1 ) z n (an1 an2 ) z n1 ...... (ank 1 ank ) z nk 1
(a n k a n k 1 ) z n k ( 1)a n k z n k (a n k 1 a n k 2 ) z n k 1 ...... (a1 a0 ) z a0
1 1 n z a n z ( a n a n 1 ) (a n1 a n2 ) ...... (a nk 1 a nk ) k 1 z z 1 1 1 (a n k a n k 1 ) k ( 1)a n k k (a n k 1 a n k 2 ) k 1 .... z z z a 1 (a1 a0 ) n 1 0n z z ||Issn 2250-3005(online)||
||January || 2013
Page 231
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
z
n
a z n
an an1 an1 an2 ...... ank 1 ank
a n k a n k 1 1 a n k a n k 1 a n k 2 ...... a1 a0
a0 z
n
a z {( a n
n
an1 ) cos ( an an1 ) sin
( an1 an2 ) cos ( an1 an2 ) sin ...... ( ank 1 ank ) cos ( ank 1 ank ) sin ( ank ank 1 ) cos ( ank ank 1 ) sin
1 ank ( ank 1 ank 2 ) cos ( ank 1 ank 2 ) sin ...... ( a1 a0 ) cos ( a1 a0 ) sin a0 }
z
n
a z { a n
n
(cos sin ) ank (cos sin cos sin
1) a0 (sin cos 1) 2 sin
n 1
a }
j 1, j n k
j
0 if
a z a n
n
(cos sin ) ank (cos sin cos sin
1) a0 (sin cos 1) 2 sin
n 1
a
j 1, j n k
j
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
[ a n (cos sin ) a n k (cos sin cos sin 1)
z
an
a0 (cos sin 1) 2 sin
n 1
a
j 1, j n k
j
] ..
an
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) lie in
[ a n (cos sin ) a n k (cos sin cos sin 1)
z
an
a0 (cos sin 1) 2 sin
n 1
a
j 1, j n k
j
] .
an
Since the zeros of P(z) are also the zeros of F(z), it fo llo ws that all the zeros of P(z) lie in
[ a n (cos sin ) a n k (cos sin cos sin 1)
z If
an
a0 (cos sin 1) 2 sin
n 1
a
j 1, j n k
j
]
an
ank ank 1 , then ank ank 1 , 1 and we have, for z 1 , by using Lemma 1,
F ( z ) a n z n 1 z n ( a n a n 1 ) z n (a n 1 a n 2 ) z n 1 ...... (a n k 1 a n k ) z n k 1
(a n k a n k 1 ) z n k (1 )a n k z n k 1 (a n k 1 a n k 2 ) z n k 1 ...... (a1 a0 ) z a0 ||Issn 2250-3005(online)||
||January || 2013
Page 232
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
1 1 n z a n z ( a n a n 1 ) (a n1 a n2 ) ...... (a nk 1 a n k ) k 1 z z 1 1 1 (a n k a n k 1 ) k (1 )a n k k 1 (a n k 1 a n k 2 ) k 1 .... z z z a0 1 (a1 a0 ) n 1 n z z n z an z an an1 an1 an2 ...... ank 1 ank a n k a n k 1 1 a n k a n k 1 a n k 2 ...... a1 a0
a0 z
n
a z {( a n
n
an1 ) cos ( an an1 ) sin
( an1 an2 ) cos ( an1 an2 ) sin ...... ( ank 1 ank ) cos ( ank 1 ank ) sin ( ank ank 1 ) cos ( ank ank 1 ) sin
1 ank ( ank 1 ank 2 ) cos ( ank 1 ank 2 ) sin ...... ( a1 a0 ) cos ( a1 a0 ) sin a0 }
z
n
a z { a n
n
(cos sin ) ank (cos sin cos sin
1 ) a0 (sin cos 1) 2 sin
n 1
a }
j 1, j n k
j
0 if
a z a n
n
(cos sin ) ank (cos sin cos sin
1 ) a0 (sin cos 1) 2 sin
n 1
a
j 1, j n k
j
This shows that the zeros of F(z) whose modulus is greater than 1 lie in
[ a n (cos sin ) a n k (cos sin cos sin 1 )
z an
a0 (sin cos 1) 2 sin
n 1
a
j 1, j n k
j
]
an
.
But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence all the zeros of F(z) and therefore P(z) lie in
[ a n (cos sin ) a nk (cos sin cos sin 1 )
z an
a0 (sin cos 1) 2 sin
n 1
a
j 1, j n k
j
]
an
That proves Theorem 3.
||Issn 2250-3005(online)||
||January || 2013
Page 233
I nternational Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue.1
References [1] [2] [3] [4] [5] [6] [7] [8] [9]
A.Aziz And B.A.Zargar, So me Extensions Of The Enestrom-Kakeya Theorem , Glasnik Mathematiki, 31(1996) , 239-244. N.K.Gov il And Q.I.Reh man, On The Enestrom-Kakeya Theorem, Tohoku Math. J.,20(1968) , 126-136. N.K.Gov il And G.N.Mc-Tu me, So me Extensions Of The Enestrom- Kakeya Theorem , Int.J.Appl.Math. Vo l.11,No.3,2002, 246-253. M.H.Gu lzar, On The Location Of Zeros Of A Polynomial, Anal. Theory. Appl., Vo l 28, No.3(2012), 242-247. M. H. Gu lzar, On The Zeros Of Polynomials, International Journal Of Modern Engineering Research, Vol.2,Issue 6, Nov-Dec. 2012, 4318- 4322. A. Joyal, G. Labelle, Q.I. Rah man, On The Location Of Zeros Of Po lynomials, Canadian Math. Bull.,10(1967) , 5563. M. Marden , Geo metry Of Polynomials, Iind Ed.Math. Surveys, No. 3, A mer. Math. Soc. Providence,R. I,1996. W. M. Shah And A.Liman, On Enestrom-Kakeya Theorem And Related Analytic Functions, Proc. Indian Acad. Sci. (Math. Sci.), 117(2007), 359-370. E C. Titch marsh,The Theory Of Functions,2nd Ed ition,Oxfo rd University Press,London,1939.
||Issn 2250-3005(online)||
||January || 2013
Page 234