Location of Regions Containing all or Some Zeros of a Polynomial

Page 1

ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 02|| February – 2017 || International Journal of Computational Engineering Research (IJCER)

Location of Regions Containing all or Some Zeros of a Polynomial M.H. Gulzar Department of Mathematics, University of Kashmir, Srinagar

ABSTRACT In this paper we locate the regions which contain all or some of the zeros of a polynomial when the coefficients of the polynomial are restricted to certain conditions. Mathematics Subject Classification: 30C10, 30C15. Keywords and Phrases: Coefficients, Polynomial, Regions, Zeros.

I. INTRODUCTION The following result known as the Enestrom-Kakeya Theorem [3] is of fundamental importance on locating a region containing all the zeros of a polynomial with monotonically increasing positive coefficients: n

Theorem A: Let P ( z ) 

a jz

j

be a polynomial of degree n such that

j0

a n  a n  1  ......  a 1  a 0  0 .

Then all the zeros of P(z) lie in z  1 . In the literature several generalizations and extensions of this result are available []. Recently Gulzar et al [1,2] proved the following results: n

Theorem B: Let P ( z ) 

a jz

j

be a polynomial of degree n with

j0

Re( a j )   j , Im( a j )   j , j  0 ,1, 2 ,......, n

such that for some  , 0    n  1 and for some

k  1, o    1 ,

k

n

 

n 1

 ......  

and L  



 1

 

 1



 2

 ......   1  

0

 

0

.

Then all the zeros of P(z) lie in n

z 

( k  1 )

k n

n

 

 (1   ) 

 L  2  j0

an

j

.

an n

Theorem C: Let P ( z ) 

a jz

j

be a polynomial of degree n with

j0

Re( a j )   j , Im( a j )   j , j  0 ,1, 2 ,......, n

such that for some  , 0    n  1 and for some

k  1, o    1 ,

k

n



n 1

 ......  

 1

 

and L  



 1

 

 1



 2

 ......   1  

0

 

0

.

Then the number f zeros of P(z) in z   , 0    1 does not exceed

www.ijceronline.com

Open Access Journal

Page 18


Location of Regions Containing all or Some Zeros of a Polynomial n

a n  ( k  1)  1 1

log

 k

n

n



 L  (1   ) 

 2 

j

j0

log

.

a0

II. MAIN RESULTS In this paper we prove the following generalizations of Theorems B and C: n

Theorem 1: Let P ( z ) 

a jz

j

be a polynomial of degree n with

j0

Re( a j )   j , Im( a j )   j , j  0 ,1, 2 ,......, n

such that for some  , 0    n  1 and for some

k 1 , k 2  1, o    1 ,

k 1

 k 2

n

n 1

 ......  

and L  



 1

 

 1



 2

 ......   1  

 

0

0

.

Then all the zeros of P(z) lie in n

z 

( k 1  1 )

n

k 1

( k 2  1 )

an

1

n

 ( k 2  1) 

n 1

 

 L   (



)  2 

j

j0

an

.

an

n

Theorem 2: Let P ( z ) 

a jz

j

be a polynomial of degree n with

j0

Re( a j )   j , Im( a j )   j , j  0 ,1, 2 ,......, n

such that for some  , 0    n  1 and for some

k 1 , k 2  1, o    1 ,

k 1

n

 k 2

n 1

 ......  

 

 ......   1  

0

 1

and L  



 1

 

 1



 2

 

0

.

Then the number of zeros of P(z) in z   , 0    1 does not exceed 1 log

1

1

log

a0

n

[ a n  ( k 1  1) 

n

 k 1

n

 2 ( k 2  1) 

n 1

 

 L   (

 

)  2 

j

.

j0

Remark 1: Taking k 2  1 , Theorem 1 reduces to Theorem B and Theorem 2 reduces to Theorem C. For different values of the parameters in Theorems 1 and 2 , we get many interesting results. For example taking   1 , Theorem 1 gives the following result: n

Corollary 1: Let P ( z ) 

a jz

j

be a polynomial of degree n with

j0

Re( a j )   j , Im( a j )   j , j  0 ,1, 2 ,......, n

such that for some  , 0    n  1 and for some

k 1 , k 2  1, ,

k 1

n

 k 2

n 1

 ......  

and L  



 1

 

 1



 2

 ......   1  

0

 

0

.

Then all the zeros of P(z) lie in

www.ijceronline.com

Open Access Journal

Page 19


Location of Regions Containing all or Some Zeros of a Polynomial n

k 1

( k 1  1 )

z 

 ( k 2  1 )( 

n

n 1

 

n 1

) L 

 2 

j

j0

n

an

.

an

Taking   1 , Theorem 2 gives the following result: n

Corollary 2: Let P ( z ) 

j

a jz

be a polynomial of degree n with

j0

Re( a j )   j , Im( a j )   j , j  0 ,1, 2 ,......, n

such that for some  , 0    n  1 and for some

k 1 , k 2  1, ,

k 1

 k 2

n

 ......  

n 1

 1



and L  



 1

 



 1

 ......   1  

 2

 

0

0

.

Then the number f zeros of P(z) in z   , 0    1 does not exceed 1 log

1

1

log

a0

n

[ a n  ( k 1  1) 

 k 1

n

n

 2 ( k 2  1) 

 L 

n 1

 2 

j

].

j0

III. LEMMA For the proof of Theorem 2, we need the following result: Lemma: Let f (z) be analytic for z  1 , f ( 0 )  0 and f ( z )  M for z  1 . Then the number of zeros of 1

f(z) in z   , 0    1 does not exceed

log

M

log

1

.

f (0 )

(for reference see [4] ). 3. Proofs of Theorems Proof of Theorem 1: Consider the polynomial F ( z )  (1  z ) P ( z )

 (1  z )( a n z  anz

n 1

n

 a n 1 z

n 1

 ( a n  a n 1 ) z

 ......  a 1 z  a 0 ) n

 ......  ( a   1  a  ) z

 1

 ( a   a  1 ) z

 ......  ( a 1  a 0 ) z  a 0  an z

n 1

 ( k 1  1 ) n z

 ( k 2  1 )  (



n 1

 1

z

)z

n 1

n

 ( k 1

 (

n2

n

 k 2



n3

)z

n 1

n2

)z

 ( k 2  1 )

n

 ......  ( 

 ......  (  1   0 ) z  

 i {( 

0

 1

z

 

 

n

n 1

n 1

n

)z

 ( k 2

)z n

 1



n 1

)z

n2

 (  1 ) 

z

n 1

 1

 ......

 ( 1   0 )z   0}

For z  1 so that

1 z

j

 1 ,  j  1 , 2 ,......, n , we have, by using the hypothesis

F ( z )  a n z  ( k 1  1 )

 (

n2

n



 ( k 2  1 )

n3

) z.

 ......   1  

www.ijceronline.com

0

n2

n 1

z

n

 [ k 1

 .....  

z  

0

{

n

 1

n

 

 

n 1

 k 2

z

z n

n 1

 1

z

n

 k2 1 

  1

z

n 1

 1

z

 

n 1

 k 2



 1

n 1

z



 ......   1   0 z   0 ]

Open Access Journal

Page 20

n2

.z

n 1


Location of Regions Containing all or Some Zeros of a Polynomial n

 z [ a n z  ( k 1  1 )



n2

z

n3

1 

1   0

0

n

 



  1

 k 2

n   1

n

( k 2  1) 

n 1

n   1

z

n 1

k 2

 n 1   n  2

n2

z

 z



n 1

z

(1   ) 

  n   n 1 

 ( k 2  1) 

n

n

 1

n

 ......

z

}]

n

z

n 1

0

z

0

 z [ a n z  ( k 1  1 )

n 1

n 1

 k 2

 

 1

z

z

z

 { k 1

n 1

 ...... 

2

 ...... 

 ( k 2  1 )

n

 

n2

n2

n 1

 { k 1

n3

 .....  



 ......   1  

0

 

0

n

 k 2  1

n 1

 

 ( k 2  1) 

n 1

 (1   ) 

  n   n  1   n  1   n  2  ......

  1   0   0 }] n

 z [ a n z  ( k 1  1 )  k 2

n 1



 



 1

n

 ( k 2  1) 



n2

n2



n3

 ......   1  

0

n 1

 { k 1

 .....  

 

0

n

 k 2

 1

 

n 1

 ( k 2  1) 

 (1   ) 

n 1

  n   n  1   n  1   n  2  ......

  1   0   0 }] n

 z [ a n z  ( k 1  1 )

n

 ( k 2  1 )

n 1

 { k 1

n

 ( k 2  1) 

n 1

 

 L

n

 (

   )  2   j }] j0

 0

if n

a n z  ( k 1  1 )

n

 ( k 2  1 )

n 1

 k 1

n

 ( k 2  1) 

n 1

 

 L   (



)  2 

j

j0

i.e. if n

z 

( k 1  1 )

n

( k 2  1 )

an

k 1 1

n

 ( k 2  1) 

n 1

 

 L   (



)  2 

j

j0

an

.

an

This shows that those zeros of F(z) whose modulus is greater than 1 lie in n

z 

( k 1  1 )

n

( k 2  1 )

an

k 1 1

n

 ( k 2  1) 

n 1

 

 L   (



)  2  j0

an

j

.

an

Since the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality and since the zeros of P(z) are also the zeros of F(z) , it follows that all the zeros of P(z) lie in n

z 

( k 1  1 ) an

www.ijceronline.com

n

( k 2  1 )

k 1 1

n

 ( k 2  1) 

n 1

 

 L   (



)  2  j0

an

j

.

an

Open Access Journal

Page 21


Location of Regions Containing all or Some Zeros of a Polynomial That proves Theorem 1. Proof of Theorem 2: Consider the polynomial F ( z )  (1  z ) P ( z )

 (1  z )( a n z  anz

n 1

n

n 1

 a n 1 z

 ( a n  a n 1 ) z

 ......  a 1 z  a 0 ) n

 ......  ( a   1  a  ) z

 1

 ( a   a  1 ) z

 ......  ( a 1  a 0 ) z  a 0 n 1

 an z

 ( k 1  1 ) n z

 ( k 2  1 )  (



n 1

 1

z

n 1

)z

n

 ( k 1

 (

n2

 k 2

n



n3

)z

n 1

n2

 ( k 2  1 )

n

)z

 ......  ( 

 ......  (  1   0 ) z  

 i {( 

0

 

n 1

n 1



 ( k 2

n

z

 

 1

n

n 1

)z

)z

 1

n 1



n2

 (  1 ) 

)z

z

n 1

 1

 ......

n

 ( 1   0 )z   0}

For z  1 , we have, by using the hypothesis F ( z )  a n  ( k 1  1) 

 

n2



 k 1

n

n3

n

 k 2

 ......  

 1

n 1

 ( k 2  1) 

 

n 1

 (1   ) 

 k 2

 



 ( k 2  1) 

n2

 1

n 1

 ......   1  

0

 

0

  n   n  1   n  1   n  2  .......   1   0   0  a n  ( k 1  1)  

n2



n3

  n 1  

n 1

 ......  

n

 k 1

 1

 

n

 k 2

n 1

 ( k 2  1) 

 (1   ) 

 

n 1



 k 2

 1

n 1



n2

 ( k 2  1) 

 ......   1  

0

 

0

n 1

 n

  n  2  .......   1   0   0

 a n  ( k 1  1) 

n

 k 1

n

 2 ( k 2  1) 

n 1

) 

 L   (

 

)

n

 2 

j

j0

Since F(z) is analytic for z  1 , F ( 0 )  a 0  0 , it follows by the Lemma that the number of zeros of F(z) in z   , 0    1 des not exceed 1 log

1

log

1 a0

n

[ a n  ( k 1  1) 

n

 k 1

n

 2 ( k 2  1) 

n 1

 

 L   (

 

)  2 

j

.

j0

Since the zeros of P(z) are also the zeros of F(z) , it follows that the number of zeros of P(z) in z   , 0    1 des not exceed 1 log

1

log

1 a0

n

[ a

n

 ( k 1  1) 

n

 k 1

n

 2(k

2

 1) 

n 1

)  

 L   (

 

)  2 

j

.

j0

That completes the proof of Theorem 2.

REFERENCES [1]. [2]. [3]. [4].

M. H. Gulzar, B.A. Zargar and A. W. Manzoor, On the Zeros of a Family of Polynmials, Int. Journal Of Engineering Technology and Management Vol. 4, Issue 1 (Jan-Feb 2017), 07-10. M. H. Gulzar, B.A. Zargar and A. W. Manzoor, On the Zeros of a Polynomial inside the Unit Disc, Int. Journal of Engineering Research and Development, Vol.13, Issue 2 (Feb.2017), 17-22. M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer. Math.Soc.(1966). E. C. Titchmarsh, Theory of Functions, 2nd Edition Oxford University Press, 1949.

www.ijceronline.com

Open Access Journal

Page 22


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.