International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISSN: 2319-6491 Volume 3, Issue 8 (April 2014) PP: 01-16
Periodic Solutions for Non-Linear Systems of Integral Equations Prof. Dr. Raad. N. Butris1, Baybeen S. Fars2 1, 2
Department of Mathematics, Faculty of Science, University of Zakho
Abstract: The aim of this paper is to study the existence and approximation of periodic solutions for non-linear systems of integral equations, by using the numerical-analytic method which were introduced by Samoilenko[ 10, 11]. The study of such nonlinear integral equations is more general and leads us to improve and extend the results of Butris [2]. Keyword And Phrases: Numerical-analytic methods, existence and approximation of periodic solutions, nonlinear system, integral equations.
I. Introduction Integral equation has been arisen in many mathematical and engineering field, so that solving this kind of problems are more efficient and useful in many research branches. Analytical solution of this kind of equation is not accessible in general form of equation and we can only get an exact solution only in special cases. But in industrial problems we have not spatial cases so that we try to solve this kind of equations numerically in general format. Many numerical schemes are employed to give an approximate solution with sufficient accuracy [3,4,6, ,12,13,14,15]. Many author create and develop numerical-analytic methods [1, 2,5, 7,8,9] and schemes to investigate periodic solution of integral equations describing many applications in mathematical and engineering field. Consider the following system of non-linear integral equations which has the form: ฤ?‘ฤ
ฤ?‘ฤฝ ฤ?‘ฤ, ฤ?‘ฤฝ0 , ฤ?‘ล0 = ฤ??ลก0 ฤ?‘ฤ +
ฤ?‘“1 (ฤ?‘ , ฤ?‘ฤฝ ฤ?‘ , ฤ?‘ฤฝ0 , ฤ?‘ล0 , ฤ?‘ล ฤ?‘ , ฤ?‘ฤฝ0 , ฤ?‘ล0 , 0
ฤ?‘
, ,
ฤ?‘? ฤ?‘ ฤ?‘Ž ฤ?‘
ฤ??ล1 ฤ?‘ , ฤ?œ? ฤ?‘”1 (ฤ?œ?, ฤ?‘ฤฝ ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 , ฤ?‘ล ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 ) ฤ?‘‘ฤ?œ?, รขˆ’รขˆž
ฤ?‘”1 (ฤ?œ?, ฤ?‘ฤฝ ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 , ฤ?‘ล ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 )ฤ?‘‘ฤ?œ?)ฤ?‘‘ฤ?‘
รข‹ลป( I1 )
ฤ?‘ฤ
ฤ?‘ล ฤ?‘ฤ, ฤ?‘ฤฝ0 , ฤ?‘ล0 = ฤ??ล0 ฤ?‘ฤ +
ฤ?‘“2 (ฤ?‘ , ฤ?‘ฤฝ ฤ?‘ , ฤ?‘ฤฝ0 , ฤ?‘ล0 , ฤ?‘ล ฤ?‘ , ฤ?‘ฤฝ0 , ฤ?‘ล0 , 0
ฤ?‘
, ฤ?‘? ฤ?‘
,
ฤ??ล2 ฤ?‘ , ฤ?œ? ฤ?‘”2 (ฤ?œ?, ฤ?‘ฤฝ ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 , ฤ?‘ล ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 ) ฤ?‘‘ฤ?œ?, รขˆ’รขˆž
ฤ?‘”2 (ฤ?œ?, ฤ?‘ฤฝ ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 , ฤ?‘ล ฤ?œ?, ฤ?‘ฤฝ0 , ฤ?‘ล0 )ฤ?‘‘ฤ?œ?)ฤ?‘‘ฤ?‘
รข‹ลป ( I2 )
ฤ?‘Ž ฤ?‘
where ฤ?‘ฤฝ รขˆˆ ฤ??ห รขŠ‚ ฤ?‘…ฤ?‘› , ฤ??ห is closed and bounded domain subset of Euclidean space ฤ?‘…ฤ?‘› . Let the vector functions ฤ?‘“1 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ยง, ฤ?‘ยค = ฤ?‘“11 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ยง, ฤ?‘ยค , ฤ?‘“12 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ยง, ฤ?‘ยค , รข€ล , ฤ?‘“1ฤ?‘› ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ยง, ฤ?‘ยค , ฤ?‘“2 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ห, ฤ?‘ล = ฤ?‘“21 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ห, ฤ?‘ล , ฤ?‘“22 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ห, ฤ?‘ล , รข€ล , ฤ?‘“2ฤ?‘› ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ห, ฤ?‘ล , ฤ?‘”1 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล = ฤ?‘”11 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล , ฤ?‘”12 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล , รข€ล , ฤ?‘”1ฤ?‘› ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล , ฤ?‘”2 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล = ฤ?‘”21 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล , ฤ?‘”22 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล , รข€ล , ฤ?‘”2ฤ?‘› ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล , ฤ??ลก0 ฤ?‘ฤ = (ฤ??ลก01 ฤ?‘ฤ , ฤ??ลก02 ฤ?‘ฤ , รข€ล , ฤ??ลก0ฤ?‘› ฤ?‘ฤ ), and ฤ??ล0 ฤ?‘ฤ = (ฤ??ล01 ฤ?‘ฤ , ฤ??ล02 ฤ?‘ฤ , รข‹ลป , ฤ??ล0ฤ?‘› ฤ?‘ฤ ) are defined and continuous on the domains: ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ยง, ฤ?‘ยค รขˆˆ ฤ?‘…1 ฤ— ฤ??ห ฤ— ฤ??ห1 ฤ— ฤ??ห2 = รขˆ’รขˆž, รขˆž ฤ— ฤ??ห ฤ— ฤ??ห1 ฤ— ฤ??ห2 ฤ— ฤ??ห3 รข‹ลป 1.1 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ห, ฤ?‘ล รขˆˆ ฤ?‘…1 ฤ— ฤ??ห ฤ— ฤ??ห1 ฤ— ฤ??ห2 = รขˆ’รขˆž, รขˆž ฤ— ฤ??ห ฤ— ฤ??ห1 ฤ— ฤ??ห2 ฤ— ฤ??ห3 and periodic in t of period T, Also a(t) and b(t) are continuous and periodic in t of period ฤ?‘‡. Suppose that the functions ฤ?‘“1 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ยง, ฤ?‘ยค , ฤ?‘“2 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล, ฤ?‘ห, ฤ?‘ล , ฤ?‘”1 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล and ฤ?‘”2 ฤ?‘ฤ, ฤ?‘ฤฝ, ฤ?‘ล satisfies the following inequalities: www.ijeijournal.com
Page | 1
Periodic Solutions for Non-Linear Systems of Integral Equations ฤ?&#x2018;&#x201C;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล, ฤ?&#x2018;ยง, ฤ?&#x2018;ยค รข&#x2030;ยค ฤ?&#x2018;&#x20AC;1 , ฤ?&#x2018;&#x201C;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล, ฤ?&#x2018;ห, ฤ?&#x2018;ล รข&#x2030;ยค ฤ?&#x2018;&#x20AC;2 , ฤ?&#x2018;&#x20AC;1 , ฤ?&#x2018;&#x20AC;2 > 0 รข&#x2039;ลป 1.2 ฤ?&#x2018;&#x201D;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล รข&#x2030;ยค ฤ?&#x2018; 1 , ฤ?&#x2018;&#x201D;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล รข&#x2030;ยค ฤ?&#x2018; 1 , ฤ?&#x2018; 1 , ฤ?&#x2018; 2 > 0 ฤ?&#x2018;&#x201C;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 , ฤ?&#x2018;ยง1 , ฤ?&#x2018;ยค1 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201C;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 , ฤ?&#x2018;ยง2 , ฤ?&#x2018;ยค2 รข&#x2030;ยค ฤ??ลพ1 ฤ?&#x2018;ฤฝ1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ2 + ฤ??ลพ2 ฤ?&#x2018;ล1 รข&#x2C6;&#x2019;ฤ?&#x2018;ล2 + +ฤ??ลพ3 ฤ?&#x2018;ยง1 รข&#x2C6;&#x2019;ฤ?&#x2018;ยง2 + ฤ??ลพ4 ฤ?&#x2018;ยค1 รข&#x2C6;&#x2019;ฤ?&#x2018;ยค2 รข&#x2039;ลป 1.3 ฤ?&#x2018;&#x201C;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 , ฤ?&#x2018;ห1 , ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201C;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 , ฤ?&#x2018;ห2 , ฤ?&#x2018;ล2 รข&#x2030;ยค ฤ??ลผ1 ฤ?&#x2018;ฤฝ1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ2 + ฤ??ลผ2 ฤ?&#x2018;ล1 รข&#x2C6;&#x2019;ฤ?&#x2018;ล2 + +ฤ??ลผ3 ฤ?&#x2018;ห1 รข&#x2C6;&#x2019;ฤ?&#x2018;ห2 + ฤ??ลผ4 ฤ?&#x2018;ล1 รข&#x2C6;&#x2019;ฤ?&#x2018;ล2 , รข&#x2039;ลป 1.4 ฤ?&#x2018;&#x201D;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201D;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 รข&#x2030;ยค ฤ?&#x2018;&#x2026;1 ฤ?&#x2018;ฤฝ1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ2 + ฤ?&#x2018;&#x2026;2 ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; ฤ?&#x2018;ล2 , รข&#x2039;ลป 1.5 ฤ?&#x2018;&#x201D;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201D;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 รข&#x2030;ยค ฤ??ลฅ1 ฤ?&#x2018;ฤฝ1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ2 + ฤ??ลฅ2 ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; ฤ?&#x2018;ล2 , รข&#x2039;ลป 1.6 for all ฤ?&#x2018;ฤ รข&#x2C6;&#x2C6; ฤ?&#x2018;&#x2026;1 , ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ฤฝ2 รข&#x2C6;&#x2C6; ฤ??ห , ฤ?&#x2018;ล , ฤ?&#x2018;ล1 , ฤ?&#x2018;ล2 รข&#x2C6;&#x2C6; ฤ??ห1 , ฤ?&#x2018;ยง, ฤ?&#x2018;ยง1 , ฤ?&#x2018;ยง2 , ฤ?&#x2018;ห, ฤ?&#x2018;ห1 , ฤ?&#x2018;ห2 รข&#x2C6;&#x2C6; ฤ??ห2 , and ฤ?&#x2018;ยค, ฤ?&#x2018;ยค1, ฤ?&#x2018;ยค2 , ฤ?&#x2018;ล, ฤ?&#x2018;ล1 , ฤ?&#x2018;ล2 รข&#x2C6;&#x2C6; ฤ??ห3 , where ฤ?&#x2018;&#x20AC;1 = ฤ?&#x2018;&#x20AC;11 , ฤ?&#x2018;&#x20AC;12 , รข&#x20AC;ล , ฤ?&#x2018;&#x20AC;1ฤ?&#x2018;&#x203A; , ฤ?&#x2018;&#x20AC;2 = ฤ?&#x2018;&#x20AC;21 , ฤ?&#x2018;&#x20AC;22 , รข&#x20AC;ล , ฤ?&#x2018;&#x20AC;2ฤ?&#x2018;&#x203A; , ฤ?&#x2018; 1 = (ฤ?&#x2018; 11 , ฤ?&#x2018; 12 , รข&#x20AC;ล , ฤ?&#x2018; 1ฤ?&#x2018;&#x203A; ) and ฤ?&#x2018; 2 = ฤ?&#x2018; 21 , ฤ?&#x2018; 22 , รข&#x20AC;ล , ฤ?&#x2018; 2ฤ?&#x2018;&#x203A; are positive constant vectors and ฤ??ลพ1 = (ฤ??ลพ1 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลพ2 = (ฤ??ลพ2 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลพ3 = (ฤ??ลพ3 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลพ4 = (ฤ??ลพ4 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลผ1 = (ฤ??ลผ1 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลผ2 = (ฤ??ลผ2 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลผ3 = ( ฤ??ลผ3 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลผ4 = (ฤ??ลผ4 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ?&#x2018;&#x2026;1 = (ฤ?&#x2018;&#x2026;1 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ?&#x2018;&#x2026;2 = (ฤ?&#x2018;&#x2026;2 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), ฤ??ลฅ1 = (ฤ??ลฅ1 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ), and ฤ??ลฅ2 = (ฤ??ลฅ2 ฤ?&#x2018;&#x2013;ฤ?&#x2018;&#x2014; ) are positive constant matrices. Also ฤ??ล1 ฤ?&#x2018;ฤ, ฤ?&#x2018; and ฤ??ล2 ฤ?&#x2018;ฤ, ฤ?&#x2018; are (nฤ&#x2014;n) continuous positive matrix and periodic in t, s of period T in the domain ฤ?&#x2018;&#x2026;1 ฤ&#x2014; ฤ?&#x2018;&#x2026;1 and satisfy the following conditions: ฤ??ล1 ฤ?&#x2018;ฤ, ฤ?&#x2018; รข&#x2030;ยค ฤ?&#x203A;ลพ ฤ?&#x2018;&#x2019; รข&#x2C6;&#x2019;ฤ?&#x153;&#x2020; 1 ฤ?&#x2018;ฤรข&#x2C6;&#x2019;ฤ?&#x2018; , ฤ?&#x203A;ลพ, ฤ?&#x153;&#x2020;1 > 0 รข&#x2039;ลป 1.7 and ฤ??ล2 (ฤ?&#x2018;ฤ, ฤ?&#x2018; ) รข&#x2030;ยค ฤ?&#x203A;ลผ ฤ?&#x2018;&#x2019; รข&#x2C6;&#x2019;ฤ?&#x153;&#x2020; 2 ฤ?&#x2018;ฤรข&#x2C6;&#x2019;ฤ?&#x2018; , ฤ?&#x203A;ลผ, ฤ?&#x153;&#x2020;2 > 0 รข&#x2039;ลป 1.8 where รข&#x2C6;&#x2019;รข&#x2C6;&#x17E; < 0 รข&#x2030;ยค ฤ?&#x2018; รข&#x2030;ยค ฤ?&#x2018;ฤ รข&#x2030;ยค ฤ?&#x2018;&#x2021; < รข&#x2C6;&#x17E; , ฤ?&#x2018;&#x2013;, ฤ?&#x2018;&#x2014; = 1,2, รข&#x2039;ลป , ฤ?&#x2018;&#x203A;, and ฤ?&#x2018;&#x2022; = ฤ?&#x2018;&#x161;ฤ?&#x2018;&#x17D;ฤ?&#x2018;ฤฝฤ?&#x2018;ฤรข&#x2C6;&#x2C6; 0,ฤ?&#x2018;&#x2021; ฤ?&#x2018;? ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x17D; ฤ?&#x2018;ฤ , . = ฤ?&#x2018;&#x161;ฤ?&#x2018;&#x17D;ฤ?&#x2018;ฤฝฤ?&#x2018;ฤรข&#x2C6;&#x2C6; 0,ฤ?&#x2018;&#x2021; .
Now define a non-empty sets as follows: ฤ?&#x2018;&#x2021; ฤ??หฤ?&#x2018;&#x201C;1 = ฤ??ห รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC; 1 , 2 ฤ?&#x2018;&#x2021; ฤ??ห1ฤ?&#x2018;&#x201C;2 = ฤ??ห1 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC; 2 , 2 ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลพ ฤ??ห2ฤ?&#x2018;&#x201C;1 = ฤ??ห2 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2026;1 ฤ?&#x2018;&#x20AC;1 + ฤ?&#x2018;&#x2026;2 ฤ?&#x2018;&#x20AC;2 , 2 ฤ?&#x153;&#x2020;1 รข&#x2039;ลป 1.9 ฤ?&#x2018;&#x2021; ฤ??ห3ฤ?&#x2018;&#x201C;1 = ฤ??ห3 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2022; ฤ?&#x2018;&#x2026;1 ฤ?&#x2018;&#x20AC;1 + ฤ?&#x2018;&#x2026;2 ฤ?&#x2018;&#x20AC;2 , 2 ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลผ ฤ??ห2ฤ?&#x2018;&#x201C;2 = ฤ??ห2 รข&#x2C6;&#x2019; ฤ??ลฅ1 ฤ?&#x2018;&#x20AC;1 + ฤ??ลฅ2 ฤ?&#x2018;&#x20AC;2 , 2 ฤ?&#x153;&#x2020;2 ฤ?&#x2018;&#x2021; ฤ??ห3ฤ?&#x2018;&#x201C;2 = ฤ??ห3 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2022; ฤ??ลฅ1 ฤ?&#x2018;&#x20AC;1 + ฤ??ลฅ2 ฤ?&#x2018;&#x20AC;2 . 2 Forever, we suppose that the greatest eigen-value ฤ?&#x2018;&#x17E;ฤ?&#x2018;&#x161;ฤ?&#x2018;&#x17D;ฤ?&#x2018;ฤฝ of the following matrix: ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลพ ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลพ [ฤ??ลพ + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] [ฤ??ลพ + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] 2 1 ฤ?&#x153;&#x2020;1 2 2 ฤ?&#x153;&#x2020;1 Q0 = ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลผ ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลผ [ฤ??ลผ1 + ฤ??ลฅ1 (ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] [ฤ??ลผ2 + ฤ??ลฅ2 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] 2 ฤ?&#x153;&#x2020;2 2 ฤ?&#x153;&#x2020;2 is less than unity, i.e. ฤ&#x2020;1 + ฤ?&#x153;&#x2018;1 2 + 4(ฤ?&#x153;&#x2018;2 รข&#x2C6;&#x2019; ฤ?&#x153;&#x2018;3 ) ฤ?&#x2018;&#x17E;ฤ?&#x2018;&#x161;ฤ?&#x2018;&#x17D;ฤ?&#x2018;ฤฝ ฤ?&#x2018;&#x201E;0 = <1 , 2 ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลพ ฤ?&#x2018;&#x2021; ฤ?&#x203A;ลผ where ฤ&#x2020;1 = [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] + [ฤ??ลผ2 + ฤ??ลฅ2 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )], 2
ฤ?&#x2018;&#x2021;
ฤ?&#x203A;ลพ
2 ฤ?&#x2018;&#x2021; 2
ฤ?&#x153;&#x2020;1
2
ฤ?&#x2018;&#x2021;
ฤ?&#x203A;ลผ
ฤ?&#x153;&#x2020;1 ฤ?&#x203A;ลพ
2 ฤ?&#x2018;&#x2021;
ฤ?&#x153;&#x2020;2 ฤ?&#x203A;ลผ
ฤ?&#x153;&#x2020;1
2
ฤ?&#x153;&#x2020;2
รข&#x2039;ลป 1.10
รข&#x2039;ลป 1.11
ฤ?&#x153;&#x2020;2
ฤ&#x2020;2 = ( [ฤ??ลพ2 + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )])( [ฤ??ลผ1 + ฤ??ลฅ1 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )]) and ฤ?&#x153;&#x2018;3 = ( [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )])( [ฤ??ลผ2 + ฤ??ลฅ2 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )]). By using lemma 3.1[10],we can state and prove the following lemma: Lemma 1.1. Let ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล, ฤ?&#x2018;ยง, ฤ?&#x2018;ยค) and ฤ?&#x2018;&#x201C;2 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล, ฤ?&#x2018;ห, ฤ?&#x2018;ล) be a vector functions which are defined and continuous in the interval 0, ฤ?&#x2018;&#x2021; , then the inequality: www.ijeijournal.com
Page | 2
Periodic Solutions for Non-Linear Systems of Integral Equations ฤ??ลผ1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x20AC;1 ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ รข&#x2030;ยค ฤ??ลผ2 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) ฤ?&#x2018;&#x20AC;2 ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ ฤ?&#x2018;&#x2021; satisfies for 0 รข&#x2030;ยค ฤ?&#x2018;ฤ รข&#x2030;ยค ฤ?&#x2018;&#x2021; and ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ รข&#x2030;ยค ,
รข&#x2039;ลป 1.12
2
ฤ?&#x2018;ฤ
where ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ = 2ฤ?&#x2018;ฤ(1 รข&#x2C6;&#x2019; ) for all ฤ?&#x2018;ฤ รข&#x2C6;&#x2C6; 0, ฤ?&#x2018;&#x2021; , ฤ?&#x2018;ฤ
ฤ??ลผ1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 =
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;
[ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ??ล1 ฤ?&#x2018; , ฤ?&#x153;? ฤ?&#x2018;&#x201D;1 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) ฤ?&#x2018;&#x2018;ฤ?&#x153;?, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E; ฤ?&#x2018;? ฤ?&#x2018;
, ฤ?&#x2018;&#x17D; ฤ?&#x2018; ฤ?&#x2018;
,
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0 ฤ?&#x2018;? ฤ?&#x2018;
ฤ??ล1 ฤ?&#x2018; , ฤ?&#x153;? ฤ?&#x2018;&#x201D;1 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) ฤ?&#x2018;&#x2018;ฤ?&#x153;?, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E; ฤ?&#x2018;
ฤ?&#x2018;ฤ
ฤ??ลผ2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 =
1 ฤ?&#x2018;&#x201D;1 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 )ฤ?&#x2018;&#x2018;ฤ?&#x153;?) รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2021;
[ฤ?&#x2018;&#x201C;2 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ?&#x2018;&#x201D;1 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 )ฤ?&#x2018;&#x2018;ฤ?&#x153;? )ฤ?&#x2018;&#x2018;ฤ?&#x2018; ]ฤ?&#x2018;&#x2018;ฤ?&#x2018; ฤ?&#x2018;&#x17D; ฤ?&#x2018;
ฤ??ล2 ฤ?&#x2018; , ฤ?&#x153;? ฤ?&#x2018;&#x201D;2 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) ฤ?&#x2018;&#x2018;ฤ?&#x153;?, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E; ฤ?&#x2018;? ฤ?&#x2018;
, ฤ?&#x2018;&#x17D; ฤ?&#x2018; ฤ?&#x2018;
,
1 ฤ?&#x2018;&#x201D;2 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 )ฤ?&#x2018;&#x2018;ฤ?&#x153;?) รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;2 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0 ฤ?&#x2018;? ฤ?&#x2018;
ฤ??ล2 ฤ?&#x2018; , ฤ?&#x153;? ฤ?&#x2018;&#x201D;2 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) ฤ?&#x2018;&#x2018;ฤ?&#x153;?, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
ฤ?&#x2018;&#x201D;2 (ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 )ฤ?&#x2018;&#x2018;ฤ?&#x153;?)ฤ?&#x2018;&#x2018;ฤ?&#x2018; ]ฤ?&#x2018;&#x2018;ฤ?&#x2018; ฤ?&#x2018;&#x17D; ฤ?&#x2018;
Proof. ฤ?&#x2018;ฤ รข&#x2030;ยค (1 รข&#x2C6;&#x2019; ) ฤ?&#x2018;&#x2021;
ฤ??ลผ1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
ฤ?&#x2018;ฤ
ฤ?&#x2018;
ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ??ล1 ฤ?&#x2018; , ฤ?&#x153;? ฤ?&#x2018;&#x201D;1 ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x153;?, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
ฤ?&#x2018;?(ฤ?&#x2018; )
,
ฤ?&#x2018;&#x201D;1 ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x153;?) ฤ?&#x2018;&#x2018;ฤ?&#x2018; + ฤ?&#x2018;&#x17D;(ฤ?&#x2018; )
ฤ?&#x2018;ฤ + ฤ?&#x2018;&#x2021; ฤ?&#x2018;ฤ รข&#x2030;ยค (1 รข&#x2C6;&#x2019; ) ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ฤ
ฤ?&#x2018;ฤ
ฤ?&#x2018;?(ฤ?&#x2018; )
ฤ?&#x2018;
ฤ?&#x2018;&#x2021;
ฤ??ล1 ฤ?&#x2018; , ฤ?&#x153;? ฤ?&#x2018;&#x201D;1 ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x153;?, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
ฤ?&#x2018;&#x201D;1 ฤ?&#x153;?, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x153;?) ฤ?&#x2018;&#x2018;ฤ?&#x2018; ฤ?&#x2018;&#x17D;(ฤ?&#x2018; )
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;ฤ ฤ?&#x2018;&#x20AC;1 ฤ?&#x2018;&#x2018;ฤ?&#x2018; + ฤ?&#x2018;&#x20AC;1 ฤ?&#x2018;&#x2018;ฤ?&#x2018; ฤ?&#x2018;&#x2021; 0 ฤ?&#x2018;ฤ ฤ?&#x2018;ฤ ฤ?&#x2018;ฤ รข&#x2030;ยค ฤ?&#x2018;&#x20AC;1 [(1 รข&#x2C6;&#x2019; )ฤ?&#x2018;ฤ + (ฤ?&#x2018;&#x2021; รข&#x2C6;&#x2019; ฤ?&#x2018;ฤ)] ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; so that: ฤ??ลผ1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x20AC;1 ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ And similarly, we get also
รข&#x2039;ลป 1.13
ฤ??ลผ2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x20AC;2 ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ รข&#x2039;ลป 1.14 From ( 1.13) and ( 1.14), then the inequality ( 1.12) satisfies for all ฤ?&#x2018;&#x2021; 0 รข&#x2030;ยค ฤ?&#x2018;ฤ รข&#x2030;ยค ฤ?&#x2018;&#x2021; and ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ รข&#x2030;ยค . รข&#x2C6;&#x17D; 2
II. Approximation Solution Of (I1) And (I2) In this section, we study the approximate periodic solution of (I1) and (I2) by proving the following theorem: Theorem 2.1. If the system (I1) and (I2) satisfies the inequalities ( 1.2), ( 1.3), 1.4), (1.5),(1.6) and conditions(1.7),(1.8) has periodic solutions ฤ?&#x2018;ฤฝ = ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 and ฤ?&#x2018;ล = ฤ?&#x2018;ล(ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ), then the sequence of functions: ฤ?&#x2018;ฤ
ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; +1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 = ฤ??ลก0 ฤ?&#x2018;ฤ +
[ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018; , ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
www.ijeijournal.com
Page | 3
Periodic Solutions for Non-Linear Systems of Integral Equations ๐
,
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
, ๐
, ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 ,
๐1 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ ๐
1 ๐, ๐ฅ0 , ๐ฆ0 )๐๐) โ ๐
๐
๐1 (๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
,
๐1 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐, ๐ฅ0 , ๐ฆ0 )๐๐)๐๐ ]๐๐
โฏ 2.1
๐ ๐
with ๐ฅ0 ๐ก, ๐ฅ0 , ๐ฆ0 = ๐น0 ๐ก = ๐ฅ0
,
for all m = 0, 1,2, โฏ
๐ก
๐ฆ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 = ๐บ0 ๐ก +
[๐2 (๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐
,
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
, ๐
๐2 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ ๐
, ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 ,
1 ๐, ๐ฅ0 , ๐ฆ0 )๐๐) โ ๐
๐
๐2 (๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
,
๐2 (๐, ๐ฅ๐ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐, ๐ฅ0 , ๐ฆ0 )๐๐)๐๐ ]๐๐
โฏ 2.2
๐ ๐
with ๐ฆ0 ๐ก, ๐ฅ0 , ๐ฆ0 = ๐บ0 ๐ก = ๐ฆ0 , for all m = 0, 1,2, โฏ periodic in t of period T, and uniformly converges as ๐ โ โ in the domain: ๐ก, ๐ฅ0 , ๐ฆ0 โ 0, ๐ ร ๐ท๐1 ร ๐ท1๐2 โฏ 2.3 to the limit functions ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0 defined in the domain ( 2.3) which are periodic in t of period T and satisfying the system of integral equations: ๐ก
๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐น0 ๐ก +
[๐1 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐
,
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
, ๐
, ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 ,
๐ ๐
1 ๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐) โ ๐
๐
๐1 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
,
๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐)๐๐ ]๐๐
โฏ 2.4
๐ ๐
and ๐ก
๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐บ0 ๐ก +
[๐2 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 , 0
www.ijeijournal.com
Page | 4
Periodic Solutions for Non-Linear Systems of Integral Equations ๐
,
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
1 ๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐) โ ๐
, ๐
, ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 , ,
๐
๐ถ0 =
2 ๐ 2
๐1 ๐2
๐2 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
provided that: ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 for all ๐ โฅ 0 , where
๐ ๐
๐
๐ ๐ ๐ ๐
๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐)๐๐ ]๐๐
โค ๐0 ๐ (๐ธ โ ๐0 )โ1 ๐ถ0
โฏ 2.5
โฏ 2.6
, ๐ธ is identity matrix.
Proof. Consider the sequence of functions ๐ฅ1 ๐ก, ๐ฅ0 , ๐ฆ0 , ๐ฅ2 ๐ก, ๐ฅ0 , ๐ฆ0 , โฏ, ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 , โฏ, and ๐ฆ1 ๐ก, ๐ฅ0 , ๐ฆ0 , ๐ฆ2 ๐ก, ๐ฅ0 , ๐ฆ0 , โฏ , ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 , โฏ, defined by the recurrences relations ( 2.1) and ( 2.2). Each of these functions of sequence defined and continuous in the domain ( 1.1) and periodic in ๐ก of period ๐. Now, by the lemma 1.1, and using the sequence of functions (2.1), when ๐ = 0, we get: By mathematical induction and lemma1.1 , we have the following inequality: ๐ ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ0 โค ๐ โฏ 2.13 2 1 i.e. ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท, for all ๐ก โ ๐ 1 , ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 , ๐ = 0,1,2, โฏ, and ๐ ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ0 โค ๐ โฏ 2.14 2 2 1 i.e. ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท, for all ๐ก โ ๐ , ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 , ๐ = 0,1,2, โฏ, Now, from ( 2.13), we get: ๐ ๐พ ๐ง๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ง0 (๐ก, ๐ฅ0 , ๐ฆ0 ) โค ( ) ๐ 1 ๐1 + ๐ 2 ๐2 โฏ 2.15 2 ๐1 and ๐ ๐ค๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ค0 (๐ก, ๐ฅ0 , ๐ฆ0 ) โค ๐ ๐ 1 ๐1 + ๐ 2 ๐2 โฏ 2.16 2 1 for all ๐ก โ ๐ , ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 , ๐ง0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท2๐1 and ๐ค0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท3๐1 , i.e. ๐ง๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท2 and ๐ค๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท3 , for all ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 , where ๐ก
๐ง๐ ๐ก, ๐ฅ0 , ๐ฆ0 =
๐บ1 ๐ก, ๐ ๐1 ๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ โโ
and ๐(๐ก)
๐ค๐ ๐ก, ๐ฅ0 , ๐ฆ0 =
๐1 ๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ ,
๐ = 0,1,2, โฏ ,
๐(๐ก)
Also from (4.2.14), we get: ๐ข๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ข0 (๐ก, ๐ฅ0 , ๐ฆ0 ) โค
๐ ๐ฟ ( ) ๐ป1 ๐1 + ๐ป2 ๐2 2 ๐2
โฏ 2.17
๐๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐0 (๐ก, ๐ฅ0 , ๐ฆ0 ) โค
๐ ๐ ๐ป1 ๐1 + ๐ป2 ๐2 2
โฏ 2.18
and
www.ijeijournal.com
Page | 5
Periodic Solutions for Non-Linear Systems of Integral Equations for all ๐ก โ ๐ 1 , ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 , ๐ข0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท2๐2 and ๐ฃ0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท3๐2 , i.e. ๐ข๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท2 and ๐ฃ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท3 , for all ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 , where ๐ก
๐ข๐ ๐ก, ๐ฅ0 , ๐ฆ0 =
๐บ2 ๐ก, ๐ ๐2 ๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ โโ
and ๐(๐ก)
๐ฃ๐ ๐ก, ๐ฅ0 , ๐ฆ0 =
๐2 ๐ , ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ ,
๐ = 0,1,2, โฏ ,
๐(๐ก) โ Next, we claim that two sequences ๐ฅ๐ (๐ก, ๐ฅ0 , ๐ฆ0 )}โ ๐ =0 , ๐ฆ๐ (๐ก, ๐ฅ0 , ๐ฆ0 )}๐ =0 are convergent uniformly to the limit functions ๐ฅ, ๐ฆ on the domain ( 2.3). By mathematical induction and lemma 1.1, we find that:
๐ฅ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0
โค
๐พ ๐พ + ๐๐พ4 )] ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ๐ โ1 ๐ก, ๐ฅ0 , ๐ฆ0 ๐1 3 ๐พ +๐ผ(๐ก)[๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ๐ โ1 ๐ก, ๐ฅ0 , ๐ฆ0 ๐1
โค ๐ผ(๐ก)[๐พ1 + ๐ 1 (
โฏ 2.19 and ๐ฆ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0
โค
๐ฟ ๐ฟ + ๐๐ฟ4 )] ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ๐ โ1 ๐ก, ๐ฅ0 , ๐ฆ0 + ๐2 3 ๐ฟ +๐ผ(๐ก)[๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ๐ โ1 ๐ก, ๐ฅ0 , ๐ฆ0 ๐2
โค ๐ผ(๐ก)[๐ฟ1 + ๐ป1 (
โฏ 2.20 We can write the inequalities ( 2.19) and ( 2.20) in a vector form: ๐ถ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 โค ๐ ๐ก ๐ถ๐ ๐ก, ๐ฅ0 , ๐ฆ0 where ๐ฅ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 ๐ถ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 = , ๐ฆ๐ +1 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 and ๐พ ๐พ ๐ผ(๐ก)[๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ผ(๐ก)[๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐1 ๐1 ๐ ๐ก = , ๐ฟ ๐ฟ ๐ผ(๐ก)[๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ผ(๐ก)[๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐2 ๐2 ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ๐ โ1 ๐ก, ๐ฅ0 , ๐ฆ0 ๐ถ๐ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ๐ โ1 ๐ก, ๐ฅ0 , ๐ฆ0 Now, we take the maximum value to both sides of the inequality ( 2.21), ๐ for all 0 โค ๐ก โค ๐ and ๐ผ ๐ก โค , we get: 2 ๐ถ๐ +1 โค ๐0 ๐ถ๐ , where ๐0 = ๐๐๐ฅ๐กโ 0,๐ ๐(๐ก) . ๐ ๐พ ๐ ๐พ [๐พ + ๐ 1 ( ๐พ3 + ๐๐พ4 )] [๐พ + ๐ 2 ( ๐พ3 + ๐๐พ4 )] 2 1 ๐1 2 2 ๐1 Q0 = ๐ ๐ฟ ๐ ๐ฟ [๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] [๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] 2 ๐2 2 ๐2 By iterating the inequality (4.2.22), we find that: ๐ถ๐ +1 โค ๐0 ๐ ๐ถ0 , which leads to the estimate: ๐
โฏ 2.22
โฏ 2.23
๐
๐0 ๐โ1 ๐ถ0
๐ถ๐ โค ๐=1
โฏ 2.21
โฏ 2.24
๐=1
Since the matrix ๐0 has maximum eigen-values of (4.1.13) and the series (4.2.24) is uniformly convergent, i. e. www.ijeijournal.com
Page | 6
Periodic Solutions for Non-Linear Systems of Integral Equations ๐
lim
๐ โโ
โ
๐0
๐โ1
๐=1
๐0 ๐โ1 ๐ถ0 = (๐ธ โ ๐0 )โ1 ๐ถ0
๐ถ0 =
โฏ ( 2.25)
๐=1
The limiting relation (4.2.25) signifies a uniform convergence of the sequence ๐ฅ๐ (๐ก, ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ก, ๐ฅ0 , ๐ฆ0 ) โ ๐ =0 in the domain (4.2.3) as ๐ โ โ. Let lim ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 , ๐ โโ
lim ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0
๐ โโ
.
โฏ ( 2.26)
Finally, we show that ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โก ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท and ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โก ๐ฆ 0 (๐ก, ๐ฅ0 , ๐ฆ0 ) โ ๐ท1 , for all ๐ฅ0 โ ๐ท๐1 and ๐ฆ0 โ ๐ท1๐2 . By using inequalities ( 2.1) and ( 2.4) and lemma 1.1, such that: ๐ก
[๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐ ๐ก
๐
๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ โ 0
โ [๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐
๐
๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ 0
๐พ โค ๐ผ(๐ก) [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ฅ๐ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 ๐1 ๐พ +[๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ๐ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โค ๐1 ๐ ๐พ โค [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 + 2 ๐1 ๐พ +[๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 .
+
๐1
From inequality ( 2.26) and on the other hand suppose that:. ๐ฅ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โค ๐1 , ๐ฆ๐ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โค ๐2 . Thus ๐ก
[๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐ ๐ก
๐
๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ โ 0
โ [๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐
๐
๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ 0
๐ ๐พ ๐ ๐พ [๐พ + ๐ 1 ( ๐พ3 + ๐๐พ4 )]๐1 + [๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )]๐2 2 1 ๐1 2 ๐1 ๐3 ๐4 Putting ๐1 = ๐ and ๐2 = ๐ and substituting in the last equation, we have: ๐พ ๐พ โค
2
๐ก
[๐พ1 +๐ 1 (
๐พ +๐ ๐พ4 )] ๐1 3
2
[๐พ2 +๐ 2 (
๐พ +๐๐พ4 )] ๐1 3
[๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
www.ijeijournal.com
Page | 7
Periodic Solutions for Non-Linear Systems of Integral Equations ๐
1 โ ๐
๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ โ
๐ก
0
โ [๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐
๐
๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ 0
๐ ๐พ ๐3 โค [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] + ๐ ๐พ 2 ๐1 [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] 2 ๐1 ๐ ๐พ ๐4 + [๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ ๐พ 2 ๐1 [๐พ + ๐ 2 ( ๐พ3 + ๐๐พ4 )] 2 2 ๐1 โค ๐3 + ๐4, and choosing ๐3 + ๐4 = ๐ , we get: ๐ก
[๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 )) โ 0 ๐
1 โ ๐
๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ โ
๐ก
0
โ [๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐
๐
๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ โค ๐ 0
for all ๐ โฅ 0, ๐ก
i. e. lim
[๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 )) โ
๐ โโ
1 โ ๐ ๐ก
๐
0
๐1 (๐ , ๐ฅ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ๐ (๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง๐ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค๐ (๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ = 0
โ [๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 )) โ 0
1 โ ๐
๐
๐1 (๐ , ๐ฅ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ฆ(๐ , ๐ฅ0 , ๐ฆ0 ), ๐ง ๐ , ๐ฅ0 , ๐ฆ0 , ๐ค(๐ , ๐ฅ0 , ๐ฆ0 ))๐๐ ]๐๐ . 0
So ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท, and ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โก ๐ฅ 0 (๐ก, ๐ฅ0 , ๐ฆ0 ) is a periodic solution of ( I1), Also by using the same method above we can prove ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ท1 , and ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โก ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0 also periodic solution of (๐ผ2 ).
is
Theorem 2.2. With the hypotheses and all conditions of the theorem 2.1, the periodic solution of integral equations ( ๐ผ1 ) and ( ๐ผ2 ) are a unique on the domain (1.3). Proof. Suppose that ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 and ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 be another periodic solutions for the systems (๐ผ1 ) and ( ๐ผ2 ) defined and continuous and periodic in ๐ก of period ๐, this means that: ๐ก
๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐น0 ๐ก +
[๐1 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐
,
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
www.ijeijournal.com
Page | 8
Periodic Solutions for Non-Linear Systems of Integral Equations ๐ ๐
1 ๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐) โ ๐
, ๐ ๐
๐
, ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 ,
๐
๐1 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
,
๐1 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐)๐๐ ]๐๐
โฏ 2.27
๐ ๐
and ๐ก
๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 = ๐บ0 ๐ก +
[๐2 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐
,
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
, ๐
, ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 ,
๐ ๐
1 ๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐) โ ๐
๐
๐2 (๐ , ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 , 0
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 ) ๐๐, โโ
๐ ๐
,
๐2 (๐, ๐ฅ ๐, ๐ฅ0 , ๐ฆ0 , ๐ฆ ๐, ๐ฅ0 , ๐ฆ0 )๐๐)๐๐ ]๐๐
โฏ 2.28
๐ ๐
For their difference, we should obtain the inequality: ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0
โค ๐ ๐พ โค [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 + 2 ๐1 ๐ ๐พ + [๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 2 ๐1
And also ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0
โฏ 2.29
โค ๐ก
๐ก โค (1 โ ) [๐ฟ1 ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 ๐
+ ๐ฟ2 ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0
0
๐ฟ ๐ฟ ๐ป ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 + ๐ป2 ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 + ๐2 3 1 +๐๐ฟ4 (๐ป1 ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 + ๐ป2 ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 )]๐๐ +
๐ก + ๐
๐
๐ฟ1 ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0
+ ๐ฟ2 ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0
+
๐ก
๐ฟ ๐ฟ ๐ป ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 + ๐ป2 ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 + ๐2 3 1 +๐๐ฟ4 (๐ป1 ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ , ๐ฅ0 , ๐ฆ0 + ๐ป2 ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ , ๐ฅ0 , ๐ฆ0 ๐ฟ โค ๐ผ(๐ก)[๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 + ๐2 ๐ฟ +๐ผ(๐ก)[๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 +
)]๐๐
๐2
so that: ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0
โค ๐ ๐ฟ โค [๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฅ ๐ก, ๐ฅ0 , ๐ฆ0 + 2 ๐2 ๐ ๐ฟ + [๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 โ ๐ฆ ๐ก, ๐ฅ0 , ๐ฆ0 2
๐2
www.ijeijournal.com
โฏ 2.30 Page | 9
Periodic Solutions for Non-Linear Systems of Integral Equations and the inequalities (4.2.29) and (4.2.30) would lead to the estimate: ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2039;ลป 2.31 By iterating the inequality (4.2.27), which should find: ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; . ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 But ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; รข&#x2020;&#x2019; 0 as ฤ?&#x2018;&#x161; รข&#x2020;&#x2019; รข&#x2C6;&#x17E;, so that proceeding in the last inequality which is contradict the supposition It follows immediately ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 = ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 and ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 = ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 .
III. Existence of Solution of (ฤ?&#x2018;ยฐฤ?&#x;? ) and (ฤ?&#x2018;ยฐฤ?&#x;? ) The problem of existence of periodic solution of period T of the system ( ฤ??ลบ1 ) and ( ฤ??ลบ2 ) are uniquely connected with the existence of zero of the functions รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 = รข&#x2C6;&#x2020;1 and รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 = รข&#x2C6;&#x2020;2 which has the form: รข&#x2C6;&#x2020;1 : ฤ??หฤ?&#x2018;&#x201C;1 ฤ&#x2014; ฤ??ห1ฤ?&#x2018;&#x201C;2 รข&#x2020;&#x2019; ฤ?&#x2018;&#x2026;ฤ?&#x2018;&#x203A; รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
1 = ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ?&#x2018;ฤ
ฤ??ล1 ฤ?&#x2018;ฤ, ฤ?&#x2018; ฤ?&#x2018;&#x201D;1 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
ฤ?&#x2018;? ฤ?&#x2018;ฤ
ฤ?&#x2018;&#x201D;1 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x2018; )ฤ?&#x2018;&#x2018;ฤ?&#x2018;ฤ
,
รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
รข&#x2039;ลป 3.1
ฤ?&#x2018;&#x17D; ฤ?&#x2018;ฤ
รข&#x2C6;&#x2020;2 : ฤ??หฤ?&#x2018;&#x201C;1 ฤ&#x2014; ฤ??ห1ฤ?&#x2018;&#x201C;2 รข&#x2020;&#x2019; ฤ?&#x2018;&#x2026;ฤ?&#x2018;&#x203A; 1 = ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x2018;ฤ?&#x2018;
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;2 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ?&#x2018;ฤ
ฤ??ล2 ฤ?&#x2018;ฤ, ฤ?&#x2018; ฤ?&#x2018;&#x201D;2 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
, รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
ฤ?&#x2018;&#x2018;ฤ?&#x2018;
ฤ?&#x2018;? ฤ?&#x2018;ฤ
ฤ?&#x2018;&#x201D;2 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล 0 ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x2018; )ฤ?&#x2018;&#x2018;ฤ?&#x2018;ฤ
,
รข&#x2039;ลป 3.2
ฤ?&#x2018;&#x17D; ฤ?&#x2018;ฤ
where the function ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 is the limit of the sequence of the functions ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) and the function ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 is the limit of the sequence of the functions ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 . Since this two functions are approximately determined from the sequences of functions: รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; : ฤ??หฤ?&#x2018;&#x201C;1 ฤ&#x2014; ฤ??ห1ฤ?&#x2018;&#x201C;2 รข&#x2020;&#x2019; ฤ?&#x2018;&#x2026;ฤ?&#x2018;&#x203A; รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
1 = ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;1 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ?&#x2018;ฤ
,
ฤ??ล1 ฤ?&#x2018;ฤ, ฤ?&#x2018; ฤ?&#x2018;&#x201D;1 ฤ?&#x2018; , ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
ฤ?&#x2018;? ฤ?&#x2018;ฤ
,
รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
ฤ?&#x2018;&#x201D;1 ฤ?&#x2018; , ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x2018; )ฤ?&#x2018;&#x2018;ฤ?&#x2018;ฤ
รข&#x2039;ลป 3.3
ฤ?&#x2018;&#x17D; ฤ?&#x2018;ฤ
รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; : ฤ??หฤ?&#x2018;&#x201C;1 ฤ&#x2014; ฤ??ห1ฤ?&#x2018;&#x201C;2 รข&#x2020;&#x2019; ฤ?&#x2018;&#x2026;ฤ?&#x2018;&#x203A; 1 = ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x2018;ฤ?&#x2018;
ฤ?&#x2018;&#x2021;
ฤ?&#x2018;&#x201C;2 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , 0
ฤ?&#x2018;ฤ
,
ฤ??ล2 ฤ?&#x2018;ฤ, ฤ?&#x2018; ฤ?&#x2018;&#x201D;2 ฤ?&#x2018; , ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
ฤ?&#x2018;&#x2018;ฤ?&#x2018;
รข&#x2C6;&#x2019;รข&#x2C6;&#x17E;
www.ijeijournal.com
Page | 10
Periodic Solutions for Non-Linear Systems of Integral Equations ฤ?&#x2018;? ฤ?&#x2018;ฤ
,
ฤ?&#x2018;&#x201D;2 ฤ?&#x2018; , ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018; , ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x2018;&#x2018;ฤ?&#x2018; )ฤ?&#x2018;&#x2018;ฤ?&#x2018;ฤ
รข&#x2039;ลป 3.4
ฤ?&#x2018;&#x17D; ฤ?&#x2018;ฤ
for all ฤ?&#x2018;&#x161; = 0,1,2, รข&#x2039;ลป Theorem 3.1. If the hypotheses and all conditions of the theorem 2.1 and 2.2 are satisfied, then the following inequality satisfied: รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x2018;ฤ?&#x2018;&#x161; รข&#x2039;ลป 3.5 รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x153;&#x201A;ฤ?&#x2018;&#x161; รข&#x2039;ลป 3.6 satisfied for all ฤ?&#x2018;&#x161; รข&#x2030;ฤฝ 0 , ฤ?&#x2018;ฤฝ0 รข&#x2C6;&#x2C6; ฤ??หฤ?&#x2018;&#x201C;1 and ฤ?&#x2018;ล0 รข&#x2C6;&#x2C6; ฤ??ห1ฤ?&#x2018;&#x201C;2 , where ฤ?&#x203A;ลพ ฤ?&#x203A;ลพ ฤ?&#x2018;&#x2018;ฤ?&#x2018;&#x161; = [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] [ฤ??ลพ2 + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] , ฤ?&#x153;&#x2020;1 ฤ?&#x153;&#x2020;1 , ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; +1 ฤ??ยธ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201E;0 รข&#x2C6;&#x2019;1 ฤ??ล0 and ฤ?&#x153;&#x201A;ฤ?&#x2018;&#x161; =
ฤ?&#x203A;ลผ
[ฤ??ลผ1 + ฤ??ลฅ1 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] ฤ?&#x153;&#x2020;2
ฤ?&#x203A;ลผ
[ฤ??ลผ2 + ฤ??ลฅ2 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] , ฤ?&#x153;&#x2020;2
, ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; +1 ฤ??ยธ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201E;0 รข&#x2C6;&#x2019;1 ฤ??ล0 . Proof. By using the relation ( 3.1) and ( 3.3), we have: รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x203A;ลพ รข&#x2030;ยค [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 + ฤ?&#x153;&#x2020;1 ฤ?&#x203A;ลพ +[ฤ??ลพ2 + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; ฤ?&#x2018;ลฤ?&#x2018;&#x161; ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ฤ?&#x153;&#x2020;1 ฤ?&#x203A;ลพ ฤ?&#x203A;ลพ รข&#x2030;ยค [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] [ฤ??ลพ2 + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] , ฤ?&#x153;&#x2020;1 ฤ?&#x153;&#x2020;1 , ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; +1 ฤ??ยธ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201E;0 รข&#x2C6;&#x2019;1 ฤ??ล0 = ฤ?&#x2018;&#x2018;ฤ?&#x2018;&#x161; And also by using the relation ( 3.2) and ( 3.4), we get: รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x203A;ลผ ฤ?&#x203A;ลผ รข&#x2030;ยค [ฤ??ลผ1 + ฤ??ลฅ1 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] [ฤ??ลผ2 + ฤ??ลฅ2 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] , ฤ?&#x153;&#x2020;2 ฤ?&#x153;&#x2020;2 , ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; +1 ฤ??ยธ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201E;0 รข&#x2C6;&#x2019;1 ฤ??ล0 = ฤ?&#x153;&#x201A;ฤ?&#x2018;&#x161; where . denotes the ordinary scalar product in the space ฤ?&#x2018;&#x2026;ฤ?&#x2018;&#x203A; . รข&#x2C6;&#x17D; Theorem 3.2. Let the vector functions ฤ?&#x2018;&#x201C;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล, ฤ?&#x2018;ยง, ฤ?&#x2018;ยค , ฤ?&#x2018;&#x201C;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล, ฤ?&#x2018;ห, ฤ?&#x2018;ล , ฤ?&#x2018;&#x201D;1 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล and ฤ?&#x2018;&#x201D;2 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล be defined on the domain: ฤ??ล = 0 รข&#x2030;ยค ฤ?&#x2018; รข&#x2030;ยค ฤ?&#x2018;ฤ รข&#x2030;ยค ฤ?&#x2018;&#x2021;, ฤ?&#x2018;&#x17D; รข&#x2030;ยค ฤ?&#x2018;ฤฝ, ฤ?&#x2018;ล รข&#x2030;ยค ฤ?&#x2018;?, ฤ?&#x2018;? รข&#x2030;ยค ฤ?&#x2018;ยง, ฤ?&#x2018;ห รข&#x2030;ยค ฤ?&#x2018;&#x2018;, ฤ?&#x2018;&#x2019; รข&#x2030;ยค ฤ?&#x2018;ยค, ฤ?&#x2018;ล รข&#x2030;ยค ฤ?&#x2018;&#x201C;} รข&#x160;&#x2020; ฤ?&#x2018;&#x2026;1 , and periodic in t of period T. Assume that the sequence of functions (4.3.3) and (4.3.4) satisfies the inequalities: min ฤ?&#x2018;&#x2021; รข&#x2C6;&#x2020;1m 0, x0 , y0 รข&#x2030;ยค รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2018;m , ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2
max
ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2
รข&#x2C6;&#x2020;1m 0, x0 , y0 รข&#x2030;ฤฝ ฤ?&#x2018;&#x2018;m min
รข&#x2C6;&#x2020;2m 0, x0 , y0 รข&#x2030;ยค รข&#x2C6;&#x2019; รหm ,
max
รข&#x2C6;&#x2020;2m 0, x0 , y0 รข&#x2030;ฤฝ รหm
ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2
for all ฤ?&#x2018;&#x161; รข&#x2030;ฤฝ 0, where ฤ?&#x203A;ลพ ฤ?&#x2018;&#x2018;ฤ?&#x2018;&#x161; = [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] ฤ?&#x153;&#x2020;1
รข&#x2039;ลป 3.7
,
ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2
,
รข&#x2039;ลป 3.8
ฤ?&#x203A;ลพ [ฤ??ลพ2 + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )] , ฤ?&#x153;&#x2020;1 , ฤ?&#x2018;&#x201E;0 ฤ?&#x2018;&#x161; +1 ฤ??ยธ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201E;0 รข&#x2C6;&#x2019;1 ฤ??ล0
and www.ijeijournal.com
Page | 11
Periodic Solutions for Non-Linear Systems of Integral Equations ฤ?&#x203A;ลผ ฤ??ลผ + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] , ฤ?&#x153;&#x2020;2 3 ฤ?&#x2018;&#x161; +1 , ฤ?&#x2018;&#x201E;0 ฤ??ยธ รข&#x2C6;&#x2019; ฤ?&#x2018;&#x201E;0 รข&#x2C6;&#x2019;1 ฤ??ล0 Then the system (4.1.1) and (4.1.2) has periodic solution of period T ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; ฤ?&#x2018;ฤฝ = ฤ?&#x2018;ฤฝ(ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) and ฤ?&#x2018;ล = ฤ?&#x2018;ล(ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) for which ฤ?&#x2018;ฤฝ0 รข&#x2C6;&#x2C6; [ฤ?&#x2018;&#x17D; + ฤ?&#x2018;&#x20AC;1 , ฤ?&#x2018;? รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 ] and 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; ฤ?&#x2018;ล0 รข&#x2C6;&#x2C6; [ฤ?&#x2018;? + ฤ?&#x2018;&#x20AC;2 , ฤ?&#x2018;&#x2018; รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 ]. 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; Proof. Let ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ฤฝ2 be any two points in the interval [ฤ?&#x2018;&#x17D; + ฤ?&#x2018;&#x20AC;1 , ฤ?&#x2018;? รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 ] and ฤ?&#x2018;ล1 , ฤ?&#x2018;ล2 be any two points in the ฤ?&#x153;&#x201A;ฤ?&#x2018;&#x161; =
ฤ?&#x203A;ลผ [ฤ??ลผ1 + ฤ??ลฅ1 ( ฤ??ลผ3 + ฤ?&#x2018;&#x2022;ฤ??ลผ4 )] ฤ?&#x153;&#x2020;2
ฤ?&#x2018;&#x2021;
[ฤ??ลผ2 + ฤ??ลฅ2 (
2
ฤ?&#x2018;&#x2021;
2
interval [ฤ?&#x2018;? + ฤ?&#x2018;&#x20AC;2 , ฤ?&#x2018;&#x2018; รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 ], 2 2 such that: ร&#x201D;1m 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 =
ร&#x201D;1m 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 = ร&#x201D;2m 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 =
ร&#x201D;2m 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 =
min
รข&#x2C6;&#x2020;2m 0, x0 , y0
,
max
รข&#x2C6;&#x2020;2m 0, x0 , y0
,
ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2
min
รข&#x2C6;&#x2020;1m 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
max
รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0
ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; a+ ฤ?&#x2018;&#x20AC;1 รข&#x2030;ยคx 0 รข&#x2030;ยคbรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 2 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; c+ ฤ?&#x2018;&#x20AC;2 รข&#x2030;ยคy 0 รข&#x2030;ยคdรข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 2 2
,
,
รข&#x2039;ลป 3.9
รข&#x2039;ลป 3.10
By using the inequalities ( 3.5), ( 3.6), ( 3.7) and ( 3.8), we have: รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 = รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 + รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; (0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 ) รข&#x2030;ยค 0 , รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 = รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 + รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;1ฤ?&#x2018;&#x161; (0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 ) รข&#x2030;ยค 0 . รข&#x2039;ลป 3.11 รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 = รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 + รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; (0, ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ล1 ) รข&#x2030;ยค 0 , รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 = รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 + รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;2ฤ?&#x2018;&#x161; (0, ฤ?&#x2018;ฤฝ2 , ฤ?&#x2018;ล2 ) รข&#x2030;ยค 0 . รข&#x2039;ลป 3.12 It follows from the inequalities ( 3.11) and ( 3.12) in virtue of the continuity of the functions รข&#x2C6;&#x2020;1 (0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) and รข&#x2C6;&#x2020;1 (0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) that there exists an isolated singular point (ฤ?&#x2018;ฤฝ 0 , ฤ?&#x2018;ล 0 ) = (ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) , ฤ?&#x2018;ฤฝ 0 รข&#x2C6;&#x2C6; ฤ?&#x2018;ฤฝ1 , ฤ?&#x2018;ฤฝ2 and ฤ?&#x2018;ล 0 รข&#x2C6;&#x2C6; ฤ?&#x2018;ล1 , ฤ?&#x2018;ล2 , so that รข&#x2C6;&#x2020;1 (0, ฤ?&#x2018;ฤฝ 0 , ฤ?&#x2018;ล 0 ) = 0 and รข&#x2C6;&#x2020;2 (0, ฤ?&#x2018;ฤฝ 0 , ฤ?&#x2018;ล 0 ) = 0. This means that the system ( 3.1) and (4.3.2) has a periodic solutions ฤ?&#x2018;ฤฝ ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 for which ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; ฤ?&#x2018;ฤฝ0 รข&#x2C6;&#x2C6; [ฤ?&#x2018;&#x17D; + ฤ?&#x2018;&#x20AC;1 , ฤ?&#x2018;? รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;1 ] and ฤ?&#x2018;ล0 รข&#x2C6;&#x2C6; [ฤ?&#x2018;? + ฤ?&#x2018;&#x20AC;2 , ฤ?&#x2018;&#x2018; รข&#x2C6;&#x2019; ฤ?&#x2018;&#x20AC;2 ]. รข&#x2C6;&#x17D; 2
2
2
2
Remark 3.1. Theorem 3.2 is proved when ฤ?&#x2018;&#x2026;ฤ?&#x2018;&#x203A; = ฤ?&#x2018;&#x2026;1 , on the other hand as ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 are a scalar singular point which should be isolated (For this remark, see [5]).
IV. Stability Theorem Of Solution (ฤ?&#x2018;ยฐฤ?&#x;? ) And (ฤ?&#x2018;ยฐฤ?&#x;? )
In this section, we study theorem on stability of a periodic solution for the integral equations ( ฤ??ลบ1 ) and ( ฤ??ลบ2 ). Theorem 4.1. If the function รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 , ร&#x201D;2 (0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) are defined by equations ( 3.1) and ( 3.2), where the function ฤ?&#x2018;ฤฝ 0 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) is a limit of the sequence of the functions ( 2.1) , the function ฤ?&#x2018;ล 0 (ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 ) is the limit of the sequence of the functions ( 2.2) , Then the following inequalities yields: รข&#x2C6;&#x2020;1 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x20AC;1 รข&#x2039;ลป 4.1 รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ0 , ฤ?&#x2018;ล0 รข&#x2030;ยค ฤ?&#x2018;&#x20AC;2 รข&#x2039;ลป 4.2 and รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019; รข&#x2C6;&#x2020;2 0, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2
รข&#x2030;ยค ฤ??ลก1 ฤ??ลก2 ฤ??ยธ3 ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; + ฤ??ลก1 ฤ??ลก2 ฤ??ยธ2 ( ฤ??ยธ3 + ฤ??ยธ4 + ฤ??ลก1 ฤ??ยธ4 (1 รข&#x2C6;&#x2019; ฤ??ยธ1 )) ฤ??ล0 1 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล0 2 (ฤ?&#x2018;ฤ) 2 2 รข&#x2039;ลป 4.4 ฤ?&#x2018;ฤ ฤ?&#x2018;&#x2021; for all ฤ?&#x2018;ฤฝ 0 , ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ฤฝ02 รข&#x2C6;&#x2C6; ฤ??หฤ?&#x2018;&#x201C;1 , ฤ?&#x2018;ล 0 , ฤ?&#x2018;ล01 , ฤ?&#x2018;ล02 รข&#x2C6;&#x2C6; ฤ??ห1ฤ?&#x2018;&#x201C;2 , and ฤ?&#x203A;ลบ ฤ?&#x2018;ฤ = 2ฤ?&#x2018;ฤ(1 รข&#x2C6;&#x2019; ) รข&#x2030;ยค , ฤ?&#x203A;ลพ
ฤ?&#x203A;ลพ
ฤ?&#x153;&#x2020;1
ฤ?&#x153;&#x2020;1
ฤ?&#x2018;&#x2021;
2
where ฤ??ยธ1 = [ฤ??ลพ1 + ฤ?&#x2018;&#x2026;1 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )], ฤ??ยธ2 = [ฤ??ลพ2 + ฤ?&#x2018;&#x2026;2 ( ฤ??ลพ3 + ฤ?&#x2018;&#x2022;ฤ??ลพ4 )],
www.ijeijournal.com
Page | 12
Periodic Solutions for Non-Linear Systems of Integral Equations ๐ฟ
๐ฟ
๐2
๐2 2
๐ธ3 = [๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )], ๐ธ4 = [๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )], ๐ ๐ ๐ ๐ธ )(1 โ ๐ธ4 )]โ1 and ๐น2 = (1 โ ๐2 ๐3 ๐น1 )โ1 2 1 2 4 Proof. From the properties of the functions ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 and ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0 as in the theorem 4.2.1, the functions ฮ1 = โ1 ๐ฅ0 , ๐ฆ0 , ฮ1 = โ1 ๐ฅ0 , ๐ฆ0 , ๐ฅ0 โ ๐ท๐1 , ๐ฆ0 โ ๐ท1๐2 are continuous and bounded by ๐1 , ๐2 in the domain ( 1.3). ๐น1 = [(1 โ
From relation ( 3.1), we find: โ1 (0, ๐ฅ0 , ๐ฆ0
1 โค ๐
๐
๐1 (๐ก, ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0 , 0
๐ก
๐บ1 ๐ก, ๐ ๐1 ๐ , ๐ฅ 0 ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ ,
,
โโ ๐(๐ก)
๐1 ๐ , ๐ฅ 0 ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ , ๐ฅ0 , ๐ฆ0 ๐ ๐ ) ๐๐ก
, ๐(๐ก)
by using the Lemma 4.1.1, gives: โ1 (0, ๐ฅ0 , ๐ฆ0 ) โค ๐1 . And from relation ( 3.2), we get: โ2 (0, ๐ฅ0 , ๐ฆ0
1 โค ๐
๐
๐2 (๐ก, ๐ฅ 0 ๐ก, ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ก, ๐ฅ0 , ๐ฆ0 , 0
๐ก
๐บ2 ๐ก, ๐ ๐2 ๐ , ๐ฅ 0 ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ ,
,
โโ ๐(๐ก)
๐2 ๐ , ๐ฅ 0 ๐ , ๐ฅ0 , ๐ฆ0 , ๐ฆ 0 ๐ , ๐ฅ0 , ๐ฆ0 ๐๐ ) ๐๐ก
, ๐(๐ก)
and using Lemma 4.1.1, we have: โ2 (0, ๐ฅ0 , ๐ฆ0 ) โค ๐2 By using equation ( 3.1) and lemma 1.1, we get: โ1 0, ๐ฅ01 , ๐ฆ0 1 โ โ1 0, ๐ฅ02 , ๐ฆ0 2 1 โค ๐
๐
[๐พ1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2
+
0
+๐พ2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + ๐พ + ๐พ3 (๐ 1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + ๐1 +๐ 2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ) + + ๐๐พ4 (๐ 1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + +๐ 2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 )]๐๐ก ๐พ โค [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + ๐1 ๐พ +[๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ๐1 so, โ1 0, ๐ฅ01 , ๐ฆ0 1 โ โ1 0, ๐ฅ02 , ๐ฆ0 2 โค ๐ธ1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + +๐ธ2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โฏ 4.5 And also by using equation ( 3.2) and lemma 1.1, gives: โ2 0, ๐ฅ01 , ๐ฆ0 1 โ โ2 0, ๐ฅ02 , ๐ฆ0 2 1 โค ๐
๐
[๐ฟ1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2
+
0
+๐ฟ2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2
+ www.ijeijournal.com
Page | 13
Periodic Solutions for Non-Linear Systems of Integral Equations ๐ฟ ๐ฟ (๐ป ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + ๐2 3 1 +๐ป2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ) + + ๐๐ฟ4 (๐ป1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + +๐ป2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 )]๐๐ก ๐ฟ โค [๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ๐2 ๐ฟ +[๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 +
๐2
+ .
Therefore, โ2 0, ๐ฅ01 , ๐ฆ0 1 โ โ2 0, ๐ฅ02 , ๐ฆ0 2
โค ๐ธ3 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + +๐ธ4 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โฏ 4.6 where the functions ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 , ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 , ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 and ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 are solutions of the equation: ๐ก
๐ฅ
๐ก, ๐ฅ0๐ , ๐ฆ0๐
=
๐น0๐
[๐1 (๐ , ๐ฅ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ),
๐ก + 0
๐
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ )) ๐๐,
,
โโ ๐ ๐
๐1 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ ))๐๐ ) โ
, ๐ ๐
1 โ ๐ ๐
๐
๐1 (๐ , ๐ฅ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ), 0
๐บ1 ๐ , ๐ ๐1 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ )) ๐๐,
, โโ
๐ ๐
๐1 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ ))๐๐)๐๐ ]๐๐
,
โฏ ( 4.7)
๐ ๐
and ๐ก
๐ฆ
๐ก, ๐ฅ0๐ , ๐ฆ0๐
=
๐บ0๐
[๐2 (๐ , ๐ฅ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ),
๐ก + 0
๐
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ )) ๐๐,
, โโ ๐ ๐
๐2 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ ))๐๐) โ
, ๐ ๐
1 โ ๐ ๐
๐
๐2 (๐ , ๐ฅ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐ , ๐ฅ0๐ , ๐ฆ0๐ ), 0
๐บ2 ๐ , ๐ ๐2 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ )) ๐๐,
, โโ
๐ ๐
๐2 (๐, ๐ฅ(๐, ๐ฅ0๐ , ๐ฆ0๐ ), ๐ฆ(๐, ๐ฅ0๐ , ๐ฆ0๐ ))๐๐)๐๐ ]๐๐
,
โฏ ( 4.8)
๐ ๐
where ๐ = 1, 2. From (4.4.7), we get: โค
๐น01
๐ก โ
๐น02
๐ก
๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + www.ijeijournal.com
Page | 14
Periodic Solutions for Non-Linear Systems of Integral Equations ๐พ +๐ผ(๐ก)[๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + ๐1 ๐พ +๐ผ ๐ก [๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ๐1 โค ๐น01 ๐ก โ ๐น02 ๐ก + ๐ ๐พ + [๐พ1 + ๐ 1 ( ๐พ3 + ๐๐พ4 )] ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + 2 ๐1 ๐ ๐พ + [๐พ2 + ๐ 2 ( ๐พ3 + ๐๐พ4 )] ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 2 ๐1 such that: ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2
โค ๐น01 ๐ก โ ๐น02 ๐ก + ๐ + ๐ธ1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + 2 ๐ + ๐ธ2 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 2
therefore:
๐ ๐ธ )โ1 ๐น01 ๐ก โ ๐น02 ๐ก + 2 1 ๐ ๐ + ๐ธ2 (1 โ ๐ธ1 )โ1 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 2 2 โฏ 4.9 And also from relation ( 4.8), we have: ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โค 1 2 โค ๐บ0 ๐ก โ ๐บ0 ๐ก + ๐ฟ +๐ผ(๐ก)[๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + ๐2 ๐ฟ +๐ผ(๐ก)[๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โค ๐2 โค ๐บ01 ๐ก โ ๐บ02 ๐ก + ๐ ๐ฟ + [๐ฟ1 + ๐ป1 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + 2 ๐2 ๐ ๐ฟ + [๐ฟ2 + ๐ป2 ( ๐ฟ3 + ๐๐ฟ4 )] ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 2 ๐2 so that: ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โค ๐บ01 ๐ก โ ๐บ02 ๐ก + ๐ + ๐ธ3 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 + 2 ๐ + ๐ธ4 ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 2 and hence: ๐ ๐ฆ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ๐ฆ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โค (1 โ ๐ธ4 )โ1 ๐บ01 ๐ก โ ๐บ02 ๐ก + 2 ๐ ๐ + ๐ธ3 (1 โ ๐ธ4 )โ1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 2 2 โฏ 4.10 Now, by substituting inequality ( 4.10) in ( 4.9), we get: ๐ ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 โค (1 โ ๐ธ1 )โ1 ๐น01 ๐ก โ ๐น02 ๐ก + 2 ๐ ๐ ๐ + ๐ธ2 (1 โ ๐ธ1 )โ1 [(1 โ ๐ธ4 )โ1 ๐บ01 ๐ก โ ๐บ02 ๐ก + 2 2 2 ๐ ๐ โ1 0 + ๐ธ3 (1 โ ๐ธ4 ) ๐ฅ ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ] 2 2 ๐ โค (1 โ ๐ธ1 )โ1 ๐น01 ๐ก โ ๐น02 ๐ก + 2 ๐ ๐ ๐ + ๐ธ2 [(1 โ ๐ธ1 )(1 โ ๐ธ4 )]โ1 ๐บ01 ๐ก โ ๐บ02 ๐ก + 2 2 2 ๐2 ๐ ๐ + ๐ธ2 ๐ธ3 [(1 โ ๐ธ1 )(1 โ ๐ธ4 )]โ1 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2 ๐ฅ 0 ๐ก, ๐ฅ01 , ๐ฆ0 1 โ๐ฅ 0 ๐ก, ๐ฅ02 , ๐ฆ0 2
๐
โค (1 โ
๐
4
2
2
]
putting ๐น1 = [(1 โ ๐ธ1 )(1 โ ๐ธ4 )]โ1 , 2 2 and substituting in the last inequality, we obtain: www.ijeijournal.com
Page | 15
Periodic Solutions for Non-Linear Systems of Integral Equations ฤ?&#x2018;&#x2021; ฤ??ยธ )รข&#x2C6;&#x2019;1 ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + 2 1 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021;2 + ฤ??ยธ2 ฤ??ลก1 ฤ??ล01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล02 ฤ?&#x2018;ฤ + + ฤ??ยธ2 ฤ??ยธ3 ฤ??ลก1 ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2
ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2
as the ฤ?&#x2018;ฤฝ
0
ฤ?&#x2018;&#x2021;
รข&#x2030;ยค (1 รข&#x2C6;&#x2019; ฤ?&#x2018;&#x2021;
ฤ??ลก1 (1 รข&#x2C6;&#x2019; ฤ??ยธ4 ) = (1 รข&#x2C6;&#x2019; ฤ??ยธ1 ) 2
ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1
รข&#x2C6;&#x2019;ฤ?&#x2018;ฤฝ
2
0
ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2
2 รข&#x2C6;&#x2019;1
4
ฤ?&#x2018;&#x2021; ฤ??ยธ ) ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + 2 4 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021;2 + ฤ??ยธ2 ฤ??ลก1 ฤ??ล01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล02 ฤ?&#x2018;ฤ + ฤ??ยธ2 ฤ??ยธ3 ฤ??ลก1 ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2
]
รข&#x2030;ยค ฤ??ลก1 (1 รข&#x2C6;&#x2019; 2
4
]
which implies that: ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021;2 ฤ??ยธ4 )(1 รข&#x2C6;&#x2019; ฤ??ยธ2 ฤ??ยธ3 ฤ??ลก1 )รข&#x2C6;&#x2019;1 ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + 2 4 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021;2 + ฤ??ยธ2 ฤ??ลก1 (1 รข&#x2C6;&#x2019; ฤ??ยธ2 ฤ??ยธ3 ฤ??ลก1 )รข&#x2C6;&#x2019;1 ฤ??ล01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล02 ฤ?&#x2018;ฤ 2 4 2 ฤ?&#x2018;&#x2021; รข&#x2C6;&#x2019;1 putting ฤ??ลก2 = (1 รข&#x2C6;&#x2019; ฤ??ยธ2 ฤ??ยธ3 ฤ??ลก1 ) 4 and substituting in the last inequality, we obtain: ฤ?&#x2018;&#x2021; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2 รข&#x2030;ยค ฤ??ลก1 ฤ??ลก2 (1 รข&#x2C6;&#x2019; ฤ??ยธ4 ) ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + 2 ฤ?&#x2018;&#x2021; + ฤ??ยธ2 ฤ??ลก1 ฤ??ลก2 ฤ??ล01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล02 ฤ?&#x2018;ฤ รข&#x2039;ลป 4.11 2 Also, substituting the inequalities ( 4.11) in ( 4.10), we find that: ฤ?&#x2018;&#x2021; 0 ฤ?&#x2018;ล ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019;ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2 รข&#x2030;ยค (1 รข&#x2C6;&#x2019; ฤ??ยธ4 )รข&#x2C6;&#x2019;1 ฤ??ล01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล02 ฤ?&#x2018;ฤ + 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; + ฤ??ยธ3 (1 รข&#x2C6;&#x2019; ฤ??ยธ4 )รข&#x2C6;&#x2019;1 [ฤ??ลก1 ฤ??ลก2 (1 รข&#x2C6;&#x2019; ฤ??ยธ4 ) ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + 2 2 2 ฤ?&#x2018;&#x2021; 1 2 + ฤ??ยธ2 ฤ??ลก1 ฤ??ลก2 ฤ??ล0 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล0 ฤ?&#x2018;ฤ ] 2 and hence ฤ?&#x2018;&#x2021; ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019;ฤ?&#x2018;ล 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2 รข&#x2030;ยค ฤ??ยธ3 ฤ??ลก1 ฤ??ลก2 ฤ??ลก01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ลก02 ฤ?&#x2018;ฤ + 2 ฤ?&#x2018;&#x2021; ฤ?&#x2018;&#x2021; +[ฤ??ลก1 (1 รข&#x2C6;&#x2019; ฤ??ยธ1 ) + ฤ??ลก1 ฤ??ลก2 ฤ??ยธ2 ] ฤ??ล01 ฤ?&#x2018;ฤ รข&#x2C6;&#x2019; ฤ??ล02 ฤ?&#x2018;ฤ 2 2 รข&#x2039;ลป 4.12 so, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.5), we get the inequality ( 4.3). and the same, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.6), gives the inequality ( 4.4). รข&#x2C6;&#x17D; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ01 , ฤ?&#x2018;ล0 1 รข&#x2C6;&#x2019; ฤ?&#x2018;ฤฝ 0 ฤ?&#x2018;ฤ, ฤ?&#x2018;ฤฝ02 , ฤ?&#x2018;ล0 2
รข&#x2030;ยครข&#x2030;ยค ฤ??ลก1 (1 รข&#x2C6;&#x2019;
REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
Aziz, M.A., (2006), Periodic solutions for some systems of non-linear ordinary differential equations, M. Sc. Thesis, college of Education, University of Mosul. Butris, R. N. and Rafeq, A. Sh., (2011), Existence and Uniqueness, Solution for Non-linear Volterra Integral Equation, J. Duhok Univ. Vol.No. 1, (Pure and Eng. Sciences). Jaswon, M. A. and Symm, G. T., (1977), Integral Equations Methods in Potential Theory and Elastostatics, A subsidiary of Hart court brace Jovanovich Publishers, Academic press, London. Korol, I. I., (2005), On periodic solutions of one class of systems of differential equations, Ukraine, Math. J. Vol. 57, No. 4. Mitropolsky, Yu. A. and Martynyuk, D. I., (1979), For Periodic Solutions for the Oscillations System with Retarded Argument, Kiev, Ukraine. Rama, M. M., (1981), Ordinary Differential Equations Theory and Applications, Britain. Rafeq, A. Sh., (2009), Periodic solutions for some classes of non-linear systems of integro-differential equations, M. Sc. Thesis, college of Education, University of Duhok. Perestyuk, N. A., (1971), The periodic solutions for non-linear systems of differential equations, Math. and Meca. J., Univ. of Kiev, Kiev, Ukraine,5, 136-146. Perestyuk, N. A. and Martynyuk, D. I., (1976), Periodic solutions of a certain class systems of differential equations, Math. J., Univ. of Kiev , Ukraine,No 3. Samoilenko, A. M. and Ronto, N. I., (1976), A Numerical รข&#x20AC;&#x201C; Analytic Methods for Investigating of Periodic Solutions, Kiev, Ukraine. Samoilenko, A. M., (1966), A numerical รข&#x20AC;&#x201C; analytic methods for investigations of periodic systems of ordinary differential equations II, Kiev, Ukraine, Math. J.,No 5. Shestopalov, Y. V. and Smirnov, Y. G., (2002), Integral Equations, Karlstad University. Struble, R. A., (1962), Non-Linear Differential Equations, Mc Graw-Hall Book Company Inc., New York. Tarang, M., (2004), Stability of the spline collocation method for Volterra integro-differential equations, Thesis, University of Tartu. Tricomi, F. G., (1965), Integral Equations, Turin University, Turin, Italy.
www.ijeijournal.com
Page | 16