Ac3526062614

Page 1

www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645

A Special Type Of Differential Polynomial And Its Comparative Growth Properties Sanjib Kumar Datta1, Ritam Biswas2 1

2

Department of Mathematics, University of Kalyani, Kalyani, Dist.- Nadia, PIN- 741235, West Bengal, India. Murshidabad College of Engineering and Technology, Banjetia, Berhampore, P. O.-Cossimbazar Raj, PIN-742102, West Bengal, India

Abstract: Some new results depending upon the comparative growth rates of composite entire and meromorphic function and a special type of differential polynomial as considered by Bhooshnurmath and Prasad[3] and generated by one of the factors of the composition are obtained in this paper. AMS Subject Classification (2010) : 30D30, 30D35.

Keywords and phrases: Order (lower order), hyper order (hyper lower order), growth rate, entire function, meromorphic function and special type of differential polynomial.

I.

INTRODUCTION, DEFINITIONS AND NOTATIONS.

Let â„‚ be the set of all finite complex numbers. Also let f be a meromorphic function and g be an entire function defined on â„‚ . In the sequel we use the following two notations: đ?‘– log [đ?‘˜] đ?‘Ľ = log(log [đ?‘˜âˆ’1] đ?‘Ľ) đ?‘“đ?‘œđ?‘&#x; đ?‘˜ = 1,2,3, ‌ ; log [0] đ?‘Ľ = đ?‘Ľ and đ?‘–đ?‘– exp[đ?‘˜] đ?‘Ľ = exp đ?‘’đ?‘Ľđ?‘? đ?‘˜ −1 đ?‘Ľ đ?‘“đ?‘œđ?‘&#x; đ?‘˜ = 1,2,3, ‌ ; exp[0] đ?‘Ľ = đ?‘Ľ. The following definitions are frequently used in this paper: Definition 1 The order đ?œŒđ?‘“ and lower order đ?œ†đ?‘“ of a meromorphic function f are defined as lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“) đ?œŒđ?‘“ = đ?‘&#x; →∞ log đ?‘&#x; and log đ?‘‡(đ?‘&#x;, đ?‘“) inf đ?œ†đ?‘“ = limđ?‘&#x;â Ąâ†’âˆž . log đ?‘&#x; If f is entire, one can easily verify that [2] đ?‘€(đ?‘&#x;, đ?‘“) lim â Ąsup log đ?œŒđ?‘“ = đ?‘&#x;→∞ log đ?‘&#x; and log [2] đ?‘€(đ?‘&#x;, đ?‘“) â Ąinf đ?œ†đ?‘“ = limđ?‘&#x;→∞ . log đ?‘&#x; Definition 2 The hyper order đ?œŒđ?‘“ and hyper lower order đ?œ†đ?‘“ of a meromorphic function f are defined as follows đ?œŒđ?‘“ =

lim â Ąsup đ?‘&#x; →∞

đ?œ†đ?‘“ =

lim â Ąinf đ?‘&#x;→∞

đ?œŒđ?‘“ =

lim â Ąsup đ?‘&#x; →∞

log [2] đ?‘‡(đ?‘&#x;, đ?‘“) log đ?‘&#x;

and log [2] đ?‘‡(đ?‘&#x;, đ?‘“) . log đ?‘&#x;

If f is entire, then log [3] đ?‘€(đ?‘&#x;, đ?‘“) log đ?‘&#x;

and log [3] đ?‘€(đ?‘&#x;, đ?‘“) . log đ?‘&#x; Definition 3 The type đ?œ?đ?‘“ of a meromorphic function f is defined as follows lim â Ąsup đ?‘‡(đ?‘&#x;, đ?‘“) đ?œ?đ?‘“ = đ?‘&#x;→∞ , 0 < đ?œŒđ?‘“ < ∞. đ?‘&#x;đ?œŒđ?‘“ When f is entire, then lim â Ąsup log đ?‘€(đ?‘&#x;, đ?‘“) đ?œ?đ?‘“ = đ?‘&#x; →∞ , 0 < đ?œŒđ?‘“ < ∞. đ?‘&#x;đ?œŒđ?‘“ Definition 4 A function đ?œ†đ?‘“ (đ?‘&#x;) is called a lower proximate order of a meromorphic function f of finite lower order đ?œ†đ?‘“ if đ?œ†đ?‘“ =

(i) (ii)

lim â Ąinf đ?‘&#x;→∞

đ?œ†đ?‘“ (đ?‘&#x;) is non-negative and continuous for đ?‘&#x; ≼ đ?‘&#x;0 , say đ?œ†đ?‘“ (đ?‘&#x;) is differentiable for đ?‘&#x; ≼ đ?‘&#x;0 except possibly at isolated points at which đ?œ†đ?‘“′ (đ?‘&#x; + 0) and đ?œ†đ?‘“′ (đ?‘&#x; − 0) exists, www.ijmer.com

2606 | Page


www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645

(iii) lim đ?œ†đ?‘“ đ?‘&#x; = đ?œ†đ?‘“ ,

đ?‘&#x;→∞

(iv)

lim đ?‘&#x;đ?œ†đ?‘“′ đ?‘&#x; log đ?‘&#x; = 0

đ?‘&#x;→∞

and

(v) lim â Ąinf đ?‘&#x; →∞

đ?‘‡(đ?‘&#x;, đ?‘“)

= 1. đ?‘&#x; đ?œ† đ?‘“ (đ?‘&#x;) Definition 5 Let ‘a’ be a complex number, finite or infinite. The Nevanlinna’s deficiency and Valiron deficiency of ‘a’ with respect to a meromorphic function f are defined as đ?‘š(đ?‘&#x;, đ?‘Ž; đ?‘“) lim â Ąsup đ?‘ (đ?‘&#x;, đ?‘Ž; đ?‘“) â Ąinf đ?›ż đ?‘Ž; đ?‘“ = 1 − đ?‘&#x;→∞ = limđ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ?‘“) đ?‘‡(đ?‘&#x;, đ?‘“) and đ?‘ (đ?‘&#x;, đ?‘Ž; đ?‘“) lim â Ąsup đ?‘š(đ?‘&#x;, đ?‘Ž; đ?‘“) â Ąinf Δ đ?‘Ž; đ?‘“ = 1 − limđ?‘&#x;→∞ = đ?‘&#x;→∞ . đ?‘‡(đ?‘&#x;, đ?‘“) đ?‘‡(đ?‘&#x;, đ?‘“) Let f be a non-constant meromorphic function defined in the open complex plane â„‚. Also let n0j, n1j,‌, nkj (k ≼ 1) be nonnegative integers such that for each j, đ?‘˜đ?‘–=0 đ?‘›đ?‘–đ?‘— ≼ 1. We call đ?‘€đ?‘— đ?‘“ = đ??´đ?‘— (đ?‘“)đ?‘› 0đ?‘— (đ?‘“ (1) )đ?‘› 1đ?‘— ‌ (đ?‘“ (đ?‘˜) )đ?‘› đ?‘˜đ?‘— where đ?‘‡ đ?‘&#x;, đ??´đ?‘— = đ?‘†(đ?‘&#x;, đ?‘“), to be a differential monomial generated by f. The numbers đ?‘˜

��� =

��� �=0

and đ?‘˜

Γ� � =

(� + 1)��� �=0

are called the degree and weight of đ?‘€đ?‘— [đ?‘“] {cf. [4]} respectively. The expression đ?‘

đ?‘ƒđ?‘“ =

�� [�] � =1

is called a differential polynomial generated by f. The numbers đ?›žđ?‘ƒ = max đ?›žđ?‘€đ?‘— 1≤đ?‘— ≤đ?‘

and Γđ?‘ƒ = max Γđ?‘€đ?‘— 1≤đ?‘— ≤đ?‘

are respectively called the degree and weight of P[f] {cf. [4]}. Also we call the numbers đ?›žđ?‘ƒ = min đ?›žđ?‘€đ?‘— 1≤đ?‘— ≤đ?‘

and k ( the order of the highest derivative of f) the lower degree and the order of P[f] respectively. If đ?›žđ?‘ƒ = đ?›žđ?‘ƒ , P[f] is called a homogeneous differential polynomial. Bhooshnurmath and Prasad [3] considered a special type of differential polynomial of the form đ??š = đ?‘“ đ?‘› đ?‘„[đ?‘“] where Q[f] is a differential polynomial in f and n = 0, 1, 2,‌. In this paper we intend to prove some improved results depending upon the comparative growth properties of the composition of entire and meromorphic functions and a special type of differential polynomial as mentioned above and generated by one of the factors of the composition. We do not explain the standard notations and definitions in the theory of entire and meromorphic functions because those are available in [9] and [5].

II.

LEMMAS.

In this section we present some lemmas which will be needed in the sequel. Lemma 1 [1] If f is meromorphic and g is entire then for all sufficiently large values of r, đ?‘‡ đ?‘&#x;, đ?‘” đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ 1 + đ?‘œ 1 đ?‘‡ đ?‘€ đ?‘&#x;, đ?‘” , đ?‘“ . log đ?‘€ đ?‘&#x;, đ?‘” Lemma 2 [2] Let f be meromorphic and g be entire and suppose that 0 < đ?œ‡ < đ?œŒđ?‘” ≤ ∞. Then for a sequence of values of r tending to infinity, đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?‘‡(exp( đ?‘&#x; đ?œ‡ ), đ?‘“). đ?‘› Lemma 3 [3] Let đ??š = đ?‘“ đ?‘„[đ?‘“] where Q[f] is a differential polynomial in f. If n ≼ 1 then đ?œŒđ??š = đ?œŒđ?‘“ and đ?œ†đ??š = đ?œ†đ?‘“ . Lemma 4 Let đ??š = đ?‘“ đ?‘› đ?‘„[đ?‘“] where Q[f] is a differential polynomial in f. If n ≼ 1 then đ?‘‡(đ?‘&#x;, đ??š) lim = 1. đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ?‘“) The proof of Lemma 4 directly follows from Lemma 3. www.ijmer.com

2607 | Page


International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645 In the line of Lemma 3 we may prove the following lemma: Lemma 5 Let đ??š = đ?‘“ đ?‘› đ?‘„[đ?‘“] where Q[f] is a differential polynomial in f. If n ≼ 1 then đ?œŒđ??š = đ?œŒđ?‘“ and đ?œ†đ??š = đ?œ†đ?‘“ . Lemma 6 For a meromorphic function f of finite lower order, lower proximate order exists. The lemma can be proved in the line of Theorem 1 [7] and so the proof is omitted. Lemma 7 Let f be a meromorphic function of finite lower order đ?œ†đ?‘“ . Then for đ?›ż > 0 the function đ?‘&#x; đ?œ† đ?‘“ +đ?›żâˆ’đ?œ† đ?‘“ (đ?‘&#x;) is an increasing function of r. Proof. Since đ?‘‘ đ?œ† +đ?›żâˆ’đ?œ† (đ?‘&#x;) đ?‘“ đ?‘&#x; đ?‘“ = đ?œ†đ?‘“ + đ?›ż − đ?œ†đ?‘“ đ?‘&#x; − đ?‘&#x;đ?œ†đ?‘“′ log đ?‘&#x; đ?‘&#x; đ?œ† đ?‘“ +đ?›żâˆ’đ?œ† đ?‘“ đ?‘&#x; −1 > 0 đ?‘‘đ?‘&#x; for sufficiently large values of r, the lemma follows. Lemma 8 [6] Let f be an entire function of finite lower order. If there exists entire functions a i (i= 1, 2, 3,‌, n; n ≤ ∞) satisfying đ?‘‡ đ?‘&#x;, đ?‘Žđ?‘– = đ?‘œ{đ?‘‡(đ?‘&#x;, đ?‘“)} and đ?‘›

�(�� , �) = 1, �=1

then lim

đ?‘‡(đ?‘&#x;, đ?‘“)

đ?‘&#x;→∞ log đ?‘€(đ?‘&#x;, đ?‘“)

III.

1 = . đ?œ‹

THEOREMS.

In this section we present the main results of the paper. Theorem 1 Let f be a meromorphic function and g be an entire function satisfying đ?‘– đ?œ†đ?‘“ , đ?œ†đ?‘” are both finite and đ?‘–đ?‘– đ?‘“đ?‘œđ?‘&#x; đ?‘› ≼ 1, đ??ş = đ?‘”đ?‘› đ?‘„[đ?‘”]. Then log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąinf ≤ 3. đ?œŒđ?‘“ . 2đ?œ† đ?‘” . đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ??ş) Proof. If đ?œŒđ?‘“ = ∞, the result is obvious. So we suppose that đ?œŒđ?‘“ < ∞. Since đ?‘‡ đ?‘&#x;, đ?‘” ≤ log + đ?‘€ đ?‘&#x;, đ?‘” , in view of Lemma 1 we get for all sufficiently large values of r that đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ 1 + đ?‘œ 1 đ?‘‡(đ?‘€ đ?‘&#x;, đ?‘” , đ?‘“) i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ log{1 + đ?‘œ(1)} + log đ?‘‡(đ?‘€ đ?‘&#x;, đ?‘” , đ?‘“) i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ đ?‘œ 1 + đ?œŒđ?‘“ + đ?œ€ log đ?‘€(đ?‘&#x;, đ?‘”) i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) log đ?‘€(đ?‘&#x;, đ?‘”) lim â Ąinf â Ąinf ≤ đ?œŒđ?‘“ + đ?œ€ limđ?‘&#x;→∞ . đ?‘&#x; →∞ đ?‘‡(đ?‘&#x;, đ?‘”) đ?‘‡(đ?‘&#x;, đ?‘”) Since đ?œ€(> 0) is arbitrary, it follows that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) log đ?‘€(đ?‘&#x;, đ?‘”) lim â Ąinf â Ąinf ≤ đ?œŒđ?‘“ . limđ?‘&#x;→∞ . 1 đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ?‘”) đ?‘‡(đ?‘&#x;, đ?‘”) As by condition (v) of Definition 4 đ?‘‡(đ?‘&#x;, đ?‘”) lim â Ąinf = 1, đ?‘&#x; →∞ đ?‘&#x; đ?œ† đ?‘” (đ?‘&#x;) so for given đ?œ€(0 < đ?œ€ < 1) we get for a sequence of values of r tending to infinity that đ?‘‡ đ?‘&#x;, đ?‘” ≤ 1 + đ?œ€ đ?‘&#x; đ?œ† đ?‘” đ?‘&#x; (2) and for all sufficiently large values of r, đ?‘‡ đ?‘&#x;, đ?‘” > 1 − đ?œ€ đ?‘&#x; đ?œ† đ?‘” đ?‘&#x; (3) Since log đ?‘€(đ?‘&#x;, đ?‘”) ≤ 3đ?‘‡(2đ?‘&#x;, đ?‘”) {cf. [5]}, we have by (2), for a sequence of values of r tending to infinity, log đ?‘€(đ?‘&#x;, đ?‘”) ≤ 3đ?‘‡ 2đ?‘&#x;, đ?‘” ≤ 3 1 + đ?œ€ 2đ?‘&#x; đ?œ† đ?‘” 2đ?‘&#x; . (4) Combining (3) and (4), we obtain for a sequence of values of r tending to infinity that log đ?‘€(đ?‘&#x;, đ?‘”) 3(1 + đ?œ€) (2đ?‘&#x;)đ?œ† đ?‘” (2đ?‘&#x;) ≤ . . đ?‘‡(đ?‘&#x;, đ?‘”) (1 − đ?œ€) đ?‘&#x; đ?œ† đ?‘” (đ?‘&#x;) Now for any đ?›ż(> 0), for a sequence of values of r tending to infinity we obtain that log đ?‘€(đ?‘&#x;, đ?‘”) 3(1 + đ?œ€) (2đ?‘&#x;)đ?œ† đ?‘” +đ?›ż 1 ≤ . . đ?œ† (đ?‘&#x;) đ?œ† +đ?›żâˆ’đ?œ† (2đ?‘&#x;) đ?‘” đ?‘” đ?‘‡(đ?‘&#x;, đ?‘”) (1 − đ?œ€) (2đ?‘&#x;) đ?‘&#x; đ?‘” i.e., www.ijmer.com

2608 | Page


International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645 log đ?‘€(đ?‘&#x;, đ?‘”) 3(1 + đ?œ€) đ?œ† +đ?›ż ≤ .2 đ?‘” (5) đ?‘‡(đ?‘&#x;, đ?‘”) (1 − đ?œ€) is an increasing function of r by Lemma 7. Since đ?œ€(> 0) and đ?›ż(> 0) are arbitrary, it follows from (5)

www.ijmer.com

because đ?‘&#x; đ?œ† đ?‘” +đ?›żâˆ’đ?œ† đ?‘” (đ?‘&#x;) that

lim â Ąinf đ?‘&#x;→∞

log đ?‘€(đ?‘&#x;, đ?‘”) ≤ 3. 2đ?œ† đ?‘” . đ?‘‡(đ?‘&#x;, đ?‘”)

(6)

Thus from (1) and (6) we obtain that lim â Ąinf đ?‘&#x; →∞

log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ 3. đ?œŒđ?‘“ . 2đ?œ† đ?‘” . đ?‘‡(đ?‘&#x;, đ?‘”)

(7)

Now in view of (7) and Lemma 3, we get that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąinf log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?‘‡(đ?‘&#x;, đ?‘”) lim â Ąinf = đ?‘&#x;→∞ . lim đ?‘&#x; →∞ đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ??ş) đ?‘‡(đ?‘&#x;, đ??ş) đ?‘‡(đ?‘&#x;, đ?‘”) ≤ 3. đ?œŒđ?‘“ . 2đ?œ† đ?‘” . This proves the theorem. Theorem 2 Let f be meromorphic and g be entire such that đ?œŒđ?‘“ < ∞, đ?œ†đ?‘” < ∞ and for đ?‘› ≼ 1, đ??ş = đ?‘”đ?‘› đ?‘„ đ?‘” . Then log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąinf ≤ 1. đ?‘&#x; →∞ log đ?‘‡(đ?‘&#x;, đ??ş) Proof. Since đ?‘‡ đ?‘&#x;, đ?‘” ≤ log + đ?‘€ đ?‘&#x;, đ?‘” , in view of Lemma 1, we get for all sufficiently large values of r that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ log đ?‘‡(đ?‘€ đ?‘&#x;, đ?‘” , đ?‘“) + log{1 + đ?‘œ(1)} i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ đ?œŒđ?‘“ + đ?œ€ log đ?‘€(đ?‘&#x;, đ?‘”) + đ?‘œ(1) i.e., log [2] đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ log [2] đ?‘€ đ?‘&#x;, đ?‘” + đ?‘‚ 1 . (8) It is well known that for any entire function g, log đ?‘€(đ?‘&#x;, đ?‘”) ≤ 3đ?‘‡ 2đ?‘&#x;, đ?‘” đ?‘?đ?‘“. 5 . Then for 0 < đ?œ€ < 1 and đ?›ż > 0 , for a sequence of values of r tending to infinity it follows from (5) that log 2 đ?‘€ đ?‘&#x;, đ?‘” ≤ log đ?‘‡ đ?‘&#x;, đ?‘” + đ?‘‚ 1 . 9 Now combining (8) and (9), we obtain for a sequence of values of r tending to infinity that log 2 đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ log đ?‘‡ đ?‘&#x;, đ?‘” + đ?‘‚(1) i.e., log 2 đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ 1. (10) log đ?‘‡ đ?‘&#x;, đ?‘” As by Lemma 4, log đ?‘‡(đ?‘&#x;, đ?‘”) lim đ?‘&#x;→∞ log đ?‘‡(đ?‘&#x;, đ??ş) exists and is equal to 1, then from (10) we get that log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąinf log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) log đ?‘‡(đ?‘&#x;, đ?‘”) lim â Ąinf = đ?‘&#x;→∞ . lim đ?‘&#x;→∞ log đ?‘‡(đ?‘&#x;, đ??ş) log đ?‘‡(đ?‘&#x;, đ?‘”) đ?‘&#x;→∞ log đ?‘‡(đ?‘&#x;, đ??ş) ≤ 1.1 = 1. Thus the theorem is established. Remark 1 The condition đ?œŒđ?‘“ < ∞ is essential in Theorem 2 which is evident from the following example. Example 1 Let đ?‘“ = exp[2] đ?‘§ and đ?‘” = exp đ?‘§. Then đ?‘“đ?‘œ đ?‘” = exp[3] đ?‘§ and for đ?‘› ≼ 1, đ??ş = đ?‘”đ?‘› đ?‘„ đ?‘” . Taking đ?‘› = 1, đ??´đ?‘— = 1, đ?‘›0đ?‘— = 1 and đ?‘›1đ?‘— = â‹Ż = đ?‘›đ?‘˜đ?‘— = 0; we see that đ??ş = exp 2đ?‘§ . Now we have đ?œŒđ?‘“ =

lim â Ąsup đ?‘&#x; →∞

log [2] đ?‘€(đ?‘&#x;, đ?‘“) = log đ?‘&#x;

lim â Ąsup đ?‘&#x; →∞

log [2] (exp[2] đ?‘&#x;) =∞ log đ?‘&#x;

and đ?œ†đ?‘” =

lim â Ąinf đ?‘&#x;→∞

log [2] đ?‘€(đ?‘&#x;, đ?‘”) = log đ?‘&#x;

lim â Ąinf đ?‘&#x;→∞

log 2 (exp đ?‘&#x;) = 1. log đ?‘&#x;

Again from the inequality đ?‘‡(đ?‘&#x;, đ?‘“) ≤ log + đ?‘€(đ?‘&#x;, đ?‘“) ≤ 3đ?‘‡(2đ?‘&#x;, đ?‘“) {cf. p.18, [5]} we obtain that www.ijmer.com

2609 | Page


www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645 đ?‘‡ đ?‘&#x;, đ??ş ≤ log đ?‘€ đ?‘&#x;, đ??ş = log(exp 2đ?‘&#x;)

i.e., log đ?‘‡(đ?‘&#x;, đ??ş) ≤ log đ?‘&#x; + đ?‘‚(1) and 1 đ?‘&#x; 1 đ?‘&#x; đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≼ log đ?‘€ , đ?‘“đ?‘œ đ?‘” = exp[2] ( ) 3 2 3 2 i.e., log [2] đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≼

đ?‘&#x; +đ?‘‚ 1 . 2

Combining the above two inequalities, we have

đ?‘&#x; + đ?‘‚(1) log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) 2 ≼ . log đ?‘‡(đ?‘&#x;, đ??ş) log đ?‘&#x; + đ?‘‚(1)

Therefore lim â Ąinf đ?‘&#x;→∞

log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) = ∞, log đ?‘‡(đ?‘&#x;, đ??ş)

which is contrary to Theorem 2. Theorem 3 Let f and g be any two entire functions such that đ?œŒđ?‘” < đ?œ†đ?‘“ ≤ đ?œŒđ?‘“ < ∞ and for đ?‘› ≼ 1, đ??š = đ?‘“ đ?‘› đ?‘„[đ?‘“] and đ??ş = đ?‘”đ?‘› đ?‘„ đ?‘” . Also there exist entire functions ai (i = 1, 2,‌, n; n ≤ ∞) with đ?‘– đ?‘‡ đ?‘&#x;, đ?‘Žđ?‘– = đ?‘œ đ?‘‡ đ?‘&#x;, đ?‘” đ?‘Žđ?‘ đ?‘&#x; → ∞ đ?‘“đ?‘œđ?‘&#x; đ?‘– = 1, 2, ‌ , đ?‘› and đ?‘›

đ?‘–đ?‘–

� �� ; � = 1. �=1

Then {log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”)}2 = 0. đ?‘&#x;→∞ đ?‘‡ đ?‘&#x;, đ??š đ?‘‡(đ?‘&#x;, đ??ş) lim

Proof. In view of the inequality đ?‘‡(đ?‘&#x;, đ?‘”) ≤ log + đ?‘€(đ?‘&#x;, đ?‘”) and Lemma 1, we obtain for all sufficiently large values of r that đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ {1 + đ?‘œ 1 }đ?‘‡(đ?‘€ đ?‘&#x;, đ?‘” , đ?‘“) i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ log{1 + đ?‘œ(1)} + log đ?‘‡(đ?‘€ đ?‘&#x;, đ?‘” , đ?‘“) i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ đ?‘œ 1 + đ?œŒđ?‘“ + đ?œ€ log đ?‘€(đ?‘&#x;, đ?‘”) i.e., log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ đ?‘œ 1 + đ?œŒđ?‘“ + đ?œ€ đ?‘&#x; (đ?œŒđ?‘” +đ?œ€) . Again in view of Lemma 3, we get for all sufficiently large values of r that log đ?‘‡ đ?‘&#x;, đ??š > đ?œ†đ??š − đ?œ€ log đ?‘&#x; i.e., log đ?‘‡ đ?‘&#x;, đ??š > đ?œ†đ?‘“ − đ?œ€ log đ?‘&#x; i.e., đ?‘‡ đ?‘&#x;, đ??š > đ?‘&#x; đ?œ† đ?‘“ −đ?œ€ . Now combining (11) and (12), it follows for all sufficiently large values of r that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?‘œ 1 + (đ?œŒđ?‘“ + đ?œ€)đ?‘&#x; (đ?œŒđ?‘” +đ?œ€) ≤ . đ?‘‡(đ?‘&#x;, đ??š) đ?‘&#x; đ?œ† đ?‘“ −đ?œ€ Since đ?œŒđ?‘” < đ?œ†đ?‘“ , we can choose đ?œ€(> 0) in such a way that đ?œŒđ?‘” + đ?œ€ < đ?œ†đ?‘“ − đ?œ€. So in view of (13) and (14), it follows that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim = 0. đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ??š) Again from Lemma 4 and Lemma 8, we get for all sufficiently large values of r that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?‘œ 1 + đ?œŒđ?‘“ + đ?œ€ log đ?‘€(đ?‘&#x;, đ?‘”) ≤ đ?‘‡(đ?‘&#x;, đ??ş) đ?‘‡(đ?‘&#x;, đ??ş) i.e., lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąsup log đ?‘€(đ?‘&#x;, đ?‘”) ≤ (đ?œŒđ?‘“ + đ?œ€) đ?‘&#x; →∞ đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ??ş) đ?‘‡(đ?‘&#x;, đ??ş) i.e., www.ijmer.com

(11)

(12) (13) (14) (15)

2610 | Page


www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645 đ?‘‡(đ?‘&#x;, đ?‘”) lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim sup log đ?‘€ đ?‘&#x;, đ?‘” ≤ đ?œŒđ?‘“ + đ?œ€ đ?‘&#x;→∞ . lim đ?‘&#x;→∞ đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ??ş) đ?‘‡(đ?‘&#x;, đ??ş) đ?‘‡ đ?‘&#x;, đ?‘”

i.e., lim â Ąsup đ?‘&#x; →∞

log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ đ?œŒđ?‘“ + đ?œ€ . đ?œ‹. đ?‘‡(đ?‘&#x;, đ??ş)

Since đ?œ€(> 0) is arbitrary, it follows from above that lim â Ąsup đ?‘&#x;→∞

log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ đ?œŒđ?‘“ . đ?œ‹. đ?‘‡(đ?‘&#x;, đ??ş)

(16)

Combining (15) and (16), we obtain that {log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”)}2 đ?‘‡ đ?‘&#x;, đ??š đ?‘‡(đ?‘&#x;, đ??ş) log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) = lim . đ?‘&#x; →∞ đ?‘&#x;→∞ đ?‘‡(đ?‘&#x;, đ??š) đ?‘‡(đ?‘&#x;, đ??ş) lim â Ąsup đ?‘&#x;→∞

≤ 0. đ?œ‹. đ?œŒđ?‘“ = 0, i.e., {log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”)}2 = 0. đ?‘&#x;→∞ đ?‘‡ đ?‘&#x;, đ??š đ?‘‡(đ?‘&#x;, đ??ş) lim

This proves the theorem. Theorem 4 Let f and g be any two entire functions satisfying the following conditions: đ?‘– đ?œ†đ?‘“ > 0 đ?‘–đ?‘– đ?œŒđ?‘“ < ∞ đ?‘–đ?‘–đ?‘– 0 < đ?œ†đ?‘” ≤ đ?œŒđ?‘” and also let for đ?‘› ≼ 1, đ??š = đ?‘“ đ?‘› đ?‘„ đ?‘“ . Then [2] đ?œ†đ?‘” đ?œŒđ?‘” lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ max{ , }. đ?‘&#x; →∞ [2] log đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ đ?œŒđ?‘“ Proof. We know that for r > 0 {cf. [8]} and for all sufficiently large values of r, 1 1 đ?‘&#x; đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≼ log đ?‘€ đ?‘€ , đ?‘” + đ?‘œ 1 , đ?‘“ . (17) 3 8 4 Since đ?œ†đ?‘“ and đ?œ†đ?‘” are the lower orders of f and g respectively then for given đ?œ€(> 0) and for all sufficiently large values of r we obtain that log đ?‘€ đ?‘&#x;, đ?‘“ > đ?‘&#x; đ?œ† đ?‘“ −đ?œ€ and log đ?‘€ đ?‘&#x;, đ?‘” > đ?‘&#x; đ?œ† đ?‘” −đ?œ€ where 0 < đ?œ€ < min đ?œ†đ?‘“ , đ?œ†đ?‘” . So from (17) we have for all sufficiently large values of r, đ?œ† đ?‘“ −đ?œ€ 1 1 đ?‘&#x; đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?‘€ ,đ?‘” + đ?‘œ 1 3 8 4 i.e., 1 1 đ?‘&#x; đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ { đ?‘€( , đ?‘”)}đ?œ† đ?‘“ −đ?œ€ 3 9 4 i.e., đ?‘&#x; log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?‘‚ 1 + đ?œ†đ?‘“ − đ?œ€ log đ?‘€( , đ?‘”) 4 i.e., đ?‘&#x; log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?‘‚ 1 + đ?œ†đ?‘“ − đ?œ€ ( )đ?œ† đ?‘” −đ?œ€ 4 i.e., log 2 đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≼ đ?‘‚ 1 + đ?œ†đ?‘” − đ?œ€ log đ?‘&#x; . 18 Again in view of Lemma 1, we get for a sequence of values r tending to infinity that log 2 đ?‘‡ đ?‘&#x;, đ??š ≤ đ?œ†đ??š + đ?œ€ log đ?‘&#x; i.e., log 2 đ?‘‡ đ?‘&#x;, đ??š ≤ đ?œ†đ?‘“ + đ?œ€ log đ?‘&#x; . (19) Combining (18) and (19), it follows for a sequence of values of r tending to infinity that log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?‘‚ 1 + đ?œ†đ?‘” − đ?œ€ log đ?‘&#x; ≼ . log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ + đ?œ€ log đ?‘&#x; Since đ?œ€(> 0) is arbitrary, we obtain that log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?œ†đ?‘” ≼ . log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ Again from (17), we get for a sequence of values of r tending to infinity that lim â Ąsup đ?‘&#x; →∞

www.ijmer.com

(20)

2611 | Page


www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645 đ?‘&#x; đ?œŒ −đ?œ€ đ?‘” log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?‘‚ 1 + (đ?œ†đ?‘“ − đ?œ€)( ) 4

i.e., log 2 đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≼ đ?‘‚ 1 + đ?œŒđ?‘” − đ?œ€ log đ?‘&#x; . Also in view of Lemma 5, for all sufficiently large values of r we have log [2] đ?‘‡ đ?‘&#x;, đ??š ≤ đ?œŒđ??š + đ?œ€ log đ?‘&#x; i.e.,

(21)

log [2] đ?‘‡ đ?‘&#x;, đ??š ≤ đ?œŒđ?‘“ + đ?œ€ log đ?‘&#x; . Now from (21) and (22), it follows for a sequence of values of r tending to infinity that log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?‘‚ 1 + đ?œŒđ?‘” − đ?œ€ log đ?‘&#x; ≼ . log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œŒ + đ?œ€ log đ?‘&#x;

(22)

đ?‘“

As đ?œ€(0 < đ?œ€ < đ?œŒđ?‘” ) is arbitrary, we obtain from above that [2] đ?œŒđ?‘” lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ . đ?‘&#x; →∞ [2] logâ Ą đ?‘‡(đ?‘&#x;, đ??š) đ?œŒđ?‘“ Therefore from (20) and (23), we get that [2] đ?œ†đ?‘” đ?œŒđ?‘” lim â Ąsup log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ max{ , }. đ?‘&#x; →∞ log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ đ?œŒđ?‘“ Thus the theorem is established. Theorem 5 Let f be meromorphic and g be entire such that đ?‘– 0 < đ?œ†đ?‘“ < đ?œŒđ?‘“ , đ?‘–đ?‘– đ?œŒđ?‘” < ∞, đ?‘–đ?‘Ł đ?‘“đ?‘œđ?‘&#x; đ?‘› ≼ 1, đ??š = đ?‘“ đ?‘› đ?‘„ đ?‘“ . Then đ?œ†đ?‘” đ?œŒđ?‘” log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąinf ≤ min{ , }. đ?‘&#x; →∞ log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ đ?œŒđ?‘“ Proof. In view of Lemma 1 and the inequality đ?‘‡ đ?‘&#x;, đ?‘” ≤ log + đ?‘€ đ?‘&#x;, đ?‘” , we obtain for all sufficiently large values of r that log đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ đ?‘œ 1 + đ?œŒđ?‘“ + đ?œ€ log đ?‘€(đ?‘&#x;, đ?‘”). Also for a sequence of values of r tending to infinity, log đ?‘€(đ?‘&#x;, đ?‘”) ≤ đ?‘&#x; đ?œ† đ?‘” +đ?œ€ . Combining (24) and (25), it follows for a sequence of values of r tending to infinity that log đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ đ?‘œ 1 + (đ?œŒđ?‘“ + đ?œ€)đ?‘&#x; đ?œ† đ?‘” +đ?œ€ i.e., log đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ đ?‘&#x; đ?œ† đ?‘” +đ?œ€ {đ?‘œ 1 + (đ?œŒđ?‘“ + đ?œ€)} i.e., log [2] đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ đ?‘‚ 1 + đ?œ†đ?‘” + đ?œ€ log đ?‘&#x; . Again in view of Lemma 5, we obtain for all sufficiently large values of r that log 2 đ?‘‡ đ?‘&#x;, đ??š > đ?œ†đ??š − đ?œ€ log đ?‘&#x;

(23)

đ?‘–đ?‘–đ?‘– đ?œŒđ?‘“ < ∞ and

(24) (25)

(26)

i.e., log 2 đ?‘‡ đ?‘&#x;, đ??š > đ?œ†đ?‘“ − đ?œ€ log đ?‘&#x; . Now from (26) and (27), we get for a sequence of values of r tending to infinity that đ?‘‚ 1 + đ?œ†đ?‘” + đ?œ€ log đ?‘&#x; log [2] đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ . 2 log đ?‘‡ đ?‘&#x;, đ??š đ?œ†đ?‘“ − đ?œ€ log đ?‘&#x;

(27)

As đ?œ€(> 0) is arbitrary, it follows that đ?œ†đ?‘” log [2] đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ . log 2 đ?‘‡ đ?‘&#x;, đ??š đ?œ†đ?‘“ In view of Lemma 1, we obtain for all sufficiently large values of r that log 2 đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≤ đ?‘‚ 1 + đ?œŒđ?‘” + đ?œ€ log đ?‘&#x; . Also by Remark 1, it follows for a sequence of values of r tending to infinity that log 2 đ?‘‡ đ?‘&#x;, đ??š > đ?œŒđ??š − đ?œ€ log đ?‘&#x; i.e., lim â Ąinf đ?‘&#x; →∞

log 2 đ?‘‡ đ?‘&#x;, đ??š > đ?œŒđ?‘“ − đ?œ€ log đ?‘&#x; . Combining (29) and (30), we get for a sequence of values of r tending to infinity that

www.ijmer.com

(28) (29)

30

2612 | Page


www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645 log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?‘‚ 1 + đ?œŒđ?‘” + đ?œ€ log đ?‘&#x; ≤ . log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œŒ − đ?œ€ log đ?‘&#x; đ?‘“

Since đ?œ€(> 0) is arbitrary, it follows from above that lim â Ąinf đ?‘&#x; →∞

log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) đ?œŒđ?‘” ≤ . log [2] đ?‘‡(đ?‘&#x;, đ??š) đ?œŒđ?‘“

(31)

Now from (28) and (31), we get that lim â Ąinf đ?‘&#x; →∞

đ?œ†đ?‘” đ?œŒđ?‘” log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≤ min{ , }. [2] log đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ đ?œŒđ?‘“

This proves the theorem. The following theorem is a natural consequence of Theorem 4 and Theorem 5: Theorem 6 Let f and g be any two entire functions such that đ?‘– 0 < đ?œ†đ?‘“ < đ?œŒđ?‘“ < ∞, đ?‘–đ?‘– 0 < đ?œ†đ?‘“ ≤ đ?œŒđ?‘“ < ∞, đ?‘–đ?‘–đ?‘– 0 < đ?œ†đ?‘” ≤ đ?œŒđ?‘” < ∞ and đ?‘–đ?‘Ł đ?‘“đ?‘œđ?‘&#x; đ?‘› ≼ 1, đ??š = đ?‘“ đ?‘› đ?‘„ đ?‘“ . Then đ?œ†đ?‘” đ?œŒđ?‘” đ?œ†đ?‘” đ?œŒđ?‘” log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) lim â Ąinf ≤ min{ , } ≤ max{ , } ≤ đ?‘&#x;→∞ [2] log đ?‘‡(đ?‘&#x;, đ??š) đ?œ†đ?‘“ đ?œŒđ?‘“ đ?œ†đ?‘“ đ?œŒđ?‘“

lim â Ąsup đ?‘&#x;→∞

log [2] đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) . log [2] đ?‘‡(đ?‘&#x;, đ??š)

Theorem 7 Let f be meromorphic and g be entire satisfying 0 < đ?œ†đ?‘“ ≤ đ?œŒđ?‘“ < ∞,đ?œŒđ?‘” > 0 and also let for đ?‘› ≼ 1, đ??š = đ?‘“ đ?‘› đ?‘„[đ?‘“]. Then đ?œŒđ?‘” [2] , đ?‘“đ?‘œ đ?‘”) lim â Ąsup log đ?‘‡(exp đ?‘&#x; = ∞, đ?‘&#x; →∞ log [2] đ?‘‡(exp đ?‘&#x;đ?œ‡ , đ??š) where 0 < đ?œ‡ < đ?œŒđ?‘” . Proof. Let 0 < đ?œ‡ ′ < đ?œŒđ?‘” . Then in view of Lemma 2, we get for a sequence of values of r tending to infinity that log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ log đ?‘‡(exp(đ?‘&#x; đ?œ‡ ) , đ?‘“) i.e., ′ log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?œ†đ?‘“ − đ?œ€ log{exp(đ?‘&#x; đ?œ‡ )} i.e., ′ log đ?‘‡(đ?‘&#x;, đ?‘“đ?‘œ đ?‘”) ≼ đ?œ†đ?‘“ − đ?œ€ đ?‘&#x; đ?œ‡ i.e., log [2] đ?‘‡ đ?‘&#x;, đ?‘“đ?‘œ đ?‘” ≼ đ?‘‚ 1 + đ?œ‡ ′ log đ?‘&#x; . (32) Again in view of Lemma 3, we have for all sufficiently large values of r, log đ?‘‡(exp đ?‘&#x; đ?œ‡ , đ??š) ≤ đ?œŒđ??š + đ?œ€ log{exp(đ?‘&#x; đ?œ‡ )} i.e., log đ?‘‡(exp đ?‘&#x; đ?œ‡ , đ??š) ≤ đ?œŒđ?‘“ + đ?œ€ đ?‘&#x; đ?œ‡ i.e., log đ?‘‡(exp đ?‘&#x; đ?œ‡ , đ??š) ≤ đ?‘‚ 1 + đ?œ‡ log đ?‘&#x; . (33) Now combining (32) and (33), we obtain for a sequence of values of r tending to infinity that log [2] đ?‘‡(exp đ?‘&#x; đ?œŒđ?‘” , đ?‘“đ?‘œ đ?‘”) đ?‘‚ 1 + đ?œ‡â€˛ đ?‘&#x; đ?œŒđ?‘” ≼ log [2] đ?‘‡(exp đ?‘&#x;đ?œ‡ , đ??š) đ?‘‚ 1 + đ?œ‡ log đ?‘&#x; from which the theorem follows. Remark 2 The condition đ?œŒđ?‘” > 0 is necessary in Theorem 7 as we see in the following example. Example 2 Let đ?‘“ = exp đ?‘§ , đ?‘” = đ?‘§ and đ?œ‡ = 1 > 0 . Then đ?‘“đ?‘œ đ?‘” = exp đ?‘§ and for đ?‘› ≼ 1, đ??š = đ?‘“ đ?‘› đ?‘„ đ?‘“ . Taking đ?‘› = 1, đ??´đ?‘— = 1, đ?‘›0đ?‘— = 1 and đ?‘›1đ?‘— = â‹Ż = đ?‘›đ?‘˜đ?‘— = 0; we see that đ??š = exp 2đ?‘§. Then log [2] đ?‘€(đ?‘&#x;, đ?‘“) = 1, log đ?‘&#x; log [2] đ?‘€(đ?‘&#x;, đ?‘“) â Ąinf đ?œ†đ?‘“ = limđ?‘&#x;→∞ =1 log đ?‘&#x;

đ?œŒđ?‘“ =

lim â Ąsup đ?‘&#x;→∞

đ?œŒđ?‘” =

lim â Ąsup đ?‘&#x;→∞

and

Also we get that

log [2] đ?‘€(đ?‘&#x;, đ?‘”) = 0. log đ?‘&#x;

đ?‘&#x; đ?‘‡ đ?‘&#x;, đ?‘“ = . đ?œ‹ www.ijmer.com

2613 | Page


www.ijmer.com

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2606-2614 ISSN: 2249-6645

Therefore đ?‘‡ exp đ?‘&#x; đ?œŒđ?‘” , đ?‘“đ?‘œ đ?‘” =

đ?‘’ đ?œ‹

and đ?‘‡ exp đ?‘&#x; đ?œ‡ , đ??š =

2 exp đ?‘&#x; . đ?œ‹

So from the above two expressions we obtain that log [2] đ?‘‡(exp đ?‘&#x; đ?œŒđ?‘” , đ?‘“đ?‘œ đ?‘”) đ?‘‚(1) = [2] đ?œ‡ log đ?‘‡(exp đ?‘&#x; , đ??š) log đ?‘&#x; + đ?‘‚(1) i.e., đ?œŒđ?‘” [2] , đ?‘“đ?‘œ đ?‘”) lim â Ąsup log đ?‘‡(exp đ?‘&#x; = 0, đ?‘&#x; →∞ [2] log đ?‘‡(exp đ?‘&#x;đ?œ‡ , đ??š) which contradicts Theorem 7.

REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9]

Bergweiler, W.: On the Nevanlinna Characteristic of a composite function, Complex Variables, Vol. 10 (1988), pp. 225-236. Bergweiler, W.: On the growth rate of composite meromorphic functions, Complex Variables, Vol. 14 (1990), pp. 187-196. Bhooshnurmath, S. S. and Prasad, K. S. L. N.: The value distribution of some differential polynomials, Bull. Cal. Math. Soc., Vol. 101, No. 1 (2009), pp. 55- 62. Doeringer, W.: Exceptional values of differential polynomials, Pacific J. Math., Vol. 98, No. 1 (1982), pp. 55-62. Hayman, W. K.: Meromorphic functions, The Clarendon Press, Oxford, 1964. Lin, Q. and Dai, C.: On a conjecture of Shah concerning small functions, Kexue Tongbao (English Ed.), Vol. 31, No. 4 (1986), pp. 220-224. Lahiri, I.: Generalised proximate order of meromorphic functions, Mat. Vensik, Vol. 41 (1989), pp. 9-16. Niino, K. and Yang, C. C.: Some growth relationships on factors of two composite entire functions, Factorization Theory of Meromorphic Functions and Related Topics, Marcel Dekker, Inc. (New York and Basel), (1982), pp. 95- 99. Valiron, G.: Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.

www.ijmer.com

2614 | Page


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.