International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 5 Issue 7 Ç July. 2017 Ç PP. 06-13
A New Approach on Proportional Fuzzy Likelihood Ratio orderings of Triangular Fuzzy Random Variables 1
D.Rajan,2C.Senthilmurugan
1
Associate Professor Of Mathematics, T.B.M.L.College, Porayar South India. Assistant Professor Of Mathematics, Swami Dayananda College Of Arts And Science, Manjakkudi , South India.
2
ABSTRACT: In this chapter, we introduce a new approach on the concept of proportional fuzzy likelihood ratio orderings, increasing and decreasing proportional fuzzy likelihood ratio orderings of triangular fuzzy random variables are presented. Based on these orderings, some theorems are also established.
I.
INTRODUCTION
Likelihood ratio ordering established in stochastic processes is very useful in developing bounds and approximation for performance measures of stochastic systems. Two triangular fuzzy random variables R and T with parameters means đ?œ‡1 , đ?œ‡2 and standard deviationsđ?œŽ1 , đ?œŽ2 respectively, are ordered in the sense of likelihood ratio ordering, when the ratio
P{(R LÎą ď€(ď Ąď€1) Ďƒ2 ď€Îź2 ) ď‚ł 0 ďƒš(R U Îą + (ď Ąď€1)Ďƒ2 ď€Îź2 ) ď‚Ł 0} P{(đ?‘‡ÎąL ď€ ď Ąď€1 Ďƒ2 ď€Îź2 )ď‚ł 0 ďƒš (đ?‘‡ÎąU + ď Ąď€1 Ďƒ2 ď€Îź2 ) ď‚Ł 0}
of their probability density functions is
also an increasing function. In this chapter, we discuss about the Proportional fuzzy likelihood ratio orderings of triangular fuzzy random variables based on Kwakernaak’s [2] fuzzy random variables. The association of the paper is as follows. In section 2, briefly mention the ď Ą-cut of the triangular fuzzy random variables with parameters mean ď and standard deviation ď ł and some new definitions of the proportional, increasing and decreasing proportional fuzzy likelihood ratio orderings are presented. In section 3, we prove some theorems of proportional, increasing and decreasing proportional fuzzy likelihood ratio orderings are proved. 1.1Preliminaries In this section some well - known basic definitions and notions will be discussed. Definition:1.2.1 A fuzzy set A on the universal set X is defined as the set ordered pairs A = {(x, ÂľA(x)) : x ∈X, ÂľA(x) ∈ [0,1]}, where y= ÂľA(x) is its membership function. Definition:1.2.2 The support of fuzzy set A is the set of all points x in X such thatÂľA(x)>0. That is, Support (A) = {x ∈X / ÂľA(x) > 0}. Definition: 1.2.3 The ď Ą-cut of ď Ą-level set of fuzzy set A is a set consisting of those elements of the universe X whose membership values exceed the threshold level ď Ą. (i.e.,) Aď Ą = {X / ď A(x) ď‚łď Ą} Definition: 3.2.4 A fuzzy set A on R must possess at least the following three properties to qualify as a fuzzy number. i. A must be a normal fuzzy set ii. Aď Ą must be closed interval for every ď ĄďƒŽ [0,1] iii. The support of A, 0+A must be bounded. Among the various shapes of fuzzy numbers, triangular fuzzy number (TFN) is the most popular one. A TFN is defined as follows:
www.ijres.org
6 | Page
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of …. Definition: 1.2.5 Atriangular fuzzy number A = (a1, a2, a3) with a1 ,a2, a3 ∈R, a1 a2 a3, is a fuzzy number with membership function for x a1 0 xa 1 A(x) = for a1 x a 2 a 2 a1 a3 x for a x a 2 3 a3 a 2 for x a3 0
It is easy to check that the -cut of a TFN A = (a1, a2, a3) is of the form A = [a1 , a 3 ] with
a 1 = (a2 a1) + a1, a 3 = (a3 a2) + a3 Definition: 3.2.6 If R and T are triangular fuzzy random variables with means 1, 2 and standard deviations 1, 2 respectively. Then R is said to be fuzzy likelihood ratio order of triangular fuzzy number (LRO) which is less than (or) equal to T, if whenever s t and u v. Here,s = 11,t = 22, u = 1 + 1andv = 2 + 2. P {(RLα (1)2 2) 0 (RUα + (1)2 2) 0} P {(TαL (1)1 1) 0 (TαU + (1)1 1) 0} P {(RLα (1)1 1) 0 (RUα + (1)1 1) 0} P {(TαL (1)2 2) 0 (TαU + (1)2 2) 0} It can also be written as P TαL 1 σ1 μ1 0 TαU + 1 σ1 μ1 0 P RLα 1 σ1 μ1 0 RUα + 1 σ1 μ1 0 ≤ We will write R
LRO
P{(TαL 1 σ2 μ2 ) 0 (TαU + 1 σ2 μ2 ) 0}
P{(RLα (1) σ2 μ2 ) 0 (RUα + (1)σ2 μ2 ) 0}
T.
Definition: 1.2.7 If R and T are triangular fuzzy random variables with means 1, 2 and standard deviations 1, 2 respectively, and T has a log – concave function of the triangular fuzzy random variable. Then R is said to be log – concave function of fuzzy likelihood ratio order of triangular fuzzy number (LCFLR), which is less than (or) equal to T. if whenever s t andu v. Here, s = 11, t = 22,u = 1 + 1 and v = 2 + 2. Since T is log – concave function of triangular fuzzy random variable. ThenP {bTαL + (1-b)TαU } ≥ P { TαL b } P {{ TαU 1−b } P {(bTαL (1)bσ1 bμ1 ) 0 ((1 − b)TαU + (1)(1 − b)σ1 (1 − b)μ1 ) 0} b
1−b
≥P { (TαL (1)σ1 μ1 ) 0 } P { (TαU + (1)σ1 μ1 ) 0 }, 0 ≤ b ≤ 1. Now, (LCFLR) can be written as P{(bTαL 1 bσ1 bμ1 ) 0 ((1 − b)TαU + (1)(1 − b)σ1 (1 − b)μ1 )) 0}
. P{(RLα 1 σ1 μ1 ) 0 (RUα + 1 σ1 μ1 ) 0} P{(bTαL 1 bσ2 bμ2 ) 0 ( 1 − b TαU + 1 1 − b σ2 (1 − b)μ2 )) 0} ≤ . P{(RLα 1 σ2 μ2 ) 0 (RUα + 1 σ2 μ2 ) 0} (3.2.1) And it can also be written as P{ (TαL 1 σ1 μ1 ) 0
b
} P{ (TαU + 1 σ1 μ1 ) 0
1−b
}
P{ RLα 1 σ1 μ1 0 (RUα + (1)σ1 μ1 ) 0} ≤
P{ (TαL 1 σ2 μ2 ) 0
b
} P{ (TαU + 1 σ2 μ2 ) 0
1−b
P{(RLα 1 σ2 μ2 ) 0 (RUα + 1 σ2 μ2 ) 0}
(3.2.2)
www.ijres.org
7 | Page
}
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of â&#x20AC;Ś. Here, LCFLR of the equation (3.2.1) â&#x2030;Ľ equation (3.2.2), otherwise, is called LCONFLROTFN. It will write R ď&#x201A;ŁLCFLR T andR ď&#x201A;ŁLCONFLR T respectively. Here, the constants b and (1-b) are the left and right part of the triangular fuzzy number.In this chapter, we use the equation (3.2.1) only. 3.3. Proportional Fuzzy Likelihood Ratio Order of Triangular Fuzzy Random Variables 1.3.1 Proportional Fuzzy Likelihood Ratio Order Definition: 1.3.1.1 If R and T are triangular fuzzy random variables with means đ?&#x153;&#x2021;1 , đ?&#x153;&#x2021;2 and standard deviations đ?&#x153;&#x17D;1 ,đ?&#x153;&#x17D;2 respectively. Then R is said to be proportional fuzzy likelihood ratio order of the triangular fuzzy number (PFLR) which is less than (or)equal to T. if whenever s â&#x2030;¤ t and u â&#x2030;¤ v. Here, s = ď 1ď&#x20AC;ď ł1, t = ď 2ď&#x20AC;ď ł2, u = ď 1 + ď ł1, v = ď 2 + ď ł2and đ?&#x153;&#x2020; < 1. P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1) ď ł2ď&#x20AC;ď 2) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + (ď Ąď&#x20AC;1)ď ł2ď&#x20AC;ď 2) ď&#x201A;Ł 0} L P{(ÎťTÎą ď&#x20AC; (ď Ąď&#x20AC;1) Îťď ł1ď&#x20AC;Îťď 1) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1) Îťď ł1 ď&#x20AC;Îťď 1) ď&#x201A;Ł 0} ď&#x201A;Ł P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1) ď ł1 ď&#x20AC;ď 1) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + (ď Ąď&#x20AC;1)ď ł1 ď&#x20AC;ď 1) ď&#x201A;Ł 0} P{( ÎťTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)Îťď ł2 ď&#x20AC;Îťď 2) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1) Îťď ł2ď&#x20AC;Îťď 2) ď&#x201A;Ł 0} It can be written as P {(ÎťTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1)ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} â&#x2030;¤
P {(ÎťT LÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťT U Îą + ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;Ł 0} P {(R LÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (R U Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0}
(3.3.1.1)
Here, the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0, 1). We will write R ď&#x201A;ŁPFLR T. Theorem: 1.3.1.2 If R and T are triangular fuzzy random variables with means đ?&#x153;&#x2021;1 , đ?&#x153;&#x2021;2 and standard deviations đ?&#x153;&#x17D;1 ,đ?&#x153;&#x17D;2 respectively. If R ď&#x201A;ŁPFLROTFN T. Thenđ?&#x153;&#x2021;đ?&#x2018;&#x2026; â&#x2030;¤ đ?&#x153;&#x2021; đ?&#x2018;&#x2021; . Proof: If R and T are triangular fuzzy random variables with means đ?&#x153;&#x2021;1 , đ?&#x153;&#x2021;2 and standard deviations đ?&#x153;&#x17D;1 ,đ?&#x153;&#x17D;2 respectively. Whenever, P{đ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 â&#x2030;¤ R â&#x2030;¤ đ?&#x153;&#x2021;1 + đ?&#x153;&#x17D;1 } = P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1) đ?&#x153;&#x17D;1 ď&#x20AC; đ?&#x153;&#x2021;1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (Rđ?&#x2018;&#x2C6;Îą + ď Ąď&#x20AC;1 đ?&#x153;&#x17D;1 ď&#x20AC;đ?&#x153;&#x2021;1 ) ď&#x201A;Ł 0} = P {(RLÎą ď&#x20AC;ď Ąđ?&#x153;&#x17D;1 ď&#x20AC; đ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + Îą đ?&#x153;&#x17D;1 ď&#x20AC; đ?&#x153;&#x2021;1 + đ?&#x153;&#x17D;1 ) ď&#x201A;Ł 0} (3.3.1.2) P {Îź1 â&#x2C6;&#x2019; Ď&#x192;1 â&#x2030;¤ T â&#x2030;¤ Îź1 + Ď&#x192;1 } = P{(TÎąL ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (TÎąU + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} = P {(TÎąL ď&#x20AC;ď ĄĎ&#x192;1 ď&#x20AC; Îź1 â&#x2C6;&#x2019; Ď&#x192;1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (TÎąU + ď ĄĎ&#x192;1 ď&#x20AC; (Îź1 + Ď&#x192;1 )) ď&#x201A;Ł 0} (3.3.1.3) P{Îź2 â&#x2C6;&#x2019; Ď&#x192;2 â&#x2030;¤ R â&#x2030;¤ Îź2 + Ď&#x192;2 } = P {(RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} = P{(RLÎą ď&#x20AC;ď ĄĎ&#x192;2 ď&#x20AC; Îź2 â&#x2C6;&#x2019; Ď&#x192;2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď ĄĎ&#x192;2 ď&#x20AC; Îź2 + Ď&#x192;2 ) ď&#x201A;Ł 0}(3.3.1.4) P {Îź2 â&#x2C6;&#x2019; Ď&#x192;2 â&#x2030;¤T â&#x2030;¤ Îź2 + Ď&#x192;2 } = P {(TÎąL ď&#x20AC; (ď Ąď&#x20AC;1)ď ł2 ď&#x20AC;ď 2) ď&#x201A;ł 0 ď&#x192;&#x161; (TÎąU + (ď Ąď&#x20AC;1)ď ł2 ď&#x20AC;ď 2) ď&#x201A;Ł 0} = P{(TÎąL ď&#x20AC;ď ĄĎ&#x192;2 ď&#x20AC;(Îź2 â&#x2C6;&#x2019; Ď&#x192;2 )) ď&#x201A;ł 0 ď&#x192;&#x161; (TÎąU + ď ĄĎ&#x192;2 ď&#x20AC;(Îź2 + Ď&#x192;2 )) ď&#x201A;Ł 0}(3.3.1.5) P {Îź2 â&#x2C6;&#x2019; Ď&#x192;2 â&#x2030;¤ ÎťT â&#x2030;¤ Îź2 + Ď&#x192;2 } = P {( ÎťTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)Îťď ł2 ď&#x20AC;Îťď 2) ď&#x201A;ł0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1)Îťď ł2ď&#x20AC; Îťď 2) ď&#x201A;Ł 0} = P{(ÎťTÎąL ď&#x20AC;ď ĄÎťĎ&#x192;2 ď&#x20AC; Îť(Îź2 â&#x2C6;&#x2019; Ď&#x192;2 )) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + ď ĄÎťĎ&#x192;2 ď&#x20AC; Îť(Îź2 + Ď&#x192;2 )) ď&#x201A;Ł 0}(3.3.1.6) P {Îź2 â&#x2C6;&#x2019; Ď&#x192;2 â&#x2030;¤
T Îť
â&#x2030;¤ Îź 2 + Ď&#x192;2 } = P T LÎą
=P
a
â&#x2C6;&#x2019;
ÎąĎ&#x192;2 Îť
T LÎą a
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;2
â&#x2C6;&#x2019;
Îť
Îź2 â&#x2C6;&#x2019;Ď&#x192;2
â&#x2C6;&#x2019;
â&#x2C6;&#x2019;
Îź2 Îť
â&#x2030;Ľ 0 â&#x2C6;¨
Îť đ?&#x2018;&#x2021;
TU Îą
â&#x2030;Ľ 0 â&#x2C6;¨ TU Îą a
+
a ÎąĎ&#x192;2 Îť
+ â&#x2C6;&#x2019;
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;2 Îť Îź2 â&#x2C6;&#x2019;Ď&#x192;2
â&#x2C6;&#x2019;
Îź2 Îť
â&#x2030;¤ 0
â&#x2030;¤ 0
Îť
(3.3.1.7)
Let đ?&#x2018;&#x2021;đ?&#x153;&#x2020; be the triangular fuzzy number of . Suppose, by contradiction, that đ?&#x153;&#x2021;đ?&#x2018;&#x2026; > đ?&#x153;&#x2021; đ?&#x2018;&#x2021; . đ?&#x153;&#x2020;
1
đ?&#x2018;&#x2021;
1
Since, P {đ?&#x153;&#x2021; â&#x2C6;&#x2019; Ď&#x192; â&#x2030;¤ đ?&#x153;&#x2020;T â&#x2030;¤ đ?&#x153;&#x2021; + Ď&#x192;} = P{đ?&#x153;&#x2021; â&#x2C6;&#x2019; Ď&#x192; â&#x2030;¤ â&#x2030;¤ đ?&#x153;&#x2021; + Ď&#x192;}, Where đ?&#x153;&#x2020; = <1, a>1. đ?&#x153;&#x2020; đ?&#x153;&#x2020; đ?&#x2018;&#x17D; In triangular fuzzy random variable, this equation can be written as follows: (1) If T is a triangular fuzzy random variable. Then P {( ÎťTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)Îťď ł2 ď&#x20AC;Îť ď 2) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1)Îťď ł2 ď&#x20AC; Îťď 2) ď&#x201A;Ł 0} TL
1
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;
TU
Îź
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;
Îź
2 2 = P Îąâ&#x2C6;&#x2019; â&#x2C6;&#x2019; 2 â&#x2030;Ľ 0 â&#x2C6;¨ Îą + â&#x2C6;&#x2019; 2 â&#x2030;¤ 0 Îť a Îť Îť a Îť Îť (2) If R is a triangular fuzzy random variable. Then P {( ÎťRLÎąď&#x20AC; (ď Ąď&#x20AC;1) Îťď ł2ď&#x20AC;Îť ď 2) ď&#x201A;ł 0 ď&#x192;&#x161;(ÎťRUÎą + (ď Ąď&#x20AC;1)Îť ď ł2ď&#x20AC; Îťď 2) ď&#x201A;Ł 0}
=
1 Îť
P
R LÎą a
â&#x2C6;&#x2019;
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;2 Îť
â&#x2C6;&#x2019;
Îź2 Îť
â&#x2030;Ľ 0 â&#x2C6;¨
RU Îą a
+
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;2 Îť
â&#x2C6;&#x2019;
Îź2 Îť
â&#x2030;¤ 0 (3.3.1.8)
www.ijres.org
8 | Page
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of â&#x20AC;Ś. 1
P{đ?&#x153;&#x2020;đ?&#x153;&#x2021; â&#x2C6;&#x2019;đ?&#x153;&#x2020;Ď&#x192; â&#x2030;¤đ?&#x153;&#x2020;T â&#x2030;¤ đ?&#x153;&#x2020;đ?&#x153;&#x2021; +đ?&#x153;&#x2020;Ď&#x192;}
đ?&#x2018;&#x17D;
P{đ?&#x153;&#x2021; â&#x2C6;&#x2019;Ď&#x192; â&#x2030;¤ đ?&#x2018;&#x2026; â&#x2030;¤ đ?&#x153;&#x2021; +Ď&#x192;}
Where đ?&#x153;&#x2020; = <1,a>1.It follows from the assumption that
is increasing in triangular fuzzy
random variable for all đ?&#x153;&#x2020; in (0, 1). Hence, S (đ?&#x2018;&#x2021;đ?&#x153;&#x2020; - R) = 1 for each đ?&#x153;&#x2020; in (0, 1). Here, S (đ?&#x2018;&#x2021;đ?&#x153;&#x2020; - R) means that the number of sign changes of the functionsđ?&#x2018;&#x2021;đ?&#x153;&#x2020; and R. (i.e.,) R and đ?&#x2018;&#x2021;đ?&#x153;&#x2020; are stochastically ordered for eachđ?&#x153;&#x2020; in (0, 1). In đ?&#x153;&#x2021; đ?&#x153;&#x2021; đ?&#x2018;&#x2021; particular, by taking đ?&#x153;&#x2020; = đ?&#x2018;&#x2021; <1. It follows that the triangular fuzzy random variables R and đ?&#x2018;&#x2026; are stochastically ordered. Since R and
đ?&#x153;&#x2021;đ?&#x2018;&#x2026; đ?&#x153;&#x2021;đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x153;&#x2021;đ?&#x2018;&#x2021;
đ?&#x153;&#x2021;đ?&#x2018;&#x2021;
have the same mean, ordinary stochastic order is possible. If they have the same
distribution. This contradicts (3.3.8) and hence đ?&#x153;&#x2021;đ?&#x2018;&#x2026; â&#x2030;¤ đ?&#x153;&#x2021; đ?&#x2018;&#x2021; holds. Theorem: 1.3.1.3: If R â&#x2030;¤PFLR T, then đ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 â&#x2030;¤ đ?&#x153;&#x2021;2 â&#x2C6;&#x2019; đ?&#x153;&#x17D;2 andđ?&#x153;&#x2021;1 + đ?&#x153;&#x17D;1 â&#x2030;¤ đ?&#x153;&#x2021;2 + đ?&#x153;&#x17D;2 . Proof: Supposeđ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 > đ?&#x153;&#x2021;2 â&#x2C6;&#x2019; đ?&#x153;&#x17D;2 . Let â&#x2C6;&#x2C6;1 and â&#x2C6;&#x2C6;2 be such that đ?&#x153;&#x2021;2 â&#x2C6;&#x2019; đ?&#x153;&#x17D;2 <â&#x2C6;&#x2C6;1 < đ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 < â&#x2C6;&#x2C6;2 <min{đ?&#x153;&#x2021;1 + đ?&#x153;&#x17D;1 , đ?&#x153;&#x2021;2 + đ?&#x153;&#x17D;2 } and letđ?&#x153;&#x2020; â&#x2C6;&#x2C6; (0,1) such that đ?&#x153;&#x2021;2 â&#x2C6;&#x2019; đ?&#x153;&#x17D;2 < đ?&#x153;&#x2020; â&#x2C6;&#x2C6;1 < đ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 < đ?&#x153;&#x2020; â&#x2C6;&#x2C6;2 < min{đ?&#x153;&#x2021;1 + đ?&#x153;&#x17D;1 , đ?&#x153;&#x2021;2 + đ?&#x153;&#x17D;2 }. By definition of PFLR under thegiven condition, we get, P
ÎťTÎąL ď&#x20AC;ď ĄÎťĎ&#x192;2 ď&#x20AC;Îť Îź2 â&#x2C6;&#x2019; Ď&#x192;2 P
RLÎą ď&#x20AC;ď ĄĎ&#x192;2 ď&#x20AC; Îź2 â&#x2C6;&#x2019; Ď&#x192;2
ď&#x201A;ł 0 ď&#x192;&#x161; ÎťTÎąU + ď Ą ÎťĎ&#x192;2 ď&#x20AC;Îť Îź2 + Ď&#x192;2 ď&#x201A;ł 0 ď&#x192;&#x161; RUÎą + Îą Ď&#x192;2 ď&#x20AC; Îź2 + Ď&#x192;2 â&#x2030;¤
P
â&#x2C6;´
P {(ÎťTÎąL ď&#x20AC;ď ĄÎťĎ&#x192;2 ď&#x20AC;Îť â&#x2C6;&#x2C6;1 ) ď&#x201A;ł P {(RLÎą ď&#x20AC;ď ĄĎ&#x192;2 ď&#x20AC; Îź2 â&#x2C6;&#x2019; Ď&#x192;2 â&#x2030;¤
ď&#x201A;Ł0
ÎťTÎąL ď&#x20AC;ď ĄÎťĎ&#x192;1 ď&#x20AC; Îť Îź1 â&#x2C6;&#x2019; Ď&#x192;1 P
2
ď&#x201A;Ł0
ď&#x201A;ł 0 ď&#x192;&#x161; ÎťTÎąU + ď Ą ÎťĎ&#x192;1 ď&#x20AC;Îť Îź1 + Ď&#x192;1
RLÎą ď&#x20AC;ď ĄĎ&#x192;1 ď&#x20AC; Îź1 â&#x2C6;&#x2019; Ď&#x192;1 0 ď&#x192;&#x161;
(ÎťTÎąU
ď&#x201A;ł 0 ď&#x192;&#x161; RUÎą + Îą Ď&#x192;1 ď&#x20AC; Îź1 + Ď&#x192;1
ď&#x201A;Ł0
ď&#x201A;Ł0
+ ď Ą ÎťĎ&#x192;2 ď&#x20AC;Îť Îź2 + Ď&#x192;2 ) ď&#x201A;Ł 0}
) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + Îą Ď&#x192;2 ď&#x20AC; Îź2 + Ď&#x192;2 ) ď&#x201A;Ł 0} P {(ÎťTÎąL ď&#x20AC;ď ĄÎťĎ&#x192;1 ď&#x20AC;Îť2 â&#x2C6;&#x2C6;2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + ď Ą ÎťĎ&#x192;1 ď&#x20AC;Îť (Îź1 + Ď&#x192;1 )) ď&#x201A;Ł 0}
P {(RLÎą ď&#x20AC;ď ĄĎ&#x192;1 ď&#x20AC; Îź1 â&#x2C6;&#x2019; Ď&#x192;1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + Îą Ď&#x192;1 ď&#x20AC; Îź1 + Ď&#x192;1 ) ď&#x201A;Ł 0} Which is a contradiction to the definition of PFLR. Therefore, we must have đ?&#x153;&#x2021;1 â&#x2C6;&#x2019; đ?&#x153;&#x17D;1 â&#x2030;¤ đ?&#x153;&#x2021;2 â&#x2C6;&#x2019; đ?&#x153;&#x17D;2 . Similarly, it can be shown that đ?&#x153;&#x2021;1 + đ?&#x153;&#x17D;1 â&#x2030;¤ đ?&#x153;&#x2021;2 + đ?&#x153;&#x17D;2 . Theorem: 1.3.1.4 If R and T are triangular fuzzy random variables with means đ?&#x153;&#x2021;1 , đ?&#x153;&#x2021;2 and standard deviationsđ?&#x153;&#x17D;1 ,đ?&#x153;&#x17D;2 respectively. Satisfy Rď&#x201A;ŁPFLR T if and only if R ď&#x201A;ŁFLR aT,a >1. Proof: Since R ď&#x201A;ŁPFLR T P {(ÎťTÎąL ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1)ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;Ł 0} â&#x;ş P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(ÎťTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎąU + (ď Ąď&#x20AC;1)ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} Where the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0, 1). 1 Here, đ?&#x153;&#x2020; = <1, a>1. We get, đ?&#x2018;&#x17D;
â&#x;ş
P{(
T LÎą a
ď&#x20AC; ď Ąď&#x20AC;1
Ď&#x192;1 a
Îź
TU Îą
a
a
ď&#x20AC; 1) ď&#x201A;ł 0 â&#x2C6;¨ (
+ (ď Ąď&#x20AC;1)
Ď&#x192;1 a
Îź
ď&#x20AC; 1 ) â&#x2030;¤ 0} a
P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} â&#x2030;¤
TL Ď&#x192; Îź TU Ď&#x192; Îź P{( Îą ď&#x20AC; (ď Ąď&#x20AC;1) 2 ď&#x20AC; 2 ) ď&#x201A;ł 0 â&#x2C6;¨ ( Îą + ď Ąď&#x20AC;1 2 ď&#x20AC; 2 ) â&#x2030;¤ 0} a
a
a
a
a
a
P {(R LÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (R U Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0}
By using equation (3.3.1.8), we get P {(aTÎąL ď&#x20AC; (ď Ąď&#x20AC;1) aĎ&#x192;1 ď&#x20AC;aÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (aTÎąU + (ď Ąď&#x20AC;1) aĎ&#x192;1 ď&#x20AC;aÎź1 ) ď&#x201A;Ł 0} â&#x;ş P {(RLÎą ď&#x20AC;(ď Ąď&#x20AC;1) Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(aTÎąL ď&#x20AC;(ď Ąď&#x20AC;1) aĎ&#x192;2 ď&#x20AC;aÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (aTÎąU + (ď Ąď&#x20AC;1) aĎ&#x192;2 ď&#x20AC;aÎź2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1) Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} Here, the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0, 1). Which implies that R ď&#x201A;ŁFLR aT. Theorem: 1.3.1.5
www.ijres.org
9 | Page
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of â&#x20AC;Ś. Let T be a triangular fuzzy random variable with mean đ?&#x153;&#x2021;1 and standard deviation đ?&#x153;&#x17D;1 and T is log â&#x20AC;&#x201C; concave. Then T ď&#x201A;ŁFLR aT. Proof: Since T is log â&#x20AC;&#x201C; concave function of triangular fuzzy random variable with mean đ?&#x153;&#x2021;1 and standard deviation đ?&#x153;&#x17D;1 .Then P{cTÎąL + (1-c)TÎąU } â&#x2030;Ľ P { TÎąL c } P { TÎąU 1â&#x2C6;&#x2019;c } P {(cTÎąL ď&#x20AC;(ď Ąď&#x20AC;1)cĎ&#x192;1 ď&#x20AC;cÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; c)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; c)Ď&#x192;1 ď&#x20AC;(1 â&#x2C6;&#x2019; c)Îź1 ) ď&#x201A;Ł 0} c
1â&#x2C6;&#x2019;c
â&#x2030;Ľ P { (TÎąL ď&#x20AC; (ď Ąď&#x20AC;1) Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;ł 0 } P { (TÎąU + (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0 } (3.3.1.9) Here, the constants c and (1-c) are the left and right part of the triangular fuzzy number.andaT is also a log â&#x20AC;&#x201C; concave function of triangular fuzzy random variable with mean ađ?&#x153;&#x2021;1 = đ?&#x153;&#x2021;2 and Standard deviation ađ?&#x153;&#x17D;1 = đ?&#x153;&#x17D;2 . We get P {(abTÎąL ď&#x20AC; ď Ąď&#x20AC;1 bĎ&#x192;2 ď&#x20AC; bÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (a(1 â&#x2C6;&#x2019; b)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;2 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź2 ) ď&#x201A;Ł 0} â&#x2030;Ľ b
1â&#x2C6;&#x2019;b
P { (aTÎąL ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;ł 0 } P { (aTÎąU + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0 } (3.3.1.10) Here, the constants b and (1-b) are the left and right part of the triangular fuzzy number. By using the equation (3.3.1.1) in the equation (3.3.1.9) and (3.10). We get, P {(abTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)bĎ&#x192;1 ď&#x20AC;bÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (a(1 â&#x2C6;&#x2019; b)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;1 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź1 ) ď&#x201A;Ł 0}
P {(cTÎąL ď&#x20AC; (ď Ąď&#x20AC;1) cĎ&#x192;1 ď&#x20AC;cÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; c)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; c)Ď&#x192;1 ď&#x20AC;(1 â&#x2C6;&#x2019; c)Îź1 ) ď&#x201A;Ł 0} P {(abTÎąL ď&#x20AC;(ď Ąď&#x20AC;1)bĎ&#x192;2 ď&#x20AC;bÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (a(1 â&#x2C6;&#x2019; b)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;2 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(cTÎąL ď&#x20AC; ď Ąď&#x20AC;1 cĎ&#x192;2 ď&#x20AC; cÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; c)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; c)Ď&#x192;2 ď&#x20AC;(1 â&#x2C6;&#x2019; c)Îź2 ) ď&#x201A;Ł 0} FLR Which is implies that T ď&#x201A;Ł aT. Theorem: 1.3.1.6 If R and T are triangular fuzzy random variables with means đ?&#x153;&#x2021;1 , đ?&#x153;&#x2021;2 and standard deviations đ?&#x153;&#x17D;1 ,đ?&#x153;&#x17D;2 respectively. Suppose that T has a log â&#x20AC;&#x201C; concave function. Then R ď&#x201A;ŁFLR T â&#x2021;&#x2019; R ď&#x201A;ŁPFLR T. Proof: Since R ď&#x201A;ŁFLR T and T has a log â&#x20AC;&#x201C; concave function. Then P {(bTÎąL ď&#x20AC; (ď Ąď&#x20AC;1)bĎ&#x192;1 ď&#x20AC;bÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; b)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;1 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź1 ) ď&#x201A;Ł 0}
P {(RLÎą ď&#x20AC;(ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P{(bTÎąL ď&#x20AC; ď Ąď&#x20AC;1 bĎ&#x192;2 ď&#x20AC; bÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; b)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;2 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} Here, b and (1 â&#x20AC;&#x201C; b) are the left and right part of the triangular fuzzy number and 0 â&#x2030;¤ b â&#x2030;¤ 1. Now, we use the relationship between đ?&#x153;&#x2020; and b (đ?&#x153;&#x2020; < b, đ?&#x153;&#x2020; â&#x2030; 0). We get P {(ÎťTÎąL ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; Îť)TÎąU + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; Îť)Ď&#x192;1 ď&#x20AC; (1 â&#x2C6;&#x2019; Îť)Îź1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(ÎťTÎąL ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; ( 1 â&#x2C6;&#x2019; Îť TÎąU + ď Ąď&#x20AC;1 1 â&#x2C6;&#x2019; Îť Ď&#x192;2 ď&#x20AC; (1 â&#x2C6;&#x2019; Îť)Îź2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1) Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} PFLR Which implies that R ď&#x201A;Ł T. 3.3.2 Increasing and Decreasing Proportional Fuzzy Likelihood Ratio Order Definition: 1.3.2.1 Let R be a triangular fuzzy random variable with mean Âľ and standard deviation Ď&#x192;. Then R is said to be increasing proportional fuzzy likelihood ratio order of triangular fuzzy number (IPFLROTFN) R ď&#x201A;ŁIPFLROTFNR. If P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRUÎą + ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;Ł 0}
P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRUÎą + (ď Ąď&#x20AC;1) ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0,1). By theorem (3.3.1.1), we have R ď&#x201A;ŁIPFLRR with means đ?&#x153;&#x2021;1 = đ?&#x153;&#x2021;2 and đ?&#x153;&#x17D;1 =đ?&#x153;&#x17D;2 respectively. It will be said that R is decreasing proportional fuzzy likelihood ratio order of the triangular fuzzy number (DPFLR) R ď&#x201A;ŁDPFLR R. If P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRUÎą + ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRUÎą + ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1) Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} www.ijres.org
10 | Page
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of â&#x20AC;Ś. the RHS is decreasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0,1). Theorem: 1.3.2.2: Let R be a triangular fuzzy random variable with mean đ?&#x153;&#x2021;1 and standard deviation đ?&#x153;&#x17D;1 . The following conditions are equivalent:1) R ď&#x201A;ŁIPFLRR 2) R ď&#x201A;ŁFLR aR, â&#x2C6;&#x20AC; a > 1. 3) R ď&#x201A;ŁPFLR R Proof: Since Rď&#x201A;ŁIPFLR R P ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ď&#x201A;ł 0 ď&#x192;&#x161; ÎťRUÎą + ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ď&#x201A;Ł 0 RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC; Îź1 ď&#x201A;ł 0 ď&#x192;&#x161; RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ď&#x201A;Ł 0 P {(ÎťRLÎą ď&#x20AC;(ď Ąď&#x20AC;1)ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRLÎą + (ď Ąď&#x20AC;1)ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC;(ď Ąď&#x20AC;1)Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0,1). By using equation (3.3.1.8), we get P
P{(
R LÎą Îť
ď&#x20AC; â&#x2C6;&#x2019; ď Ąď&#x20AC;1
Ď&#x192;1 Îť
Îź
ď&#x20AC; 1) ď&#x201A;ł 0 â&#x2C6;¨ ( Îť
P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0
RU Îą
Îť ď&#x192;&#x161; (RUÎą
+ ď Ąď&#x20AC;1
Ď&#x192;1 Îť
Îź
ď&#x20AC; 1 ) â&#x2030;¤ 0} Îť
+ ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} â&#x2030;¤
1
RL Ď&#x192; Îź RU Ď&#x192; Îź P{( Îą ď&#x20AC; ď Ąď&#x20AC;1 2 ď&#x20AC; 2 ) ď&#x201A;ł 0 â&#x2C6;¨ ( Îą + ď Ąď&#x20AC;1 2 ď&#x20AC; 2 ) â&#x2030;¤ 0} Îť
Îť
Îť
Îť
Îť
Îť
P {(R LÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (R U Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0}
Put đ?&#x2018;&#x17D;= , a > 1, we get Îť P {(aRLÎą ď&#x20AC; ď Ąď&#x20AC;1 aĎ&#x192;1 ď&#x20AC; aÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (aRUÎą + ď Ąď&#x20AC;1 aĎ&#x192;1 ď&#x20AC; aÎź1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0}
aR LÎą ď&#x20AC; ď Ąď&#x20AC;1 aĎ&#x192;2 ď&#x20AC; aÎź2 ď&#x201A;ł 0 ď&#x192;&#x161; aR U Îą + ď Ąď&#x20AC;1 aĎ&#x192;2 ď&#x20AC; aÎź2 ď&#x201A;Ł 0
P
â&#x2030;¤
P
R LÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ď&#x201A;ł 0 ď&#x192;&#x161; R U Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ď&#x201A;Ł 0
Which implies that R ď&#x201A;Ł aR, â&#x2C6;&#x20AC; a > 1. Hence, (1) â&#x2021;&#x2019; (2) 2) Since R ď&#x201A;ŁFLR aR, â&#x2C6;&#x20AC; a > 1. P {(aRLÎą ď&#x20AC; (ď Ąď&#x20AC;1) aĎ&#x192;1 ď&#x20AC;aÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (aRUÎą + (ď Ąď&#x20AC;1) aĎ&#x192;1 ď&#x20AC;aÎź1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RUÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;Ł 0} P aRLÎą ď&#x20AC; ď Ąď&#x20AC;1 aĎ&#x192;2 ď&#x20AC; aÎź2 ď&#x201A;ł 0 ď&#x192;&#x161; aRUÎą + ď Ąď&#x20AC;1 aĎ&#x192;2 ď&#x20AC; aÎź2 ď&#x201A;Ł 0 â&#x2030;¤ P RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ď&#x201A;ł 0 ď&#x192;&#x161; RUÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ď&#x201A;Ł 0 Here, the RHS is increasing triangular fuzzy random variable for all a >1. 1 Put đ?&#x2018;&#x17D;= , a > 1, we get FLRO
P{(
R LÎą Îť
Îť
ď&#x20AC; â&#x2C6;&#x2019; ď Ąď&#x20AC;1
Ď&#x192;1 Îť
Îź
ď&#x20AC; 1) ď&#x201A;ł 0 â&#x2C6;¨ ( Îť
P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0
RU Îą
Îť ď&#x192;&#x161; (RUÎą
+ ď Ąď&#x20AC;1
Ď&#x192;1 Îť
Îź
ď&#x20AC; 1 ) â&#x2030;¤ 0} Îť
+ ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} â&#x2030;¤ P
R LÎą Îť
â&#x2C6;&#x2019;
{(RLÎą ď&#x20AC;
Îąâ&#x2C6;&#x2019;1 Ď&#x192;2 Îť
â&#x2C6;&#x2019;
Îź2 Îť
â&#x2030;Ľ 0 â&#x2C6;¨
P (ď Ąď&#x20AC;1) Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; By equation (3.3.1.8), P {(đ?&#x153;&#x2020; RLÎą ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 1 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (đ?&#x153;&#x2020; Rđ?&#x2018;&#x2C6;Îą + (ď Ąď&#x20AC;1) đ?&#x153;&#x2020; đ?&#x153;&#x17D; 1 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 1 ) ď&#x201A;Ł 0}
RU Îą Îť (RUÎą
+
(Îąâ&#x2C6;&#x2019;1)Ď&#x192;2 Îť
â&#x2C6;&#x2019;
Îź2 Îť
â&#x2030;¤ 0
+ ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0}
P {(đ?&#x2018;&#x2026; đ??żđ?&#x203A;ź ď&#x20AC; (ď Ąď&#x20AC;1)đ?&#x153;&#x17D; 1 ď&#x20AC; đ?&#x153;&#x2021; 1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (đ?&#x2018;&#x2026; đ?&#x2018;&#x2C6;đ?&#x203A;ź + ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 1 ď&#x20AC;đ?&#x153;&#x2021; 1 ) ď&#x201A;Ł 0} P {(đ?&#x153;&#x2020; đ?&#x2018;&#x2026; đ??żđ?&#x203A;ź ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (đ?&#x153;&#x2020; đ?&#x2018;&#x2026; đ?&#x2018;&#x2C6;đ?&#x203A;ź + ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 2 ) ď&#x201A;Ł 0} â&#x2030;¤ P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)đ?&#x153;&#x17D; 2 ď&#x20AC; đ?&#x153;&#x2021; 2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RU Îą + ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2021; 2 ) ď&#x201A;Ł 0} Where the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; < 1. Which implies that R ď&#x201A;ŁPFLR R. Hence, (2) â&#x2021;&#x2019; (3). 3) Since R ď&#x201A;ŁPFLR R. P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRU Îą + ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRU Îą + (ď Ąď&#x20AC;1)ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;Ł 0} â&#x2030;¤ L U P {(RÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} 1
Here, the RHS is increasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; < 1 and đ?&#x153;&#x2020; = , a > 1. Which implies that (IPFLR).Hence, R ď&#x201A;ŁPFLR R
â&#x2021;&#x2019;R â&#x2030;¤IPFLR R.Hence, (3) â&#x2021;&#x2019; (1). www.ijres.org
đ?&#x2018;&#x17D;
11 | Page
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of â&#x20AC;Ś.
Theorem: 1.3.2.3 If R and T are triangular fuzzy random variables with means đ?&#x153;&#x2021; 1 , đ?&#x153;&#x2021; 2 and standard deviations đ?&#x153;&#x17D; 1 ,đ?&#x153;&#x17D; 2 respectively. If R ď&#x201A;ŁFLR T and T is IPFLR. Then R ď&#x201A;ŁPFLR T. 3.16. Proof: Since R ď&#x201A;ŁFLR T P TLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ď&#x201A;ł 0 ď&#x192;&#x161; TU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ď&#x201A;Ł 0 P
RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC; Îź1 ď&#x201A;ł 0 ď&#x192;&#x161; RU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ď&#x201A;Ł 0 â&#x2030;¤
P
TLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ď&#x201A;ł 0 ď&#x192;&#x161; TU Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ď&#x201A;Ł 0
P
RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ď&#x201A;ł 0 ď&#x192;&#x161; RU Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ď&#x201A;Ł 0
And if T is IPFLR. Then P {(ÎťTLÎą ď&#x20AC;(ď Ąď&#x20AC;1)ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTU Îą + (ď Ąď&#x20AC;1)ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;Ł 0} P {(TLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (TU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P ÎťTLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ď&#x201A;ł 0 ď&#x192;&#x161; ÎťTU Îą + ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ď&#x201A;Ł 0 â&#x2030;¤ L U P TÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ď&#x201A;ł 0 ď&#x192;&#x161; TÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC; Îź2 ď&#x201A;Ł 0 Multiply the above two inequalities, we get P {(ÎťTLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTU Îą + (ď Ąď&#x20AC;1)ÎťĎ&#x192;1 ď&#x20AC;ΝΟ1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} â&#x2030;¤ Which implies that R ď&#x201A;ŁPFLR T.
U P {(ÎťTL Îą ď&#x20AC;(ď Ąď&#x20AC;1)ÎťĎ&#x192;2 ď&#x20AC;ΝΟ2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťTÎą + ď Ąď&#x20AC;1 ÎťĎ&#x192;2 ď&#x20AC; ΝΟ2 ) ď&#x201A;Ł 0} U P {(RL ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192; ď&#x20AC;Îź ) ď&#x201A;ł 0 ď&#x192;&#x161; (R Îą 2 2 Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2) ď&#x201A;Ł 0}
Theorem: 1.3.2.4 Let R be a triangular fuzzy random variable with mean Âľ and standard deviation Ď&#x192;. Then R is IPFLR (DPFLR) if and only if R is log â&#x20AC;&#x201C; concave (log â&#x20AC;&#x201C; convex). Proof: We will prove the result for the DPFLR case; the IPFLR case can be proven in the same way.Suppose that the triangular fuzzy random variable T is log â&#x20AC;&#x201C; convex. Then b
1â&#x2C6;&#x2019;b
L U P {bTLÎą + (1-b)TU }, (0 â&#x2030;¤ b â&#x2030;¤ 1) Îą } â&#x2030;¤ P { TÎą } P {{ TÎą P {(bTLÎą ď&#x20AC;(ď Ąď&#x20AC;1)bĎ&#x192;1 ď&#x20AC;bÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; b)TU Îą + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;1 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź1 ) ď&#x201A;Ł 0}
â&#x2030;¤ P { (TLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;ł 0
b
} P { (TU Îą + (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0
1â&#x2C6;&#x2019;b
}
Here, the triangular fuzzy number (a1, a2, a3) have the equal distance from the mean (a2 = Âľ). Therefore, the middle point đ?&#x2018;? +(1â&#x2C6;&#x2019;đ?&#x2018;? ) of the triangular fuzzy number is = 0.5 = đ?&#x153;&#x2020; . By using definition (3.2.7) and definition (3.3.2.1), we get 2
P {(ÎťRLÎą ď&#x20AC; ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (ÎťRU Îą + ď Ąď&#x20AC;1 ÎťĎ&#x192;1 ď&#x20AC; ΝΟ1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(đ?&#x153;&#x2020; RLÎą ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (đ?&#x153;&#x2020; RU Îą + ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 2 ) ď&#x201A;Ł 0} â&#x2030;¤ L U P {(RÎą ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 2 ď&#x20AC; đ?&#x153;&#x2021; 2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RÎą + ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2021; 2 ) ď&#x201A;Ł 0} Here, the RHS is decreasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0, 1). This implies that R is DPFLR. 1 Conversely, assume that R is DPFLR and Let a >1, đ?&#x153;&#x2020; = < 1. đ?&#x2018;&#x17D;
P {(đ?&#x153;&#x2020; RLÎą ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 1 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (đ?&#x153;&#x2020; RU Îą + ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 1 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC;(ď Ąď&#x20AC;1) đ?&#x153;&#x17D; 1 ď&#x20AC; đ?&#x153;&#x2021; 1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RU Îą + ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 1 ď&#x20AC; đ?&#x153;&#x2021; 1 ) ď&#x201A;Ł 0} P {(đ?&#x153;&#x2020; RLÎą ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (đ?&#x153;&#x2020; RU Îą + ď Ąď&#x20AC;1 đ?&#x153;&#x2020; đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2020; đ?&#x153;&#x2021; 2 ) ď&#x201A;Ł 0} â&#x2030;¤ L U P {(RÎą ď&#x20AC; ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 2 ď&#x20AC; đ?&#x153;&#x2021; 2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RÎą + ď Ąď&#x20AC;1 đ?&#x153;&#x17D; 2 ď&#x20AC;đ?&#x153;&#x2021; 2 ) ď&#x201A;Ł 0} Here, the RHS is decreasing in triangular fuzzy random variable for all đ?&#x153;&#x2020; in (0, 1). By equation (3.8),
www.ijres.org
12 | Page
A New Approach On Proportional Fuzzy Likelihood Ratio Orderings Of â&#x20AC;Ś. U RL Îą â&#x2C6;&#x2019; Îąâ&#x2C6;&#x2019;1 Ď&#x192;1 â&#x2C6;&#x2019; Îź1 â&#x2030;Ľ 0 â&#x2C6;¨ RÎą +(Îąâ&#x2C6;&#x2019;1)Ď&#x192;1 â&#x2C6;&#x2019; Îź1 â&#x2030;¤ 0 Îť Îť Îť Îť Îť Îť
P
â&#x2021;&#x2019;
U P {(RL Îą ď&#x20AC; (ď Ąď&#x20AC;1)Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RÎą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0}
P
â&#x2030;¤
U RL Îą â&#x2C6;&#x2019; Îąâ&#x2C6;&#x2019;1 Ď&#x192;2 â&#x2C6;&#x2019;Îź2 â&#x2030;Ľ 0 â&#x2C6;¨ RÎą +(Îąâ&#x2C6;&#x2019;1)Ď&#x192;2 â&#x2C6;&#x2019;Îź2 â&#x2030;¤ 0 Îť Îť Îť Îť Îť Îť
U P {(RL Îą ď&#x20AC;(ď Ąď&#x20AC;1) Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0}
1
Then put a = , a> 1, we get đ?&#x153;&#x2020;
P {(aRLÎą ď&#x20AC;(ď Ąď&#x20AC;1)aĎ&#x192;1 ď&#x20AC;aÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (aRU Îą + (ď Ąď&#x20AC;1)aĎ&#x192;1 ď&#x20AC;aÎź1 ) ď&#x201A;Ł 0} P {(RLÎą ď&#x20AC;(ď Ąď&#x20AC;1) Ď&#x192;1 ď&#x20AC; Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P {(aRLÎą ď&#x20AC;(ď Ąď&#x20AC;1)aĎ&#x192;2 ď&#x20AC;aÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (aRU Îą + (ď Ąď&#x20AC;1)aĎ&#x192;2 ď&#x20AC;aÎź2 ) ď&#x201A;Ł 0} â&#x2030;¤ L U P {(RÎą ď&#x20AC;(ď Ąď&#x20AC;1)Ď&#x192;2 ď&#x20AC; Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; (RÎą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} đ?&#x2018;? +(1â&#x2C6;&#x2019;đ?&#x2018;? )
Here, a = 0.5 = is the middle part of the triangular fuzzy random variable, b and (1-b) are the left and 2 right part of the log â&#x20AC;&#x201C; convex triangular fuzzy random variable. Hence, P{(bRLÎą ď&#x20AC;(ď Ąď&#x20AC;1)bĎ&#x192;1 ď&#x20AC;bÎź1 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; b)RU Îą + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;1 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź1 )) ď&#x201A;Ł 0} P{(RLÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;ł 0 ď&#x192;&#x161;(RU Îą + ď Ąď&#x20AC;1 Ď&#x192;1 ď&#x20AC;Îź1 ) ď&#x201A;Ł 0} P{(bRLÎą ď&#x20AC;(ď Ąď&#x20AC;1)bĎ&#x192;2 ď&#x20AC;bÎź2 ) ď&#x201A;ł 0 ď&#x192;&#x161; ((1 â&#x2C6;&#x2019; b)RU Îą + (ď Ąď&#x20AC;1)(1 â&#x2C6;&#x2019; b)Ď&#x192;2 ď&#x20AC;(1 â&#x2C6;&#x2019; b)Îź2 )) ď&#x201A;Ł 0} â&#x2030;¤ L . P{(RÎą ď&#x20AC; ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;ł 0 ď&#x192;&#x161;(RU Îą + ď Ąď&#x20AC;1 Ď&#x192;2 ď&#x20AC;Îź2 ) ď&#x201A;Ł 0} LCONFLR Which implies that R ď&#x201A;Ł R so that R is log â&#x20AC;&#x201C; convex. Hence, the proof.
REFERENCES [1]. [2]. [3]. [4]. [5]. [6].
George Shanthikumar.J, David D.Yao. â&#x20AC;&#x153;The Preservation of likelihood Ratio ordering under Convolutionâ&#x20AC;?, Stochastic Processes and their Applications Vol.23, 259-267, 1986. Kwakernaak. H, Fuzzy random variables â&#x20AC;&#x201C; I, Definitions and theorems, Information Science,Vol.15, pp.1-29, 1978. NagoorGani. A, and Mohamed Assarudeen. S.N, â&#x20AC;&#x153;A New operation on triangular fuzzy Number for solving fuzzy linear programming problemâ&#x20AC;?, Applied Mathematical Science,Vol.6, No.11, 525-532, 2012. Ramos Romero. H.M,Sordodiaz. M.A, â&#x20AC;&#x153;The Proportional likelihood ratio order and applicationâ&#x20AC;?, Vol.25, 2, P.211-223, 2001. Stochastic ordering-from wikipedia, the free encyclopedia.The likelihood ratio ordering-wikipedia.
www.ijres.org
13 | Page