IJRET: International Journal of Research in Engineering and Technology
eISSN: 2319-1163 | pISSN: 2321-7308
MEASUREMENT OF RELIABILITY PARAMETERS FOR A POWER PLANT BY USING ALGEBRA OF LOGICS Reena Garg1 1
Assistant Professor Mathematics, YMCA University of Science & Technology, Faridabad – 121006
Abstract In this paper, the author has considered a power plant to evaluate its reliability parameters by using algebra of logics. The system configuration has been shown in fig-1. In this power plant, there are two identical generators G1 and G2 in standby redundancy. Only one generator is sufficient to fulfill the power requirements of whole system. The author has used four change over devices CO1 through CO4 to feed power to four machine M 1 , M 2 , M 3 and M 4 .It is assumed that the cables used, to connect all equipments, are hundred percent reliable and we need to operate two machines simultaneously. These machines can be operated by switching devices
M 1 , M 2 , or M 3 and M 4
SD1 through SD4 .
Keywords: power plant, identical generators, standby redundancy, changes over devices. --------------------------------------------------------------------***-----------------------------------------------------------------1. INTRODUCTION In the beginning, the whole power plant is operable and there is no repair facility to repair a failed unit/component of power plant. The author has obtained the reliability of the system as a whole and reliability function for the system in two cases, i.e., when failure rates follow weibull or exponential time distribution. An important reliability parameter, mean time to failure (M.T.T.F.), has also been evaluated in both the cases. In the end of paper, the author has been given a numerical computation and its graphical illustration to highlight the important results for their practical importance. The results obtained in this study, can be applied for the power plant of similar configuration.
Fig-1: System Configuration
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
101
IJRET: International Journal of Research in Engineering and Technology
2. ASSUMPTIONS The following assumptions have been associated with this model: (1) Initially, all the components are good. (2) There is no repair facility available. (3) Failure times of all components of the power plant are arbitrary. (4) Failures are statistically-independent. (5) Reliability of each component of power plant is known in advance. (6) Transition of power from one component to other is all reliable. (7) Every component of the system remains either in good or in bad state. (8) Only one generator is sufficient to fullfil the power requirement of whole power plant. (9) Mostly, we need two machines M1 and M2 or M3 and M4 to operate simultaneously.
eISSN: 2319-1163 | pISSN: 2321-7308
x1 x 1 x1 x1 F x1 , x 2 x10 x 2 x2 x 2 x 2
x3
x4
x3
x4
x3
x4
x3
x4
x3
x4
x3
x4
x3
x4
x3
x4
x5 x 7 x5 x8 x6 x9 x6 x10 x5 x 7 x 5 x8 x 6 x9 x6 x10
5. SOLUTION OF THE MODEL Using algebra of logics, we may write equation (1) as:
F x1 , x2 x10 x3
x4 f x1 , x2 , x5 , x10 , …(2)
3. NOTATIONS The following notations have been used throughout this paper: : States of generators G ,G x1 , x2 1 2 respectively; : States of change over devices CO1 x3 , x 4 , x5 , x 6 through CO4; : x7 , x8 , x9 , x10 States of switching devices SD1 through
SD4 ;
xi
:
Negation of state x i ,
xi / Ri
: : :
=1, in good state; =0 in bad state; Conjunction/Disjunction; Reliability of the component corresponding to state x i ;
Si
:
1 Ri , i ;
RS
:
RSE t / RSW t
:
Reliability of the power plant as a whole; Reliability functions when failures follow Weibull/exponential time distribution.
4.
…(1)
FORMULATION
OF
i ;
MATHEMATICAL
MODEL By making use of Boolean function technique, the conditions of capability of the successful operation of the power plant in terms of logical matrix are expressed as:
Where
x1 x 1 x1 x1 f x1 , x 2 , x5 , x10 x 2 x2 x 2 x 2
x5 x7 x5 x8 x 6 x9 x6 x10 x5 x 7 x 5 x8 x 6 x9 x6 x10
…(3)
Substituting
B1 x1
x5
x7
B2 x1
x5
x8
…(5)
B3 x1
x6
x9
…(6)
B4 x1
x6
x10
…(7)
B5 x2
x5
x7
…(8)
B6 x2
x5
x8
…(9)
B7 x2
x6
x9
…(10)
B8 x2
x6
x10
…(11)
…(4)
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
102
IJRET: International Journal of Research in Engineering and Technology
in equation (3), we have B1 B 2 B3 B4 f x1 , x 2 , x5 , x10 B 5 B6 B 7 B8
x1
B2 B2 B2 B2 B2 B2 B2
B3 B3 B3 B3 B3 B3
B4 B4
x1 B1 B2 B3 x1
B4 B4 B4
B5 B5 B5 B5
B6 B6 B6
x5 x5
x1 B1 B2 x1 x1
B7 B7
x5
x6
x5
x6
x9 x7
x6 x9 x6 x7
B1 B2 B3 B4 B5 x1
…(13) B8
…(15) x9
x8 x10 x8
x2
x1 x2 B1 B2 B3 B4 B5 B6 x1 x2 x1 x2
…(16) x9 x10 x7
x5
x5 x7 x5 x6
(17)
x8 x7 x8 x7 x8 x9 x10
x5 x 6
…(18)
x1 x2 B1 B2 B3 B4 B5 B6 B7 x1 x2
x5 x6 x5 x 6
x9 x7 x8 x9
…(19)
x7
x5
…(14)
x5
x1 x5 B1 B2 B3 B4 x1 x5
Now we have
x1 B1 x1 x1
x8
x7
Similarly, we obtain
…(12)
Using orthogonalisation algorithm, equation (12) may be written as B1 B 1 B1 B1 f x1 , x 2 , x5 , x10 B 1 B1 B 1 B1
x5
eISSN: 2319-1163 | pISSN: 2321-7308
And
x1 x2 x5 x6 x9 x10 B1 B2 B3 B4 B5 B6 B7 B8 x1 x2 x5 x6 x7 x8 x9 x10 x 1 x7
…(20)
x5
x8
Therefore, equation (13) becomes, subjected to equations (14) through (20):
x1 x 1 x1 x1 x 1 x1 x 1 f x1 , x 2 , x5 , x10 x1 x1 x1 x1 x 1 x1 x1
x5 x5 x5
x7 x 7 x6
x8 x9 x 7
x5 x5
x6
x5
x6
x2
x5
x2
x5
x7 x 7
x2
x5
x2
x6
x9 x 7
x8
x9
x10 x8
x9
x 6
x8 x 7
x8
x5 x5
x6
x 7
x8
x9
x6 x6
x8
x9
x2
x5 x5
x9 x 7
x2
x5
x6
x9 x 7
x10 x8
x9
x2 x2
x6
x10
x10 x10
…(21)
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
103
IJRET: International Journal of Research in Engineering and Technology
eISSN: 2319-1163 | pISSN: 2321-7308
Using equation (21), equation (2) gives
x1 x 1 x1 x1 x 1 x1 x 1 F x1 , x 2 , x10 x1 x1 x1 x1 x 1 x1 x1
x3
x4
x5
x3
x4
x3
x4
x5 x5
x3
x4
x3
x7 x7 x6
x8 x9 x7
x6
x4
x5 x5
x3
x4
x5
x6
x2
x3
x4
x5
x2
x3
x4
x5
x2
x3
x4
x5
x2
x3
x4
x2
x3
x4
x5 x5
x2
x3
x4
x6
x2
x3
x4
x5 x5
x2
x3
x4
x5
x6
x6
x8
x9
x9 x10 x7 x8 x9
x10
x7 x 7 x8 x 6 x7
x8
x6
x7
x8
x9
x6
x9 x7
x8
x9
x9 x7
x10 x8 x9
x6
x10 x10
…(23)
Since, R.H.S. of equation (23) is disjunction of pair-wise disjoint conjunctions, therefore, the reliability of considered power plant will be:
RS Pr F x1 , x2 x10 1
R3 R4 R1 R5 R7 R1 R5 R8 S 7 R1 R6 R9 S 5 R1 R5 R6 R8 R9 S 7 S 5 S 9 R1 R6 R10 S 7 S 9 R1 R5 R6 R8 R10 S1 R2 R5 R7 S1 S 7 R2 R5 R8 S 6 S 7 R1 R2 R5 R8 S1 S 5 R2 R6 R9 S 7 S 9 R1 R2 R5 R6 R8 R10 S1 S 7 S 8 R2 R5 R6 R9 S1 S 5 S 9 R2 R6 R10 S1 S 7 S 8 S 9 R2 R5 R6 R10 , Where, S i 1 Ri , i 1,2, 10. or,
RS R3 R4 R1 R5 R7 R1 R5 R8 R1 R6 R9 R2 R5 R7 R1 R6 R10 R2 R5 R8
R2 R6 R9 R2 R6 R10 R1 R5 R6 R8 R9 R1 R5 R6 R9 R10 R1 R5 R6 R8 R10 R1 R5 R6 R7 R8 R9 R10 R1 R2 R5 R6 R7 R8 R1 R2 R5 R6 R8 R10 R1 R2 R5 R6 R7 R8 R9 R10 R1 R2 R5 R6 R7 R9 R1 R2 R5 R6 R8 R9 R2 R5 R6 R7 R8 R9 R1 R2 R6 R9 R10 R1 R2 R5 R6 R7 R10 R1 R2 R5 R6 R8 R10 R2 R5 R6 R7 R8 R10 R2 R5 R6 R7 R9 R10 R2 R5 R6 R8 R9 R10 R1 R2 R5 R6 R7 R8 R9 R10 R1 R5 R7 R8 R1 R5 R6 R9 R1 R5 R6 R7 R8 R9 R1 R2 R5 R7 R1 R5 R6 R10
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
104
IJRET: International Journal of Research in Engineering and Technology
eISSN: 2319-1163 | pISSN: 2321-7308
R1 R6 R9 R10 R1 R5 R6 R7 R8 R10 R1 R5 R6 R8 R9 R10 R2 R5 R7 R8 R1 R2 R5 R6 R8 R1 R2 R5 R6 R7 R8 R10 R1 R2 R5 R6 R8 R9 R10 R1 R2 R6 R9 R2 R5 R6 R7 R9 R2 R5 R6 R8 R9 R1 R2 R5 R6 R7 R8 R9 R1 R2 R6 R10 R2 R6 R9 R10 R2 R5 R6 R7 R10 R2 R5 R6 R8 R10 R1 R2 R5 R6 R7 R8 R10 R1 R2 R5 R6 R7 R9 R10 R1 R2 R5 R6 R8 R9 R10 R2 R5 R6 R7 R8 R9 R10
…(24)
a 9 c 1 5 6 7 8 9 10
6. SOME PARTICULAR CASES 6.1 CASE I: If the Reliability of each Component of Power Plant is R:
a11 c 1 2 5 6 7 8
In this case, equation (24) yields:
RS 8R 5 9R 6 R 7 7 R 8 6R 9 2R10 …(25) 6.2 CASE II: When Failure Rates follow Weibull Distribution Let
i be the failure rates corresponding to component
states xi , i 1,2 10 . Then, reliability function of power plant, at an instant„t‟, is given by:
25
24
RSW t exp . ai t exp . b j t i 1
where,
a10 c 2 5 8
(26)
a12 c 1 2 5 6 8 10 a13 c 1 2 5 6 7 8 9 10 a14 c 2 6 9 a15 c 1 2 5 6 7 9 a16 c 1 2 5 6 8 9 a17 c 2 5 6 7 8 9
j 1
is a positive parameter and
a18 c 2 6 10
a1 c 1 5 7
a19 c 1 2 6 9 10
a 2 c 1 5 8
a 20 c 1 2 5 6 7 10
a 3 c 1 6 9
a 21 c 1 2 5 6 8 10
a 4 c 1 5 6 8 9
a 22 c 2 5 6 7 8 10
a 5 c 2 5 7
a 23 c 2 5 6 7 9 10
a 6 c 1 6 10
a 24 c 2 5 6 8 9 10
a 7 c 1 5 6 9 10
a 25 c 1 2 5 6 7 8 9 10
a 8 c 1 5 6 8 10
Also,
b1 c 1 5 7 8
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
105
IJRET: International Journal of Research in Engineering and Technology
b2 c 1 5 6 9 b3 c 1 5 6 7 8 9 b4 c 1 2 5 7 b5 c 1 5 6 10 b6 c 1 6 9 10 b7 c 1 5 6 7 8 10 b8 c 1 5 6 8 9 10 b9 c 2 5 7 8 b10 c 1 2 5 6 8 b11 c 1 2 5 6 7 8 10 b12 c 1 2 5 6 8 9 10 b13 c 1 2 6 9 b14 c 2 5 6 7 9 b15 c 2 5 6 8 9
eISSN: 2319-1163 | pISSN: 2321-7308
Again, the M.T.T.F. of the power plant, in this case, is given by:
M .T .T .F .W RSW t dt 0
24 1 1 25 1 1 1 i 1 ai j 1 b j 1
…(27)
6.3 CASE III: When Failures follow Exponential Distribution Exponential distribution is nothing but a particular case of weibull distribution for 1 and is very useful for practical problem purpose. Therefore, the reliability function for considered power plant at an instant t, in this case, is given by
RSE t exp . ai t exp . b j t 25
24
i 1
j 1
(28)
and expression for M.T.T.F., in this case, is given by
M .T .T .F .E RSE t dt 0 25 1 i 1 ai
24 1 j 1 b j
…(29)
7. NUMERICAL COMPUTATION
b16 c 1 2 5 6 7 8 9
For a numerical computation, let us consider the values:
b17 c 1 2 6 10
(a)
b18 c 2 6 9 10 b19 c 2 5 6 7 10 b20 c 2 5 6 8 10 b21 c 1 2 5 6 7 8 10 b22 c 1 2 5 6 7 9 10 b23 c 1 2 5 6 8 9 10
i i 1,2 10 0.002, 2
and t 0,1,2 in equation (26); (b) i i 1,2 10 0.002, t 0,1,2 in equation (28). By using (a) and (b), we compute the table-1 and the corresponding graph has been shown in fig-2. (c) and 2 i i 1,2 10 0, 0.04, 0.09 ,1 in equation (27); (d) i i 1,2 10 0, 0.04, 0.09 ,1 in equation (29). By using (c) and (d), we compute the table-2 and the corresponding graph has been shown in fig-3.
b24 c 2 5 6 7 8 9 10 and c 3 4
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
106
Table-1
t
R SW t
R SE t
0 1 2 3 4 5 6 7 8 9 10
1 0.9979 0.9917 0.9803 0.9628 0.9379 0.9044 0.8614 0.8088 0.7471 0.6778
1 0.9979 0.9959 0.9938 0.9917 0.9895 0.9872 0.9849 0.9826 0.9803 0.9779
M.T.T.F. ----->
IJRET: International Journal of Research in Engineering and Technology
eISSN: 2319-1163 | pISSN: 2321-7308
10 9 8 7 6 5 4 3 2 1 0
M.T.T.F.(W) M.T.T.F.(E)
0 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81
Reliability-->
Reliability Vs Time 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
Failure Rate -----> Fig-3
8. RESULTS AND DISCUSSION
RSE(t) RSW(t)
0 1 2 3 4 5 6 7 8 9 Time--> Fig-2 Table-2
In this study, the author has been obtained various performance measures of considered power plant, by using algebra of logics. The reliability and M.T.T.F. of power plant have been obtained in two different cases, i.e., when failures follow Weibull and exponential time distributions. The final results have been mentioned in the equations (25) through (29). A critical examination of fig-2 and 3 shows that performance of considered system decreases with time. In case of Weibull time distribution, performance decreases catastrophically in the beginning but thereafter it decreases in a constant manner. We conclude in last that exponential time distribution gives better results as compared with Weibull time distribution.
λ
M.T.T.F.W
M.T.T.F.E
REFERENCES
0
[1]
0.04
1.6198
9.1369
[2]
0.09
1.0799
4.0608
0.16
0.8099
2.2842
0.25
0.6479
1.4619
0.36
0.5399
1.0152
0.49
0.4628
0.7459
0.64
0.4049
0.5711
0.81
0.3599
0.4512
1.0
0.3239
0.3655
[3]
[4] [5] [6] [7]
[8]
Calabro, S.R.: “Reliability Principles and Practices”, McGraw Hill Book Company, Inc. New York, 1962. Cinlar, E: “Introduction to Stochastic Processes”, Prentice Hall Inc. Englewood cliffs, New Jersey, 1975. Culp, W. Archie: “Principles of Energy Conversion”, McGraw Hill Book Company, New York, 2000. Dhillon, B.S.: “Quality Control, Reliability and Engineering Design”, Marcel Dekker, 1985. Dhillon, B.S.: “Design Reliability”, CRC Press, 1999. Dhillon, B.S.: “Reliability, Quality and Safety Engineers”, Taylor Francis, 2004. Degarmo, E.; Black, J.T.; Ronald, A.: “Materials and Processes in Manufacturing”, Prentice Hall of India, 1997. Nagraja, H.N.; Kannan, N.; Krishnan, N.B.: "Reliability", Springer Publication, 2004.
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
107
IJRET: International Journal of Research in Engineering and Technology
[9]
[10] [11] [12] [13]
[14] [15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
eISSN: 2319-1163 | pISSN: 2321-7308
Nikolaidis , E.; Ghiocel , D.M. ; Singhal , S. : "Engineering Design Reliability Handbook", CRC Press, 2004. N.Ravichandran ; "Stochastic Methods in Reliability Theory", Wiley Eastern Ltd.; New Delhi, 1990. Nagrath, I.J.; Gopal, M.: "System Modeling and Analysis", Tata McGraw Hill Book Company, 1998. Osaki, S.: "Stochastic Models in Reliability and Maintenance", Springer Publication, 2002. Rao, Singiresu S.: "Engineering Optimization; Theory and Practice", New Age Int.(P) Limited, 1999. Rao, S.; Parulekar, B.B.: “Energy Technology”, Khanna Publishers, New Delhi, 2002. Kuo, W; Prasad, V.R.; Tillman, F.A. and Hwang, C.L: "Fundamental and Applications of Reliability Optimization”, Cambridge University Press, Cambridge, 2000. Chung, W. K.: "A k-out -of n: G Redundant System with the Presence of Chance with Multiple Critical Errors”, Microelectronic Reliab. , Vol. 33, pp 334-338, 1993. Chung, W. K.: " Reliability Analysis of a k-out -of n: G Redundant System in the Presence of Chance with Multiple Critical Errors", Microelectronic Reliab. , Vol. 32, pp 331 – 334, 1993. Cluzeau, T.; Keller, J.; Schneeweiss, W.: “An Efficient Algorithm for Computing the Reliability of Consecutive-k-out-of-n:F Systems”, IEEE TR. on Reliability, Vol.57 (1), PP 84-87, 2008. Dhillon, B. S.; Natesan, J.: "Stochastic Analysis of Outdoor Power System in Fluctuating Environment”, Microelectronic Reliab. , Vol.23, pp 867 – 887, 1983. Dhillon, B. S.: "Reliability Analysis of NonMaintained Parallel System Subject to Hardware Failure and Human Error", Microelectronic Reliab., Vol. 25, pp 121 -122, 1985. Dhillon, B. S.; Vishvanath, H. C.: "Reliability Analysis of Non - identical Units Parallel System with Common Cause Failure", Microelectronic Reliab., Vol. 31, pp 429 – 441, 1991. Dhillon, B. S. and Yang N. J.: "Stochastic Analysis of Standby System with Common Cause Failure and Human Error”, Microelectronic Reliab. , Vol. 32, pp 1699 – 1712, 1992. Dhillon, B. S. and Yang Nianfu: "Availability of a Man - Machine System with Critical and Noncritical Human Errors”, Microelectronic Reliab. , Vol. 33 (10), pp 1511 – 1521, 1993.
_______________________________________________________________________________________ Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org
108