International Journal of Research and Innovation (IJRI)
International Journal of Research and Innovation (IJRI) 1401-1402
DESIGN AND ANALYSIS OF HEAVY VEHICLE CHASSIS USING HONEY COMB STRUCTURE
K.Rajesh 1, K.Durga2, 1 Research Scholar, Department Of Mechanical Engineering, Vikas college of Engineering and Technology,Vijayawada rural,A.P,India 2 Assistant professor , Department Of Mechanical Engineering, Vikas college of Engineering and Technology,Vijayawada rural,A.PIndia
Abstract Automotive chassis is a skeletal frame on which various mechanical parts like engine, tires, axle assemblies, brakes, steering etc. are bolted. The chassis is considered to be the most significant component of an automobile. It is the most crucial element that gives strength and stability to the vehicle under different conditions. This thesis deals with the design optimization and material suggestion for heavy vehicle chassis (container vehicle). In the first step literature survey will be conducted for further processes (for the selection of material and geometric selection). In the next step modeling will be done to carry out the analysis. Structural Analysis will be conducted using traditional material M.S; Composite materials FRP (E-glass)& Carbon epoxy (S-2 glass), also analysis will be conducted on present and updated models. In the next step impact test and fatigue analysis will be conducted on same to find impact and fatigue characteristics. Objective: By doing this project chassis manufacturing company can save time & efforts because of easy manufacturing method. End user can save money on chassis purchase and savings on reduced fuel consumption due to low weight of chassis with composites.
*Corresponding Author: K.Rajesh , Research Scholar, Department Of Mechanical Engineering, Vikas college of Engineering and Technology, Vijayawada rural,A.P,India. Published: December 22, 2014 Review Type: peer reviewed Volume: I, Issue : IV
Citation: kaile.rajesh, Research Scholar (2014),Design And Analysis Of Heavy Vehicle Chassis Using Honey Comb Structure
Problem discripition Chassis is one of the major part in vehicle construction .Generally chassis is made of mild steel, these type of chassis models are due to heavy weight vehicle is giving less mileage and also cost of the chassis is high. Rectification methodology As we know that weight of the chassis is the major problem in manufacturing,cost and mileage aspects. In this thesis composite materials (frp and crpf) will be analyzed for the replacement of traditional materials structure. Composites are very low weight than mild steel and honey comb is one of the efficient composite for structure with very low weight and good structural stability. INTRODUCTION TO CHASSIS The chassis forms the main structure of the modern
automobile. A large number of designs in pressedsteel frame form a skeleton on which the engine, wheels, axle assemblies, transmission, steering mechanism, brakes, and suspension members are mounted. During the manufacturing process the body is flexibly bolted to the chassis. This combination of the body and frame performs a variety of functions. It absorbs the reactions from the movements of the engine and axle, receives the reaction forces of the wheels in acceleration and braking, absorbs aerodynamic wind forces and road shocks through the suspension, and absorbs the major energy of impact in the event of an accident. There has been a gradual shift in modern small car designs. There has been a trend toward combining the chassis frame and the body into a single structural element. In this grouping, the steel body shell is reinforced with braces that make it rigid enough to resist the forces that are applied to it. To achieve better noise-isolation characteristics, separate frames are used for other cars. The presence of heavier-gauge steel components in modern separate frame designs also tends to limit intrusion in accidents. INTRODUCTION OF CHASSIS FRAME: Chassis is a French term and was initially used to denote the frame parts or Basic Structure of the vehicle. It is the back bone of the vehicle. A vehicle without body is called Chassis. The components of the vehicle like Power plant, Transmission System, Axles, Wheels and tyre, Suspension, Controlling Systems like Braking, Steering etc., and also electricalsystem parts are mounted on the Chassis 68
International Journal of Research and Innovation (IJRI)
frame. It is the main mounting for all the components including the body. So it is also called as Carrying Unit. LAYOUT OF CHASSIS AND ITS MAIN COMPONENTS: The following main components of the chassis are 1. Frame: it is made up of long two members called side members riveted together with the help of number of cross members. 2. Engine or power plant: it provides the source of power 3. Clutch: it connects and disconnects the power from the engine flywheel to the transmission system. 4. Gear box 5. U joint 6. Propeller shaft 7. Differential Functions of the chassis frame:
Computer-aided design (CAD) is defined as the application of computers and graphicsSoftware to aid or enhance the product design from conceptualization to documentation.CADis most commonly associated with the use of an interactive computer graphics system, referred toas a CAD system. Computer-aided design systems are powerful tools and in the mechanicaldesign and geometric modeling of products and components. There are several good reasons for using a CAD system to support the engineering design function: • To increase the productivity • To improve the quality of the design • To uniform design standards • To create a manufacturing data base • To eliminate inaccuracies caused by hand-copying of drawings and inconsistency between • Drawings MODEL OF EXISTING CHASSIS
1. To carry load of the passengers or goods carried in the body. 2. To support the load of the body, engine, gear box etc., 3. To withstand the forces caused due to the sudden braking oracceleration 4. To withstand the stresses caused due to the bad road condition. 5. To withstand centrifugal force while cornering Types of chassis frames: There are three types of frames 1. Conventional frame 2. Integral frame 3. Semi-integral frame WELDING IMPROVEMENTS As most body shells are manufactured by spot welding the panels together, a simple way to stiffen them up is to either stitch or seam weld them instead. As with welding during construction of a chassis, care must be taken to avoid problems due to excessive heat. Normally, additional welding is concentrated on specific areas, such as suspension mounting points or the engine bay, as it is quite a labor intensive technique. Most of the time, a full rollcage would be fitted instead of additional welding, but in some instances where a cage is not going to be used, full welding of the entire shell can take place.
The above image shows final model of existing chassis MODEL OF MODIFIED CHASSIS
INTRODUCTION TO CAD Throughout the history of our industrial society, many inventions have been patented andWhole new technologies have evolved. Perhaps the single development that has impactedManufacturing more quickly and significantly than any previous technology is the digital computer. Computers are being used increasingly for both design and detailing of engineering components in the drawing office.
The above image shows final model of modified chassis
69
International Journal of Research and Innovation (IJRI)
The above image shows detail of modified chassis MODEL OF HONEY COMB CHASSIS
The above image shows 2d drafting of modified chassis
The above image shows 2d drafting of honeycomb chassis The above image shows final model of honeycomb chassis
The above image shows detail of honeycomb chassis 2D DRAWINGS OF MODELS
INTRODUCTION TO FEA Finite Element Analysis (FEA) was first developed in 1943 by R. Courant, who utilized the Ritz method of numerical analysis and minimization of variational calculus to obtain approximate solutions to vibration systems. By the early 70's, FEA was limited to expensive mainframe computers generally owned by the aeronautics, automotive, defense, and nuclear industries. Since the rapid decline in the cost of computers and the phenomenal increase in computing power, FEA has been developed to an incredible precision. Present day supercomputers are now able to produce accurate results for all kinds of parameters. STRUCTURAL ANALYSIS ON EXISTING DESIGN OF CHASSIS MILD STEEL
The above image shows 2d drafting of existing chassis
The above image is the imported model of chassis. Modeling was done in Pro-E and imported with the help of IGES (Initial Graphical Exchanging Specification). 70
International Journal of Research and Innovation (IJRI)
The above image showing the meshed modal. Default solid Brick element was used to mesh the components. The shown mesh method was called Tetra Hydra Mesh. Meshing is used to deconstruct complex problem into number of small problems based on finite element method
The above image shows von-misses stress value 12.426 N/mm2
LOAD: 20 TONS
The above image shows strain value 0.0000592 FATIGUE ANALYSIS ON EXISTING DESIGN OF CHASSIS
The above image shows the loads applied RESULTS Displacement
The above image shows safety factor value 15
The above image shows displacement value 1.4895 mm The above image shows Biaxiality indication value 0.91413 71
International Journal of Research and Innovation (IJRI)
The above image shows alternating stress value 24.853
The above image shows strain value 0.00014155
STRUCTURAL ANALYSIS ON EXISTING DESIGN OF CHASSIS
FATIGUE ANALYSIS ON EXISTING DESIGN OF CHASSIS
E glass epoxy
The above image shows displacement value 4.3332 mm
The above image shows safety factor value 15
The above image shows von-misses stress value 12.398 N/mm2
The above image shows Biaxiality indication value 0.91305
72
International Journal of Research and Innovation (IJRI)
The above image shows alternating stress value 24.795
The above image shows strain value 0.0000143
STRUCTURAL ANALYSIS ON EXISTING DESIGN OF CHASSIS
FATIGUE ANALYSIS ON EXISTING DESIGN OF CHASSIS
S glass epoxy
The above image shows displacement value 0.36075 mm
The above image shows safety factor value 15
The above image shows von-misses stress value 12.406 N/mm2
The above image shows Biaxiality indication value 0.9424
73
International Journal of Research and Innovation (IJRI) MODIFIED Mild Steel
E-Glass
S-Glass
Displacement
1.640
4.7729
0.39734
Stress
12.509
12.644
12.531
Strain
6.377 e-
0.000190
1.5744 e-5
SafetyFactor = yelidstrenght/stress
43.968
39.544
365.89
Biaxiality indication
0.99532
0.992
0.9961
Alternative Stress
25.017
25.289
25.2062
5
HONEY COMB
The above image shows alternating stress value 24.812 STRUCTURAL ANALYSIS ON HONEY COMB DESIGN OF CHASSIS MILD STEEL
Mild Steel
E-Glass
S-Glass
Displacement
3.4035
9.9334
0.8634
Stress
39.594
40.381
40.154
Strain
0.000194
0.00057333
4.7511 e-5
SafetyFactor = yelidstrenght/stress
13.890
12.382
114.18
Biaxiality indication
0.9966
0.99516
0.9969
Alternative Stress
79.188
80.763
80.309
IMPACT ANAYLSIS MATERIAL: S-GLASS EPOXY
The above image is the imported model of chassis. Modeling was done in Pro-E and imported with the help of IGES (Initial Graphical Exchanging Specification). RESULTS TABLES EXISTING Mild Steel
E-Glass
S-Glass
Displacement
1.489
4.333
0.360
Stress
12.426
12.398
12.406
Strain
5.928e-5
0.0001715
1.4305 e-5
SafetyFactor = yelidstrenght/stress
44.262
40.329
369.57
Biaxiality indication
0.914
0.913
0.9242
Alternative Stress
24.853
24.795
24.812
material
existing
modified
Honey comb
displacement
83905
1.3107e
4.8526e5
stress
16.869
16.917
47.382
strain
0.000021605
0.000021617
0.000054645
5
CONCLUSION This thesis works present’s / work’s on “structural optimization of chassis and implementation of composite materials in heavy vehicle chassis to reduce the weight without reducing structure quality”. As per the problem description weight is the major part which effect on millage and cost of the chassis. • Firstliteraturesurvey and data collection was done to understand the rectification method and material selection. • In the next step 3D models of chassis regular and Honey comb is prepared in Pro-E for further study is Ansys. • In the next step structural and fatigue analysis was conducted to find stress locations ,factor of safety and fatigue level’s (Alternating stress) using mild steel,FRP & CRPF along with honey comb structure • In the next step impact test was conducted to find Impact Resistance using S2 – Glass. • As per analytical results Honey comb structure chassis along with S2 –Glass(CRPF) is the best choice. • By using S2-Glass along with honey comb struc74
International Journal of Research and Innovation (IJRI)
ture weight is reduced up to 75% and quality is improved by 87 % .So better to us above suggested model & material. • S2-Glass chassis manufacturing is very easy while compared with Mild steel. BIBLIOGRAPHY 1.1Manpreet singh bajwa, 2yatin raturi, 3amit joshi(1) 2.1Hemant kumar nayak, 2nagendra prasad, 3 deepty verma,4tulsi bisht 3.Thanneru raghu krishna prasad, gouthamsolasa, nariganani sd satyadeep, g.Sureshbabu 4.Hirak patel, khushbu c. Panchal, chetan s. Jadav 5.Hemant b.Patil1, sharad d.Kachave2, eknath r.Deore3 1(p.G.Student mechanical, s.Sv.P.S.B.S.D.C.O.Engg, dhule north maharashtra university, india) 2(mechanical, s.Sv.P.S.B.S.D.C.O.Engg, dhule north maharashtra university, india) 3(head of mechanical, s.Sv.P.S.B.S.D.C.O.Engg, dhule north maharashtra university, india)
Authour
K.Rajesh Research Scholar, Department Of Mechanical Engineering, Vikas college of Engineering and Technology, Vijayawada rural,A.P,India
6.Prajwal kumar m. P1, vivek muralidharan2, g. Madhusudhana3 7. Haval kamal asker1, thakersalih dawood1 and arkanfawzi said2 8.Mukeshkumar r. Galolia, 2 prof. J. M. Patel 9.Sairamkotari 1, v.Gopinath2 10.Mohdazizi muhammad nora,b*, helmirashida, wan mohdfaizul wan mahyuddinb, Mohdazuanmohdazlanc, jamaluddinmahmuda 11.Alireza arab solghar*, zeinabarsalanloo 12E.Bhaskar 1, t.Muneiah 2, ch.Venkata rajesh3 13. Haiping du, weihua li, nong zhang, du, h., Li, w. & Zhang,
K.Durga Assistant Professor, Department Of Mechanical Engineering, Vikas college of Engineering and Technology, Vijayawada rural,A.P,India
75