IJSRD - International Journal for Scientific Research & Development| Vol. 4, Issue 05, 2016 | ISSN (online): 2321-0613
Thermodynamic Modeling of Solar Thermal Power (Captive Power) and Water Desalination (with Single Effect) P.Ramakrishnan Assistant Professor CIT, Coimbatore 641014, Tamilnadu, India Abstract— In this paper thermodynamic modeling is used to assess the performance characteristics of a solar desalination system using concentrated parabolic solar trough. In this desalination system a single-effect flash evaporator is used to evaporate the fluid with a reduced pressure state. Instead of reducing pressure in the evaporation chamber the fluid’s evaporating temperature will be less.so that we can get more vapor withless temperature. Due to this kind of evaporators the instantaneous efficiency of the whole system is increased. Although very few solar power plants have been set up in the last fifteen years, significant R&D advances have taken place in cylindrical parabolic collector technology. Key words: solar water desalination; single effect flash evaporator; instantaneous efficiency I. INTRODUCTION Solar energy is a very large, inexhaustible source of energy. The power from the sun intercepted by the earth is approximately 1.8×〖10〗^11MW which is many thousands of time larger than the present consumption rate on the earth of all commercial energy sources. Thus, in principle, solar energy could supply all the present and future energy needs of the world on continuing basis. This makes it one of the most promising of unconventional energy sources. A. Why Solar Energy? Using renewable energy sources is the necessity for reduce the pollution. Renewable energy commonly considered for desalination are solar, wind and geothermal energies. Among these three energies solar energy occupies nearly 57% of renewable energy based desalination market. Keywords: 1.8×〖10〗^11MW; solar energy occupies nearly 57% of renewable energy
Ib
S
instantaneous = radiation, W hourly 2 /m
= icident solar flux absorbed,
W m2
Table 1: đ?‘‡ = đ?‘Ąđ?‘’đ?‘šđ?‘?đ?‘’đ?‘&#x;đ?‘Žđ?‘Ąđ?‘˘đ?‘&#x;đ?‘’, đ??ž đ?‘‡đ?‘Ž = đ?‘Žđ?‘šđ?‘?đ?‘–đ?‘’đ?‘›đ?‘Ą đ?‘Ąđ?‘’đ?‘šđ?‘?đ?‘’đ?‘&#x;đ?‘Žđ?‘Ąđ?‘˘đ?‘&#x;đ?‘’ âˆ? đ?‘‡đ?‘“ = đ?‘™đ?‘œđ?‘?đ?‘Žđ?‘™ đ?‘“đ?‘™đ?‘˘đ?‘–đ?‘‘ đ?‘Ąđ?‘’đ?‘šđ?‘?đ?‘’đ?‘&#x;đ?‘Žđ?‘Ąđ?‘˘đ?‘&#x;đ?‘’, = đ??ž đ?‘Žđ?‘?đ?‘ đ?‘œđ?‘&#x;đ?‘?đ?‘Ąđ?‘–đ?‘Łđ?‘–đ?‘Ąđ?‘Ś đ?‘œđ?‘“ đ?‘Žđ?‘?đ?‘ đ?‘œđ?‘&#x;đ?‘?đ?‘’đ?‘&#x; đ?‘ đ?‘˘đ?‘&#x;đ?‘“đ?‘Žđ?‘?đ?‘’ âˆ? đ?‘‡đ?‘“đ?‘– đ?‘Ž đ?‘ đ?‘œđ?‘™đ?‘Žđ?‘&#x; = đ?‘Ąđ?‘’đ?‘šđ?‘?đ?‘’đ?‘&#x;đ?‘Žđ?‘Ąđ?‘˘đ?‘&#x;đ?‘’ đ?‘œđ?‘“ đ?‘“đ?‘™đ?‘˘đ?‘–đ?‘‘ đ?‘Žđ?‘Ą = đ?‘–đ?‘›đ?‘™đ?‘’đ?‘Ą, đ??ž đ?‘Žđ?‘™đ?‘Ąđ?‘–đ?‘Ąđ?‘˘đ?‘‘đ?‘’ đ?‘Žđ?‘›đ?‘”đ?‘™đ?‘’ đ?›˝ = đ?‘ đ?‘™đ?‘œđ?‘?đ?‘’ đ?‘œđ?‘&#x; đ?‘Ąđ?‘–đ?‘™đ?‘Ą đ?‘‡đ?‘“đ?‘œ đ?›ž = đ?‘Ąđ?‘’đ?‘šđ?‘?đ?‘’đ?‘&#x;đ?‘Žđ?‘Ąđ?‘˘đ?‘&#x;đ?‘’ đ?‘œđ?‘“ đ?‘“đ?‘™đ?‘˘đ?‘–đ?‘‘ đ?‘Žđ?‘Ą đ?‘œđ?‘˘đ?‘Ąđ?‘™đ?‘’đ?‘Ą, đ??ž = đ?‘ đ?‘˘đ?‘&#x;đ?‘“đ?‘Žđ?‘?đ?‘’ đ?‘Žđ?‘§đ?‘–đ?‘šđ?‘˘đ?‘Ąâ„Ž đ?‘Žđ?‘›đ?‘”đ?‘™đ?‘’ đ?‘ˆ đ?›żđ?‘Š = đ?‘‘đ?‘’đ?‘?đ?‘™đ?‘–đ?‘›đ?‘Žđ?‘Ąđ?‘–đ?‘œđ?‘› = đ?‘œđ?‘Łđ?‘’đ?‘&#x;đ?‘Žđ?‘™đ?‘™ đ?‘™đ?‘œđ?‘ đ?‘ đ?‘?đ?‘œđ?‘’đ?‘“đ?‘“đ?‘–đ?‘?đ?‘–đ?‘’đ?‘›đ?‘Ą, đ?œƒ 2= đ?‘Žđ?‘›đ?‘”đ?‘™đ?‘’ đ?‘œđ?‘“ đ?‘–đ?‘›đ?‘?đ?‘–đ?‘‘đ?‘’đ?‘›đ?‘?đ?‘’ đ?‘š đ??ž đ?œƒđ?‘§ = đ?‘§đ?‘’đ?‘›đ?‘–đ?‘Ąâ„Ž đ?‘Žđ?‘›đ?‘”đ?‘™đ?‘’ đ?‘‰ đ?‘š đ?œŒ = đ?‘‘đ?‘’đ?‘›đ?‘ đ?‘–đ?‘Ąđ?‘Ś, đ?‘˜đ?‘” = đ?‘Žđ?‘Łđ?‘’đ?‘&#x;đ?‘Žđ?‘”đ?‘’ đ?‘¤đ?‘–đ?‘›đ?‘‘ đ?‘ đ?‘?đ?‘’đ?‘’đ?‘‘, đ?‘š3 đ?‘ đ?‘š đ?œ? = đ?‘Ąđ?‘&#x;đ?‘Žđ?‘›đ?‘ đ?‘šđ?‘–đ?‘ đ?‘ đ?‘–đ?‘Łđ?‘–đ?‘Ąđ?‘Ś đ?‘‰ = đ?‘Łđ?‘’đ?‘™đ?‘œđ?‘?đ?‘–đ?‘Ąđ?‘Ś, ∅ đ?‘ đ?‘Š = đ?‘Žđ?‘?đ?‘’đ?‘&#x;đ?‘Ąđ?‘˘đ?‘&#x;đ?‘’, đ?‘š = đ?‘™đ?‘Žđ?‘Ąđ?‘Ąđ?‘–đ?‘Ąđ?‘˘đ?‘‘đ?‘’; đ?‘?đ?‘™đ?‘Žđ?‘Ąđ?‘’ đ?‘’đ?‘“đ?‘“đ?‘’đ?‘?đ?‘Ąđ?‘–đ?‘Łđ?‘’đ?‘›đ?‘’đ?‘ đ?‘ đ?‘‹ = đ?‘Ąđ?‘Žđ?‘?đ?‘’ đ?‘Ąđ?‘¤đ?‘–đ?‘ đ?‘Ą đ?‘&#x;đ?‘Žđ?‘Ąđ?‘–đ?‘œ đ?œ‘ đ?‘ đ?‘˘ = đ?‘›đ?‘˘đ?‘ đ?‘ đ?‘’đ?‘™đ?‘Ą đ?‘›đ?‘˘đ?‘šđ?‘?đ?‘’đ?‘&#x; = đ?‘–đ?‘›đ?‘?đ?‘™đ?‘–đ?‘›đ?‘Žđ?‘Ąđ?‘–đ?‘œđ?‘› đ?‘œđ?‘“ đ?‘&#x;đ?‘’đ?‘“đ?‘™đ?‘’đ?‘?đ?‘Ąđ?‘œđ?‘&#x; đ?œ” = ℎđ?‘œđ?‘˘đ?‘&#x; đ?‘Žđ?‘›đ?‘”đ?‘™đ?‘’
Table 2: III. SYSTEM DESCRIPTION
This solar thermal power water desalination system consists of five major parts. Those are water feeding system, heat exchanger, concentrated cylindrical parabolic solar trough, Aa Ig Evaporator, Condenser. = effective aperture area instantaneous radiation = global C = concentration ratio A. Water Feeding System: hourly Cp = specific heat W For feeding the water into the system for the processes, a /, 2 Dci pumping unit is required. This water may -collected from the m = inner diameter of glass cover, k m depth part of the seas. The danger in collecting the water is to W avoid the other macro particles from the seas. The main thing Dco = thermal conductivity, 2 = outer diameter of glass cover, m m K to avoid is the jelly fishes, so the strainer should be effective Di L for fighting with the jelly fishes. = inner diameter of tube, m = length of cocentrator, m B. Heat Exchanger (4-5 & 11-13): kg Do m ̇ = mass flow rate, Heat in exhausting concentrated fluid wasted in environment, = outer diameter of tube, m s this heat energy also can be used to heat the water as much as Ě F n = day of the year possible. Inlet water for the heat exchanger is the water outlet Pr = prandtl number = collector efficiency factor of evaporator. This heat is transferred to the starting fluid and r FR = heat removal factor b the water gets preheated. = tilt factor beam radiation hf q = useful heat gain, W = heat transfer coefficient on inside u Re = reynold′ s number surface of tube, Wâ „m2 K II. LIST OF SYMBOLS USED
All rights reserved by www.ijsrd.com
258