Lightning strikes on ships: an initial application of the similarity theory through scaled experiments E. P. Nicolopoulou, V. T. Kontargyri, I. F. Gonos,
G. J. Tsekouras, E. C. Pyrgioti, I. A. Stathopulos
Electric Power Quality (PQ) problems in Ship Electric Energy Systems (DEFKALION)
Research Activities Investigation of PQ problems due to shaft generator operation Investigation of PQ problems due to thruster operation Investigation of PQ problems due to pod operation Analysis of impact of earthing (grounding) on PQ phenomena Analysis of PQ phenomena due to lightning strikes PQ Measuring and Monitoring System 2
Lightning strikes (WP 6): Work Process Data Collection Investigation of the relevant regulations and standards Study of the behavior of the hull during a lightning strike (theoretical analysis and simulations) Tests in the premises of the High Voltage Laboratory of NTUA with a scaled ship model (experimental investigation)
3
Scaled models: Preliminary measurements
Dangers arising from lightning strikes on ships: Overvoltages, Overcurrents, Induced currents to electronic equipment
Rapid distribution of the lightning current into seawater through the highly conductive body of a metallic ship 1. Former conceptions: a metal hull would face no problems during a lightning strike 2. Nowadays: Discontinuities in the hull structure, The All Electric Ship (sensitive electronic equipment)
Investigation of the behavior of the ship hull during a lightning strike (voltage and current distribution): an initial approach is the concept of the ship metal hull as a “grounding electrode”.
Limitations of experiments in a controllable laboratory environment (Laboratory space, electrode dimensions, excitation parameters of the impulse current) lead to the design of scaled experiments based on the Similarity Theory and the Dimensional Analysis
Verification of the validity of this analysis through measurements of the impulse grounding resistance of strip electrodes embedded in an electrolytic tank for various electrode dimensions and water conductivities. Simulation of the full scale phenomenon with the scaled model: Sea surface Ship metal hull Lightning strike 4
metal tank filled with saline water solution metal strip electrode with scaled down dimensions injection of impulse current produced by an impulse generator
Scaled models: Theoretical Background Similarity Theory: a method applicable on scaled-model experiments (in various scientific fields: naval engineering, telecommunications, high voltage engineering etc.) which allows the derivation of scale laws for the physical quantities of a problem based on the principle of physical similarity. Physical similarity between model and prototype can be acquired through: 1. geometrical similarity and 2. the application of Dimensional Analysis
Formation of dimensionless products (Πi parameters) from the magnitudes that appear in the governing equations of the problem: Πi model = Πi full scale (Buckingham Πi Theorem)
Advantage: the method does not require the knowledge of the exact relationships that describe the problem, only the physical magnitudes that appear. 5
Dimensional Analysis
1. 2. 3. 4.
5.
6
Specification of the r variables of the problem and their dimensions Definition of the dependent and independent variables Description of the dimensions of each variable based on a unit system formed by fundamental magnitudes Formation of the dimensional matrix (rank n ) and selection of the dimensionally independent subset of variables Calculation of the dimensionless k Î parameters ( k = r - n )
Variables of the problem (I) For the purposes of the present analysis the following formula has been adopted for the calculation of the impulse grounding resistance Z:
Z Ai R (1) Where R is the steady state grounding resistance (Ω) Ai is the impulse coefficient taking into consideration both soil ionization (i.e. the reduction of grounding resistance due to the high value of the injected current) and inductive phenomena (i.e. effective length: dissipation of fast wavefront current from a fraction of the electrode length) Ai
1 A 1 1 Im I g
(2)
I m = the peak value of the current (A) = the critical ionization current (A) Ig
7
Ig
E0 2R 2
(3)
E= 0 the critical ionization field (kV/m) = soil resistivity (Ωm)
Variables of the problem (II) A is the impulse coefficient without the influence of ionization, defined as: A 1 l leff A al l leff
(4)
1 is the effective length a coefficients a, are functions of the resistivity and the current waveform rise time T1 leff
2l ln l d
For a grounding strip:
R
where l = length (m),
d= width (m)
(6)
(1)-(6)
8
Z f d , l , , I m , E0 , T1
(5)
Πi Parameters and Scale Factors
Application of the Dimensional Analysis on the relationship Z f d , l , , I m , E0 , T1 (unit system [M L T I], r=7 variables, rank=n=4, dimensionally independent subset [ρ, Im, l, T1], k=3) yields the following dimensionless Πi parameters:
Z l 1
d 2 l
0 l 2 3 Im
According to the Buckingham Πi Theorem (Πimodel = Πifull scale) the scale factors for each magnitude ( K i ) must obey to the following equations under physical similarity conditions:
K Z K K l1
Kl K d
1 K K l
K E0 K K K I m 2 l
9
K Im K
Experimental setup •
Impulse current generator 8/20μs up to 25kA
•
Electrolytic tank: 2m x 1m x 0.5m
•
Strip electrodes
•
Oscilloscope
•
Conductivity meter – Calibration solution
•
Temperature-, humidity-, pressure-meter
4 conductivity levels : 0.08 S/m 1 S/m 2 S/m
4 S/m
4 electrode dimensions: 20cm x 2cm 40cm x 4cm 30cm x 3cm 60cm x 6cm
IMPULSE CURRENT GENERATOR (EMC 2004 HILO TEST) POTENTIAL DIVIDER (50kΩ/50Ω)
STRIP ELECTRODE
ELECTROLYTIC TANK CURRENT SHUNT (1mΩ, 20ΜΗz)
TO OSCILLOSCOPE
10
Measurement procedure
Two measurement scenarios are implemented: 1 I. For the same conductivity level K K E comparison between electrodes of the measurements recorded under injected current conditions: K I K l2 The scaling law to be verified in this case is: K Z 1 Kl II. For the same electrode Kl 1 comparison between conductivity levels of the measurements recorded under injected current conditions: K K I By adopting the assumption K 1 the scaling law to be verified is: K Z 1 K 0
m
m
E0
The waveforms of the injected current and the electrode voltage are recorded and the impulse impedance is calculated from the oscillogramms applying two alternative definitions: V and Z V @ I max Z max I max
I max
The deviations of the experimental ratios K Z values are calculated.
11
from the theoretically expected
Conductivity comparisons (I) Comparison between σ=4 S/m and σ=2 S/m ( Z
theoretical Ι4 (Α)
Ι2 (Α)
200
experimental ΚΙ
deviation ΚΙ %
theoretical
ΚZ (a) 0.500
Ι4 (Α)
Ι2 (Α)
ΚΙ
100
200,4
99,4
2,016
0,805
300
150
297,4
150,0
1,982
-0,880
400
200
500 600 700 800 900 1000
250 300 350 400 450 500
2
Measured Kσ=1.919
V @ I max I max
402,1
198,8
2,023
1,127
489,4 589,8 689,8 780,5 891,8 988,2
250,4 302,0 351,6 401,6 450,4 500,0
1,955 1,953 1,962 1,943 1,980 1,976
-2,268 -2,358 -1,911 -2,829 -0,995 -1,184
average values
1,977
-1,164
ΚZ (b) 0.522
): 20cmx2cm electrode experimental
deviation
Ζ4 (Ω)
Ζ2 (Ω)
ΚΖ
ΚΖ % (a)
ΚΖ % (b)
1,389
2,435
0,571
14,123
9,346
1,402
2,448
0,573
14,515
9,722
1,377
2,523
0,546
9,137
4,569
1,370 1,381 1,371 1,388 1,413 1,401
2,518 2,511 2,494 2,522 2,544 2,496
0,544 0,550 0,550 0,550 0,555 0,561
8,813 9,977 9,948 10,064 11,091 12,226
4,258 5,373 5,346 5,457 6,441 7,528
0,555
10,959
6,314
average values
Comparison between σ=4 S/m and σ=1 S/m ( Z V @ I max ): 30cmx3cm electrode
I max
theoretical
experimental
Ι4 (Α)
Ι1 (Α)
Ι4 (Α)
Ι1 (Α)
ΚΙ
deviation ΚΙ %
400
100
387,0
102,8
3,765
-5,875
800
200
786,6
198,8
3,957
-1,087
ΚΙ
4
theoretical ΚZ (a) 0.250
experimental
deviation
Ζ4 (Ω)
Ζ1 (Ω)
ΚΖ
ΚΖ % (a)
ΚΖ % (b)
1,033
3,767
0,274
9,754
5,651
1,023
3,847
0,266
6,386
2,409
900
225
896,3
224,8
3,987
-0,320
1,035
3,801
0,272
8,963
4,890
1600
400
1570,0
399,2
3,932
-1,703
0,991
3,717
0,267
6,669
2,681
1800
450
1779,0
448,0
3,971
-0,714
0,989
3,777
0,262
4,767
0,851
1,922
-1,940
0,268
7,308
3,296
Measured Kσ=3.817
12
average values
ΚZ (b) 0.262
average values
Conductivity comparisons (II) Comparison between σ=2 S/m and σ=1 S/m ( Z
theoretical Ι2 (Α)
Ι1 (Α)
450 800 900 1350 1600 1800 2250 2400 2700 3200
225 400 450 675 800 900 1125 1200 1350 1600
experimental ΚΙ
Ι2 (Α)
Ι1 (Α)
ΚΙ
deviation ΚΙ %
2
441,6 801,6 900,8 1348 1600 1800 2260 2400 2700 3200
233,2 401,6 444,8 674,4 803,2 896 1112 1184 1358 1604
1,893 1,996 2,025 1,998 1,992 2,008 2,032 2,027 1,988 1,995
-5,317 -0,199 1,259 -0,059 -0,398 0,446 1,619 1,351 -0,589 -0,249
1,995
-0,214
Measured Kσ=1.883
average values
Comparison between σ=2 S/and σ=1 S/m (Z
theoretical Ι2 (Α)
Ι1 (Α)
200
experimental ΚΙ
deviation ΚΙ %
Ι2 (Α)
Ι1 (Α)
ΚΙ
100
202,4
98,2
2,061
3,055
400
200
400,8
198,4
2,020
1,008
600
300
600,8
298
2,016
0,805
Vmax ): 60cmx6cm electrode I max
theoretical
ΚZ (a) 0.500
ΚZ (b) 0.531
experimental Ζ2 (Ω)
Ζ1 (Ω)
ΚΖ
ΚΖ % (a)
ΚΖ % (b)
1,2119 1,2155 1,2189 1,2195 1,2150 1,2067 1,2123 1,1983 1,1940 1,2025
2,2024 2,2151 2,1871 2,1738 2,1763 2,1696 2,1763 2,1993 2,2533 2,1621
0,5502 0,5487 0,5573 0,5610 0,558 0,5561 0,5570 0,5448 0,5299 0,5561
10,058 9,751 11,467 12,208 11,658 11,232 11,420 8,973 5,984 11,235
3,670 3,382 4,998 5,696 5,178 4,776 4,953 2,649 -0,167 4,779
average values
0,5553
10,398
3,9913
Vmax ): 40cmx4cm electrode I max theoretical
experimental Ζ1 (Ω)
ΚΖ
ΚΖ % (a)
ΚΖ % (b)
2,9369 2,9839 3,0121 3,0000 3,0008 2,9960 2,9795 3,0110 2,9988
0,5369 0,5324 0,5269 0,5333 0,5318 0,5296 0,5274 0,5272 0,5302
7,399 6,494 5,390 6,667 6,372 5,919 5,484 5,446 6,042
3,083 2,215 1,156 2,381 2,098 1,663 1,246 1,209 1,782
0,5306
6,1347
1,8703
800
400
2,000
0,000
998,4
499,2
2,000
0,000
600
1200
600,8
1,997
-0,133
700
1400
700,8
1,998
-0,114
1600
800
1600
798,4
2,004
0,200
2000
1000
2000
1000,4
1,999
-0,040
average values
2,011
0,531
average values
800
400 500
1200 1400
2
Measured Kσ=1.919
13
ΚZ (a) 0.500
ΚZ (b) 0.521
deviation
Ζ2 (Ω) 1,5770 1,5888 1,5872 1,6000 1,5960 1,5866 1,5714 1,5875 1,5900
1000
deviation
Electrode comparisons (I)
V @ I max
For σ=4 S/m ( Z I max
): 60cmx6cm – 40cmx4cm
theoretical Ι60 (Α)
Ι40 (Α)
225
experimental Ι60 (Α)
Ι40 (Α)
ΚΙ
100
220,80
118,04
1,871
450
200
446,08
192,64
2,316
2,916
675
300
664,00
295,12
2,250
-0,003
900
400
891,20
395,68
2,252
0,103
1125
500
1116,80
490,88
2,275
1,115
600
1324,00
594,08
2,229
average values
2,199
1350
ΚΙ
2.25
Kl=1.5
For σ=2 S/m ( Z
Ι30 (Α)
Ι20 (Α)
225
theoretical
experimental
deviation ΚΖ %
Ζ60 (Ω)
Ζ40 (Ω)
ΚΖ
0,5978
0,8404
0,711
6,705
0,6062
0,8949
0,677
1,600
0,6120
0,8620
0,710
6,502
0,6032
0,8896
0,678
1,713
0,5981
0,8638
0,692
3,873
-0,949
0,5740
0,8699
0,660
-1,022
-2,280
average values
0,688
3,229
-16,864
ΚZ 0.667
V @ I max ): 30cmx3cm – 20cmx2cm I max
theoretical
experimental Ι30 (Α)
Ι20 (Α)
ΚΙ
100
225,2
99,4
2,2655
450
200
450,4
198,8
675
300
674,4
302
ΚΙ
2.25
deviation ΚΙ %
theoretical
experimental
deviation ΚΖ %
Ζ30 (Ω)
Ζ20 (Ω)
ΚΖ
0,693
1,6163
2,4346
0,6639
-0,415
2,2655
0,693
1,6376
2,5231
0,6490
-2,642
2,2331
-0,751
1,6298
2,5113
0,6490
-2,645
1,6192
2,5219
0,6420
-3,691
1,6512
2,4960
0,6615
-0,766
ΚZ 0.667
900
400
899,2
401,6
2,2390
-0,487
1125
500
1124
500
2,2480
-0,089
1350
600
1350
599,2
2,2530
0,134
1,6148
2,4833
0,6502
-2,460
1575
700
1574
700
2,2485
-0,063
1,6416
2,5600
0,6412
-3,808
2,2504
0,019
average values
0,6510
-2,346
Kl=1.5
14
deviation ΚΙ %
average values
Electrode comparisons (II) For σ=0.08 S/m ( Z
V @ I max ): 40cmx4cm – 30cmx3cm I max
theoretical Ι40 (Α)
Ι30 (Α)
7,1 14,2 16,0 21,3 … 184,9 192,0 224,0 256,0
4 8 9 12 … 104 108 126 144
experimental ΚΙ
Ι40 (Α)
Ι30 (Α)
ΚΙ
deviation ΚΙ %
1.78
7,70 14,00 15,64 21,80 … 182,30 189,90 221,40 251,80
4,74 6,84 9,10 11,76 … 103,40 106,80 124,90 143,30
1,624 2,047 1,719 1,854 … 1,764 1,778 1,773 1,758
-8,623 15,132 -3,324 4,273 … -0,779 0,009 -0,256 -1,131
average values
1,776
-0,104
Kl=1.333
V @ I max
For σ=1 S/m ( Z I max Ι30 (Α)
177,77 355,56 533,33 711,11 888,89 1066,67 1244,44 1422,22 1600,00 1777,78
100 200 300 400 500 600 700 800 900 1000
experimental ΚΙ
Ι40 (Α)
Ι30 (Α)
ΚΙ
deviation ΚΙ %
1.78
171,2 352 535,2 710,4 880 1062 1240 1420 1600 1784
102,8 198,8 300,8 399,2 500 600 699,2 800 897,6 1010
1,6653 1,7706 1,7792 1,7795 1,7600 1,7700 1,7734 1,7750 1,7825 1,7663
-6,323 -0,402 0,083 0,100 -1,000 -0,437 -0,243 -0,156 0,267 -0,644
1,7622
-0,876
Kl=1.333 , Measured Kσ=1.046
15
ΚZ 0.750
experimental
deviation
Ζ40 (Ω)
Ζ30 (Ω)
ΚΖ
ΚΖ %
25,1429 24,6286 24,8593 25,1009 … 25,4498 25,5687 25,2890 25,4130
40,0844 38,1287 36,5714 35,1701 … 34,9845 34,7500 34,7213 34,8409
0,627 0,646 0,680 0,714 … 0,727 0,736 0,728 0,729
-16,367 -13,876 -9,367 -4,840 … -3,006 -1,895 -2,888 -2,747
0,717
-4,401
average values
): 40cmx4cm – 30cmx3cm
theoretical Ι40 (Α)
theoretical
average values
theoretical
ΚZ (a) 0.750
ΚZ (b) 0.717
experimental
deviation
Ζ40 (Ω)
Ζ30 (Ω)
ΚΖ
2,7570 2,7000 2,7862 2,7027 2,7409 2,8060 2,7161 2,7696 2,7200 2,8341
3,7665 3,8471 3,8138 3,7174 3,7680 3,7200 3,8158 3,8400 3,7790 3,7624
0,7319 0,7018 0,7305 0,7270 0,7274 0,7543 0,7118 0,7212 0,7197 0,7532
ΚΖ % (a) -2,403 -6,423 -2,591 -3,062 -3,011 0,574 -5,092 -3,831 -4,030 0,436
ΚΖ % (b) 2,157 -2,050 1,960 1,468 1,521 5,274 -0,657 0,663 0,454 5,129
average values
0,7279
-2,943
1,592
Conclusions •
A comparison of the results shows an overall satisfying performance of the theory. Z
V @ I max I max
•
The definition provides in most cases smaller deviations and is thus considered more suitable both for comparisons between electrodes and for comparisons between conductivities.
•
For different electrodes and salinity levels the current risetime changes. Although T1 is eliminated by the Πi parameters it is taken into consideration by the second Z definition which accounts for the time-shift between voltage and current waveform.
•
Deviations in the exact value of the conductivity and in the electrode depth adjustment cause deviations from the theoretically expected Kz ratios.
•
The influence of the tank walls is observed for the big electrodes (40cm x 4cm, 60cm x 6cm) especially at high conductivity levels.
•
The accuracy of the recorded waveforms can be increased with the use of a differential probe and a current monitor.
16
Future goals •
Injection of impulse current to a metallic scaled down ship model (based on an existing full scale model) placed in a bigger electrolytic tank, recording of the voltage and current waveforms on critical points of interest and reproduction of the corresponding full scale magnitudes from the scaled down measurements.
•
Further improvement of the presented scaling procedure: the Similarity Theory can alternatively be applied to Maxwell’s equations (Ampere’s Law, Faraday’s Law, constitutive relations etc.) to define the relationships between the scale factors.
•
Taking as a basis the experimental T1 and Im values of the impulse current generator and the corresponding parameters of real lightning strikes, the scale factors Kt, KI can be defined. Experimental results converted to full scale values will be compared to simulations carried out with the electromagnetic analysis software package CST Microwave Studio.
•
17
ACKNOWLEDGMENT THE
WORK PRESENTED IN THIS PAPER HAS BEEN DEVELOPED WITHIN THE
THALES-DEFKALION PROJECT. THIS RESEARCH HAS BEEN COFINANCED BY THE EUROPEAN UNION (EUROPEAN SOCIAL FUND – ESF) AND GREEK NATIONAL FUNDS THROUGH THE OPERATIONAL PROGRAM "EDUCATION AND LIFELONG LEARNING" OF THE NATIONAL STRATEGIC REFERENCE FRAMEWORK (NSRF) - RESEARCH FUNDING PROGRAM: THALES: REINFORCEMENT OF THE INTERDISCIPLINARY AND/OR INTER-INSTITUTIONAL RESEARCH AND INNOVATION.
FRAMEWORK OF THE
Thank you for your attention!