From steelfiber to industrial floor Technical design guidelines
Hendrik Thooft Bekaert Building Products R&D Mgr. Date City
Insert local company logo here
Table of content • Steelfiber • Steelfiber concrete – EN 14651 Beamtest – Design values
• Basic design principles • ULS – Resisting forces – Acting forces • SLS • Conclusions
Chap 1 ; steelfiber ; 3 types
3
4 5
Chap 1 ; steelfiber ; wire properties Tensile curves different wire qualities 2500
Stress (MPa)
2000
1500 3D 65/60BG 4D 65/60BG 5D 65/60BG
1000
PP yarn
PP Yarn
500
E mod Steel E mod PP
0
0,00
1,00
2,00
3,00
4,00
5,00
Strain (%)
6,00
7,00
8,00
9,00
Chap 1 ; steelfiber ; Pull out
300 N
500 N
1200 N +140 %
+67 % +300 %
Chap 2 ; steelfiber concrete ; material characterisation
EN 14651 hsp = 125 mm b = 150 mm
Chap 2 ; steelfiber concrete ; Performance
Chap 2 ; steelfiber concrete ; minimal reinforcement ď łN fLK fR1k
0 0.5 Jointed slabs on ground: Jointless slabs on ground: Structures
fR3k
đ?’‡đ?‘šđ?&#x;?đ?’Ž đ?’‡đ?’„đ?’•đ?’Ž,đ?‘ł đ?’‡đ?‘šđ?&#x;?đ?’Ž đ?’‡đ?’„đ?’•đ?’Ž,đ?‘ł
2.5 đ?’‡đ?‘šđ?&#x;‘đ?’Ž ≼ đ?&#x;Ž, đ?&#x;’ and đ?’‡đ?’„đ?’•đ?’Ž,đ?‘ł ≼ đ?&#x;Ž, đ?&#x;‘ đ?’‡
đ?‘šđ?&#x;‘đ?’Ž ≼ đ?&#x;Ž, đ?&#x;” and đ?’‡đ?’„đ?’•đ?’Ž,đ?‘ł ≼ đ?&#x;Ž, đ?&#x;’
fR1k/fLk > 0.4 and fR3k/fR1k > 0.5 *
*(modelcode 2010 - 5.6) Fibre reinforcement can substitute (also partially) conventional reinforcement at ultimate limit state if the following relationships are fulfilled:
Chap 3 ; Basic design principles 2. SLS ; Design of operational entegrity and durability
1. ULS ; Design of structural interity and safety
• •
Fu F*cr
gmaterial
Fcr Fk
gload
dcr
d*cr
du
Crack opening Deflections
Chap 3 ; Basic design principles 1. ULS ; Design of structural interity and safety
đ??¸đ?‘‘ đ?‘…đ?‘‘
đ?&#x2018;Źđ?&#x2019;&#x2026; < đ?&#x2018;šđ?&#x2019;&#x2026;
denotes the design action-effect denotes the design resistance
đ?&#x2018;´đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x2030;¤ đ?&#x2018;´đ?&#x2018;šđ?&#x2019;&#x2026; đ?&#x2019;&#x2014;đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x2030;¤ đ?&#x2019;&#x2014;đ?&#x2018;šđ?&#x2019;&#x2026;
Chap 3 ; Basic design principles
Partial Safety Factor â&#x20AC;&#x201C; floors on grade permanent loads gG
1,20
variable loads gQ
1,20
concrete in compression and tension gc
1,50
steel fibre reinforced concrete in tension gSF
1,20
steel bars / steel fabric gS
1,15
đ??¸đ?&#x2018;&#x2018;
the design actions
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x20AC;&#x201C; ULS â&#x20AC;&#x201C; load cases đ?&#x2018;´đ?&#x2018;Źđ?&#x2019;&#x2026; : is the occuring moment from factored loads đ?&#x2019;&#x2014;đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x20AC;˘ â&#x20AC;˘ â&#x20AC;˘ â&#x20AC;˘
: Is the occuring shear stresses from factored loads
Point loads (Single or back to back racking systems,â&#x20AC;Ś) Wheel loads (Forcklift trucks, Trucks, â&#x20AC;Ś) Line loads (Non-bearing walls,â&#x20AC;Ś) UDL loads (Bulk storage,â&#x20AC;Ś)
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; : ULS đ?&#x2018;´đ?&#x2018;Źđ?&#x2019;&#x2026; design principle elastic-elastic section based: mel
elastic-plastic section based: mel
plastic-plastic system based: mpl
Resistance
section based: fflď&#x201A; W or feqď&#x201A; W
system based: (ffl + feq)ď&#x201A; W
system based: (ffl + feq)ď&#x201A; W
f fl f eq mel mpl m mâ&#x20AC;&#x2122; W
first crack flexural strength Losberg design post crack flexural strength guideline bending moment according linear-elastic design ÎŁ (m, mâ&#x20AC;&#x2122;) according plastic calculation (~85% á 90% max mel) positive bending moments according plastic calculation negative bending moments according plastic calculation section modulus
bending moment
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; : ULS â&#x2C6;&#x2019;đ?&#x2018;Źđ?&#x2019;?đ?&#x2019;&#x201A;đ?&#x2019;&#x201D;đ?&#x2019;&#x2022;đ?&#x2019;&#x160;đ?&#x2019;&#x201E; đ?&#x2019;?đ?&#x2019;&#x2020;đ?&#x2019;?đ?&#x2019;&#x2C6;đ?&#x2019;&#x2030;đ?&#x2019;&#x2022; đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; =
4
đ??¸đ?&#x2018;? â&#x2C6;&#x2122; â&#x201E;&#x17D;3 12 â&#x2C6;&#x2122; 1 â&#x2C6;&#x2019; đ?&#x153;&#x2C6; 2 â&#x2C6;&#x2122; đ?&#x2018;&#x2DC; Defining k compaction modulus EV1 and EV2
Multi layer model steel fibre concrete slab
subbase layer 3
h3, E3
k2
subbase layer 2
h2, E2
k1
subbase layer 1
h1, E1
k0
subsoil
E k h
k3
dynamic modulus of elasticity modulus of subgrade reaction layer thickness
k0 [N/mm²] or [MN/m²] [N/mm³] [mm]
đ??¸
đ??¸
đ?&#x2018;&#x2030;1 đ?&#x2018;&#x2030;2 đ?&#x2018;&#x2DC; â&#x2030;&#x2C6; 550 = 550â&#x2C6;&#x2122;đ?&#x203A;ź ,
with
đ??¸
đ?&#x203A;ź = đ??¸đ?&#x2018;&#x2030;2 â&#x2030;¤ 2,4 (2,0) and k in N/mmÂł đ?&#x2018;&#x2030;1
EV1: compaction modulus determined in 1st load cycle in N/mm² or MN/m² EV2: compaction modulus determined in 2nd load cycle in N/mm² or MN/m² Îą: a value â&#x2030;¤ 2,0 is recommended, the maximum value is 2,4
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; : ULS â&#x2C6;&#x2019;đ?&#x2018;Źđ?&#x2019;?đ?&#x2019;&#x201A;đ?&#x2019;&#x201D;đ?&#x2019;&#x2022;đ?&#x2019;&#x160;đ?&#x2019;&#x201E; đ?&#x2019;?đ?&#x2019;&#x2020;đ?&#x2019;?đ?&#x2019;&#x2C6;đ?&#x2019;&#x2030;đ?&#x2019;&#x2022; Defining k Direct plate test
CBR to k-value â&#x20AC;˘
â&#x20AC;˘
CBR California Bearing Ratio E dynamic modulus of elasticity k modulus of subgrade reaction
[%] [N/mm²] or [MN/m²] [N/mm³]
standard plate diameter for the determination of the k-value â&#x20AC;&#x201C; 762 mm (DIN) = 30 in (ASTM) â&#x20AC;&#x201C; 750 mm (BS) correct the k-value if a smaller slab diameter is used â&#x20AC;&#x201C; the use of the standard plate (750 / 762 mm or 30 in) is strongly recommended â&#x20AC;&#x201C; k750 has to be used for all calculations 750đ?&#x2018;&#x161;đ?&#x2018;&#x161; ; D â&#x2030;¤ 750 đ?&#x2018;&#x161;đ?&#x2018;&#x161; đ??ˇ đ??ˇ ; đ??ˇ â&#x2030;Ľ 300 đ?&#x2018;&#x161;đ?&#x2018;&#x161; 750đ?&#x2018;&#x161;đ?&#x2018;&#x161;
â&#x20AC;&#x201C;
đ?&#x2018;&#x2DC;đ??ˇ = đ?&#x2018;&#x2DC;750đ?&#x2018;&#x161;đ?&#x2018;&#x161; â&#x2C6;&#x2122;
â&#x20AC;&#x201C;
đ?&#x2018;&#x2DC;750 = đ?&#x2018;&#x2DC;đ??ˇ â&#x2C6;&#x2122;
Chap 4 ; 𝑬𝒅 – ULS – 𝑴𝑬𝒅 - 1 center pointload t rc m’Ed
VEd
m’Ed
actual pressure distribution
r0
assumed pressure distribution p0d
pd,max r0 t
∙ p0d
𝑚𝐸𝑑 + 𝑚′
𝐸𝑑
=
𝑉𝐸𝑑 ∙ 1−𝛾∙𝜋∙ 2∙𝜋
𝑟0 2 𝑙𝑒𝑙
𝑠𝑥 ∙ 1 − 23 ∙ 𝑟𝑡0+2∙𝜋∙𝑟
0
𝑟 ∙ 1− 0 2∙𝑡
𝑖𝑓 𝑠𝑥 = 0: 𝑟0 𝑙𝑒𝑙
rc m’Ed
=
3
𝑟𝑐 Τ𝑙𝑒𝑙
𝛾∙𝜋∙
mEd r0
3𝑟 1− ∙ 𝑜 4 𝑡
=
3
3Τ ∙𝜋∙𝑠 Τ𝑙 𝑦 𝑒𝑙 4 3𝑟 𝛾∙𝜋∙ 1− ∙ 𝑜 4 𝑡
𝑖𝑓 𝑠𝑥 > 0: 𝑟0 𝑙𝑒𝑙
=
4𝑟 1+ ∙ 𝑐
2∙𝛾∙𝜋∙
3 𝑠𝑥 2 𝑟𝑜 1 𝑠𝑥 1𝑟 1− ∙ + ∙ ∙ 1− ∙ 𝑜 3 𝑡 𝜋 𝑟0 2 𝑡
2𝑟 + ∙ 0∙ 3 𝑠𝑥
3𝑟 1− ∙ 0 4 𝑡
=
1+ 2∙𝛾∙𝜋∙
2𝑟 1− ∙ 𝑜 3 𝑡
1 𝑠 + ∙ 𝑥∙ 𝜋 𝑟0
𝜋∙𝑠𝑦 𝑠𝑥
1 𝑟𝑜 2 𝑡
1− ∙
2𝑟 3𝑟 + ∙ 0 ∙ 1− ∙ 0 3 𝑠𝑥
4 𝑡
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x20AC;&#x201C; ULS â&#x20AC;&#x201C; đ?&#x2018;´đ?&#x2018;Źđ?&#x2019;&#x2026; - 1 pointload at a joint tk
t rc
rc mâ&#x20AC;&#x2122;Ed
VEd
VEd
mâ&#x20AC;&#x2122;Ed
mâ&#x20AC;&#x2122;Ed mEd actual
rk
presumed p0d
pd,max
p0d r0 t
â&#x2C6;&#x2122; p0d r0
a actual presumed mâ&#x20AC;&#x2122;Ed
rc
mEd
r0
đ?&#x2018;&#x161;đ??¸đ?&#x2018;&#x2018; + đ?&#x2018;&#x161;â&#x20AC;˛
rk = r0â&#x2C6;&#x2122;tana đ?&#x2018;&#x;0 đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122;
=
3
đ??¸đ?&#x2018;&#x2018;
=
đ?&#x2018;&#x2030;đ??¸đ?&#x2018;&#x2018; â&#x2C6;&#x2122; 4
1+
đ?&#x2018; đ?&#x2018;Ś â&#x2C6;&#x2122; tan đ?&#x203A;ź â&#x2C6;&#x2019; 43â&#x2C6;&#x2122;đ?&#x203A;žđ?&#x2018;&#x2DC; â&#x2C6;&#x2122; đ?&#x2018;&#x;0
đ?&#x2018; đ?&#x2018;Ś đ?&#x2018; đ?&#x2018;Ľ + â&#x2C6;&#x2122;cot đ?&#x203A;ź đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; 3đ?&#x2018;&#x; đ?&#x2018;Ą đ?&#x203A;žđ?&#x2018;&#x2DC; â&#x2C6;&#x2122; 1â&#x2C6;&#x2019; â&#x2C6;&#x2122; 0 â&#x2C6;&#x2122; 1+ â&#x2C6;&#x2122;tan đ?&#x203A;ź 8 đ?&#x2018;Ą đ?&#x2018;Ąđ?&#x2018;&#x2DC;
1,5â&#x2C6;&#x2122;cot đ?&#x203A;źâ&#x2C6;&#x2122;
đ?&#x2018;&#x;0 2 3đ?&#x2018;&#x; 5 đ?&#x2018;&#x; â&#x2C6;&#x2122; 1â&#x2C6;&#x2019; â&#x2C6;&#x2122; 0 â&#x2C6;&#x2019; â&#x2C6;&#x2122; 0 â&#x2C6;&#x2122;tan đ?&#x203A;ź đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; 8 đ?&#x2018;Ą 16 đ?&#x2018;Ąđ?&#x2018;&#x2DC;
â&#x2C6;&#x2122; tan2 đ?&#x203A;ź
Chap 4 ; 𝑬𝒅 ∶ 𝐔𝐋𝐒 − 𝐏𝐮𝐧𝐜𝐡𝐢𝐧𝐠 − 𝐆𝐞𝐧𝐞𝐫𝐚𝐥 𝐩𝐫𝐢𝐧𝐜𝐢𝐩𝐥𝐞 𝑉𝐸𝑑 − 𝑉𝑠𝑜𝑖𝑙 = 𝑉𝐸𝑑,𝑟𝑒𝑑 ≤ 𝑉𝑅𝑑,𝑐 + 𝑉𝑅𝑑,𝑓
Chap 4 ; 𝑬𝒅 ∶ 𝐔𝐋𝐒 − 𝐕𝐬𝐨𝐢𝐥 𝐮𝐧𝐝𝐞𝐫 𝐞𝐝𝐠𝐞 𝐥𝐨𝐚𝐝 tedge,eq rc VEd
𝐑𝐞𝐬𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐨𝐢𝐥 𝐟𝐨𝐫𝐜𝐞 − tedge,eq rc
acrit
acrit
if 𝒕𝒆𝒅𝒈𝒆,𝒆𝒒 − 𝒓𝒄 ≥ 𝒂𝒄𝒓𝒊𝒕 ⇒ VEd
𝑝𝑚,𝑎 = pm,a
actual
Psoil p0d
pd,max
𝑡𝑒𝑑𝑔𝑒,𝑒𝑞 − 𝑎𝑐𝑟𝑖𝑡 + 𝑟𝑐 ∙ 𝑝𝑂𝑑 𝑡𝑒𝑑𝑔𝑒,𝑒𝑞
𝑝𝑚,𝑏 = 13 ∙ 𝑝0𝑑 − 𝑝𝑚,𝑎
presumed
pm,b
p0d
𝑝𝑚 = 𝑝𝑚,𝑎 + 𝑝𝑚,𝑏 ⇒ 𝑃𝑠𝑜𝑖𝑙 = 𝑝𝑚 ∙ 𝜋/2 ∙ 𝑎𝑐𝑟𝑖𝑡 + 𝑟𝑐
if 𝒕𝒆𝒅𝒈𝒆,𝒆𝒒 − 𝒓𝒄 < 𝒂𝒄𝒓𝒊𝒕 ⇒ rc
𝑝𝑚,𝑎 = 0 acrit
𝑝𝑚,𝑏 = 13 ∙ 𝑝0𝑑 𝑝𝑚 = 𝑝𝑚,𝑏 ⇒ 𝑃𝑠𝑜𝑖𝑙 = 𝑝𝑚 ∙ 𝜋/2 ∙ 𝑡𝑒𝑑𝑔𝑒,𝑒𝑞 2
2
Chap 4 ; 𝑬𝒅 ∶ 𝐔𝐋𝐒 − 𝐕𝐬𝐨𝐢𝐥 𝐮𝐧𝐝𝐞𝐫 𝐜𝐞𝐧𝐭𝐞𝐫 𝐥𝐨𝐚𝐝
𝐑𝐞𝐬𝐢𝐬𝐭𝐢𝐧𝐠 𝐬𝐨𝐢𝐥 𝐟𝐨𝐫𝐜𝐞 − if 𝒕 − 𝒓𝒄 ≥ 𝒂𝒄𝒓𝒊𝒕 ⇒
t rc VEd
actual pressure distribution
pm,a
assumed pressure distribution
Psoil p0d pd,max
𝑝𝑚,𝑎
acrit
pm,b
𝑡 − 𝑎𝑐𝑟𝑖𝑡 + 𝑟𝑐 = ∙ 𝑝𝑂𝑑 𝑡
𝑝𝑚,𝑏 = 13 ∙ 𝑝0𝑑 − 𝑝𝑚,𝑎 𝑝𝑚 = 𝑝𝑚,𝑎 + 𝑝𝑚,𝑏
Average pressure under punching cone
if 𝒕 − 𝒓𝒄 < 𝒂𝒄𝒓𝒊𝒕 ⇒ 𝑝𝑚,𝑎 = 0 rc
acrit
𝑝𝑚,𝑏 = 13 ∙ 𝑝0𝑑 𝑝𝑚 = 𝑝𝑚,𝑏 ⇒ 𝑃𝑠𝑜𝑖𝑙 = 𝑝𝑚 ∙ 𝜋 ∙ 𝑡 2
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x2C6;ś đ??&#x201D;đ??&#x2039;đ??&#x2019; â&#x2C6;&#x2019; đ??&#x2022;đ??&#x201E;đ??? â&#x2C6;&#x2019; đ??&#x2019;đ??Ąđ??&#x17E;đ??&#x161;đ??Ť đ??Źđ??đ??Ťđ??&#x17E;đ??Źđ??Ź đ?&#x2018;Łđ??¸đ?&#x2018;&#x2018;
đ?&#x203A;˝ â&#x2C6;&#x2122; ( đ?&#x2018;&#x2030;đ??¸đ?&#x2018;&#x2018; â&#x2C6;&#x2019; đ?&#x2018;&#x192;đ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x2122; ) = đ?&#x2018;˘đ?&#x2018;&#x2013; â&#x2C6;&#x2122; đ?&#x2018;&#x2018;
Location
DIN EC2 + NAD + DAfStb*
Internal
ď&#x192;ž b = 1,10
Edge
ď&#x192;ž b = 1,40
Corner
ď&#x192;ž b = 1,50
VEd : acting vertical load d : slab thickness ui : control perimeter
đ?&#x2018;&#x17D;đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x2013;đ?&#x2018;Ą
đ?&#x2018;&#x;w đ?&#x2018;˘0
đ?&#x2018;˘1
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x20AC;&#x201C; ULS â&#x20AC;&#x201C; Load transfer at saw cut joints Load Transfer at Saw Cuts Scenario
indoor
outdoor
temperatur final e difference shrinkage Î&#x201D;T [K] đ?&#x153;&#x20AC;đ?&#x2018; â&#x2C6;&#x17E; [â&#x20AC;°]
temperatur final sum of e difference shrinkage strains [â&#x20AC;°] Î&#x201D;T [K] đ?&#x153;&#x20AC;đ?&#x2018; â&#x2C6;&#x17E; [â&#x20AC;°]
sum of strains [â&#x20AC;°]
1
1,00
0,8
0,80
0,6
0,60
very cold
30
0,25
0,55
30
0,25
0,55
tempered
20
0,25
0,45
5
0,40
0,45
0,4
0,40
humid
5
0,20
0,25
0
0,20
0,20
0,2
0,20
hot
20
0,40
0,60
0
0,60
0,60
â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą = â&#x2C6;&#x2020; đ?&#x2018;&#x2021; â&#x2C6;&#x2122; đ?&#x203A;ź đ?&#x2018;&#x2021; + đ?&#x153;&#x20AC;đ?&#x2018; â&#x2C6;&#x17E; â&#x2C6;&#x2122; đ?&#x2018;&#x2122;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą đ?&#x2018;¤đ?&#x2018;&#x2013;đ?&#x2018;Ąâ&#x201E;&#x17D; đ?&#x203A;ź đ?&#x2018;&#x2021; = 10 â&#x2C6;&#x2122; 10â&#x2C6;&#x2019;6 Τđ??ž
joint efficiency
load multiplicator
0
0,00 0,0
1,0
2,0
3,0
4,0
5,0
Joint Opening [mm]
đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D; â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą â&#x2030;¤ 1.524 đ?&#x2018;&#x161;đ?&#x2018;&#x161;: â&#x20AC;˛ ÎŚđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x201C; = â&#x2C6;&#x2019;0.29 â&#x2C6;&#x2122; â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą + 1.0636 Load reduction factor
đ?&#x153;&#x2019;đ?&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;¤ đ?&#x2018;?đ?&#x2018;˘đ?&#x2018;Ą = 1 â&#x2C6;&#x2019; ÎŚđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x201C; Τ2
đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D;â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą > 1.524 đ?&#x2018;&#x161;đ?&#x2018;&#x161;: â&#x20AC;˛ ÎŚđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x201C; = â&#x2C6;&#x2019;0.0679 â&#x2C6;&#x2122; â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą 3 + 0.5675 â&#x2C6;&#x2122; â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą 2 â&#x2C6;&#x2019; 1.5681 â&#x2C6;&#x2122; â&#x2C6;&#x2020;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą + 1.9282 â&#x20AC;˛ ÎŚđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x201C; = đ?&#x2018;&#x161;đ?&#x2018;&#x17D;đ?&#x2018;Ľ đ?&#x2018;&#x161;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A; 1; ÎŚđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x201C; ;0
Ref. : PCA Bulletin D124 - Aggregate Interlock at Joints in Concrete Pavements
Chap 4 ; đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x20AC;&#x201C;ULSâ&#x20AC;&#x201C; Load transfer at joint profiles Load reduction factor
đ?&#x153;&#x2019;đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019; = đ?&#x2018;&#x201C;đ?&#x2018;Ą(đ?&#x2018;Ąđ?&#x2018;Śđ?&#x2018;?đ?&#x2018;&#x2019;, đ?&#x2018;&#x2018;đ?&#x2018;&#x153;đ?&#x2018;¤đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; đ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x201C;đ?&#x2018;&#x2019;đ?&#x2018;?đ?&#x2018;Ą)
* For đ??&#x152; values contact the supplier
đ?&#x153;&#x2019;đ??¸đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x2013;đ?&#x2018;?đ?&#x2018; đ?&#x2018;&#x2019; = 100%
đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122; 20 đ?&#x2018;&#x161;đ?&#x2018;&#x161; đ?&#x2018;&#x2014;đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ą đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D; Slab breaks before joint
Ref. : TR34 3rd edition Queensland University of Technology â&#x20AC;&#x153;jointing systems in concrete structuresâ&#x20AC;? - 2002
đ?&#x2018;&#x2026;đ?&#x2018;&#x2018; The design resistance
Chap 4 ; đ?&#x2018;šđ?&#x2019;&#x2026; â&#x20AC;&#x201C; ULS đ?&#x2018;´đ?&#x2018;šđ?&#x2019;&#x2026; : is the resisting moment capacity of the cross section, derived from factored material properties
đ?&#x2018;˝đ?&#x2018;šđ?&#x2019;&#x2026; : is the resisting shear capacity of the cross section , derived from the factored material properties.
â&#x20AC;˘ Ft(fibre type) â&#x20AC;˘ Ft (fibre dosage) â&#x20AC;˘ Ft (concrete quality)
Chap 4 ; đ?&#x2018;šđ?&#x2019;&#x2026; â&#x2C6;ś đ??&#x201D;đ??&#x2039;đ??&#x2019; â&#x2C6;&#x2019; đ??&#x152;đ??&#x2018;đ??? Material Characterization (EN 14645)
đ??&#x203A;đ??&#x161;đ??Źđ??˘đ??&#x153; đ??Šđ??Ťđ??˘đ??§đ??&#x153;đ??˘đ??Šđ??Ľđ??&#x17E; â&#x2C6;&#x2019;
Bending stresses
Constitutive law (Model Code 2010)
Tension stresses
compression zone
Section moment capacity
tension zone (steel fibers)
Moment resitance đ?&#x2018;´đ?&#x2018;šđ?&#x2019;&#x2026;
Chap 4 ; 𝑹𝒅 ∶ 𝐔𝐋𝐒 − 𝐌𝐑𝐝 𝑴𝑹𝒅
η∙fcd
𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐞 −
ec ≤ ecu x
λ∙x η ∙ x ∙ fcd
fctd,s
df h
h-x
d Ff
es ≤ esu fctd,ε ≤ fctd,u
as
ef ≤ efu
Fs
𝑓𝑐𝑡𝑑,𝑠 + 𝑓𝑐𝑡𝑑,𝜀 𝐹𝑐𝑑 = 𝐹𝑠𝑑 + 𝐹𝑓𝑑 ⇒ 𝑏 ∙ 𝜆 ∙ 𝑥 ∙ 𝜂 ∙ 𝑓𝑐𝑑 = 𝐴𝑠 ∙ 𝜎𝑠𝑑 + ∙ ℎ−𝑥 ∙𝑏 2 𝜆∙𝑥 𝑀𝑅𝑑 = −𝑀𝑐𝑑 + 𝑀𝑠𝑑 + 𝑀𝑓𝑑 = −𝐹𝑐𝑑 ∙ + 𝐹𝑠𝑑 ∙ 𝑑 + 𝐹𝑓𝑑 ∙ 𝑑𝑓 2 The higher fr1 and fr3, the higher Ffd, the higher Mrd
𝑴𝑹𝒅
Chap 4 ; 𝑹𝒅 ∶ 𝐔𝐋𝐒 − 𝐯𝐑𝐝
𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐞 −
DIN EC2 + NAD + DAfStb Only conventional
DIN EC2 + NAD + DAfStb
𝑣𝑅𝑑,𝑐,𝑚𝑎𝑥 = max 𝑣𝑅𝑑,𝑐 , 𝑣𝑚𝑖𝑛
deff
𝑑𝑒𝑓𝑓 = h − c − 2∙d2 s (conv,combi) 𝑑𝑒𝑓𝑓 = ℎ(fiber only) (Reinforcement is assumed in both directions)
Characteristic factor approach
𝑓𝑐𝑡𝑅,𝑢 = 𝜅𝐹 ∙ 𝜅𝐺 ∙ 0,51 ∙ 𝛽𝑢 ∙ 𝑓𝑅,4𝑚
𝑓
Combined
𝑣𝑅𝑑,𝑐 = max 𝑣𝑅𝑑,𝑐 , 𝑣𝑚𝑖𝑛 + 𝑣𝑅𝑑,𝑐𝑓 ≤ 1,4 ∙ max 𝑣𝑅𝑑,𝑐 , 𝑣𝑚𝑖𝑛
Fiber only
𝑣𝑅𝑑,𝑐 = 𝑣𝑚𝑖𝑛 + 𝑣𝑅𝑑,𝑐𝑓 ≤ 1,4 ∙ 𝑣𝑚𝑖𝑛
𝑓
𝑓
Fiber contribution
𝑣𝑅𝑑,𝑐𝑓 = 0,85 ∙ 𝑓
𝑓
𝛼𝑐 ∙ 𝑓𝑐𝑡𝑅,𝑢 𝑓
𝑓
𝑓
𝛾𝑐𝑡 𝑓
𝑓
𝑓
𝑓
𝑓
𝑓
𝑓
𝛼𝑐ℎ𝑎𝑟 ≤ 𝜅𝐹 ∙ 𝜅𝐺 ∙ 0,51 𝑓 𝜅𝐹 = 0,5 𝑓 𝑓 𝜅𝐺 = 1,0 + 𝐴𝑐𝑡 ∙ 0,5 ≤ 1,70 𝑓 𝐴𝑐𝑡 =∙ 𝑢1 ∙ 𝑑𝑒𝑓𝑓
𝛼𝑐 = 0,85 | 𝑓𝑐𝑡𝑅,𝑢 = 𝜅𝐹 ∙ 𝜅𝐺 ∙ 𝑓𝑐𝑡0,𝑢
𝑓 𝜅𝐹 𝑓 𝑓𝑐𝑡0,𝑢
𝑓 | 𝜅𝐺
𝑓 𝐴𝑐𝑡
= 0,5 = 1,0 + ∙ 0,5 ≤ 1,70 𝑓 𝑓 = 𝑓𝑐𝑓𝑙𝑘,𝐿2 ∙ 𝛽𝑢 | 𝑓𝑐𝑓𝑙𝑘,𝐿2 ≤ 0,51 ∙ 𝑓𝑅,4𝑚
𝜌𝑙 𝜌𝑙 = min
𝑓
𝛽𝑢 = 0,37 | 𝛾𝑐𝑡 = 1,25
𝑣𝑅𝑑,𝑐
𝑣𝑅𝑑,𝑐 = 𝐶𝑅𝑑,𝑐 ∙ 𝑘 ∙ 100 ∙ 𝜌𝑙 ∙ 𝑓𝑐𝑘
1Τ3
1 𝐶𝑅𝑑,𝑐 = 0,18Τ𝛾𝑐
൞ 2 𝐶𝑅𝑑,𝑐 = 0,18Τ𝛾𝑐 ∙ 0,1 𝑢0 Τ𝑑𝑒𝑓𝑓 + 0,6 3 𝐶𝑅𝑑,𝑐 = 0,15Τ𝛾𝑐 (1) elevated slab, foundation slab, (2) inner columns of elevated slab with u0/deff <4, (3) pad foundations,
𝛾𝑐 = 1,5
𝑘 = 1 + 200Τ𝑑𝑒𝑓𝑓 ≤ 2,0 (𝑑𝑒𝑓𝑓 𝑚𝑚 )
𝑣𝑚𝑖𝑛
𝑑𝑒𝑓𝑓 ≤ 600𝑚𝑚 → vmin = 0,0525Τγc ∙ k 3Τ2 ∙ fck 𝑑𝑒𝑓𝑓 > 800𝑚𝑚 → vmin = 0,0375Τγc ∙ k 3Τ2 ∙ fck 600𝑚𝑚 < 𝑑𝑒𝑓𝑓 ≤ 800𝑚𝑚 → interpolate
Remarks
ds 2 fcd 2 ; 0,02; 0,5 ∙ s ∙ deff γyd s = spacing
π∙
Chap 4 ; đ?&#x2018;šđ?&#x2019;&#x2026; â&#x2C6;ś đ??&#x201D;đ??&#x2039;đ??&#x2019; đ??&#x153;đ??¨đ??§đ??&#x153;đ??Ľđ??Žđ??Źđ??˘đ??¨đ??§ The ULS requirement is met when
đ?&#x2018;´đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x2030;¤ đ?&#x2018;´đ?&#x2018;šđ?&#x2019;&#x2026; đ?&#x2019;&#x2014;đ?&#x2018;Źđ?&#x2019;&#x2026; â&#x2030;¤ đ?&#x2019;&#x2014;đ?&#x2018;šđ?&#x2019;&#x2026; For all load cases Using the required load safety factors material safety factors
Chap 5 ; SLS – Concrete cracks uncracked
cracked
fctm = 3 MPa Ec = 30,000 MPa
1m
Δec / Fs
1m
differential deformation Δec: Δec = fctm / Ec = 3 MPa / 30,000 MPa Δec = 0.1 ‰ This corresponds to 10K temperature difference or 0.1 ‰ shrinkage deformation.
cracking force Fcr: Fcr = 3 MPa ∙1 m ∙ 1m = 3 MN
Chap 5 ; SLS – cracking Shrinkage deformation Δes = 0.4 ‰ Maximum strain in concrete prior to cracking Δec = 0.1 ‰
Fully restraint concrete element 5m
fctm
3 MPa Deformation cracked concrete
100 % Restraint concrete elements will crack by
Deformation restraint shrinkage
E = 30,000 N/mm²
0.1 ‰
0.4 ‰
ec
Shrinkage Temperature variations Acting forces
Chap 5 ; SLS – cracking leff = 50 mm
Hooke’s law 60 mm
- Same size Hooked end steelfiber = working on end anchorage - No shape outlines - Low resolution pictures leff = 30 mm
50 mm
Assumption ! : Plastic fibre = working on bond anchorage
E e l e l
Chap 5 ; SLS – 0,2 mm crack opening l e leff
Δl (mm)
Leff (mm)
ε (%)
Steelfiber
0,2
50
0,4
Plastic fibre
0,2
30
0,67
Tensile curves different wire qualities 2500
2000
Stress (MPa)
Small crack openings 1500 3D 65/60BG 4D 65/60BG 1000
5D 65/60BG
800 Mpa
PP yarn
580 Mpa500
45 Mpa 0 0,00
1,00
2,00
3,00
4,00
5,00
Strain (%)
6,00
7,00
8,00
9,00
Steel : High stresses = effective Plastic : Low stresses = not effective
Chap 5 ; SLS – cracking To avoid cracking • Δec < 0.1 ‰ • Reduce friction between the floor and the subbase • Plastic sheet between floor and subbase • Flat subbase , avoid points of achorage • Load the floor only after 28 days (or later) When Δec > 0.1 ‰ cracks will appear and the reinforcement must limit the crack opening
• At 0,2 mm crack opening, steel works at high stresses (580 – 800 N/mm²) • At 0,2 mm crack opening macro synthetic fibers have low effectiveness ( appr. 45 N/mm²)
Chap 5 ; SLS â&#x20AC;&#x201C; Detailing Mesh
Rebar
Saw cuts joints
A-A
B
B
Chap 5 ; SLS â&#x20AC;&#x201C; 3 possible floor systems Jointed floors â&#x20AC;˘ Saw cuts at appr. 6 x 6 m â&#x20AC;˘ Single Plastic sheet â&#x20AC;˘
đ?&#x2019;&#x2021;đ?&#x2018;šđ?&#x;?đ?&#x2019;&#x17D; đ?&#x2019;&#x2021;đ?&#x2019;&#x201E;đ?&#x2019;&#x2022;đ?&#x2019;&#x17D;,đ?&#x2018;ł
đ?&#x2019;&#x2021;
đ?&#x2018;šđ?&#x;&#x2018;đ?&#x2019;&#x17D; â&#x2030;Ľ đ?&#x;&#x17D;, đ?&#x;&#x2019; , đ?&#x2019;&#x2021;đ?&#x2019;&#x201E;đ?&#x2019;&#x2022;đ?&#x2019;&#x17D;,đ?&#x2018;ł â&#x2030;Ľ đ?&#x;&#x17D;, đ?&#x;&#x2018;
â&#x20AC;˘ For lightly traficed floors â&#x20AC;˘ Maintance costs at joints
Jointless floors â&#x20AC;˘ Joint profiles at appr. 35 x 35 m â&#x20AC;˘ Double plastic sheet â&#x20AC;˘
đ?&#x2019;&#x2021;đ?&#x2018;šđ?&#x;?đ?&#x2019;&#x17D; đ?&#x2019;&#x2021;đ?&#x2019;&#x201E;đ?&#x2019;&#x2022;đ?&#x2019;&#x17D;,đ?&#x2018;ł
đ?&#x2019;&#x2021;
đ?&#x2018;šđ?&#x;&#x2018;đ?&#x2019;&#x17D; â&#x2030;Ľ đ?&#x;&#x17D;, đ?&#x;&#x201D; , đ?&#x2019;&#x2021;đ?&#x2019;&#x201E;đ?&#x2019;&#x2022;đ?&#x2019;&#x17D;,đ?&#x2018;ł â&#x2030;Ľ đ?&#x;&#x17D;, đ?&#x;&#x2019;
â&#x20AC;˘ For distribution centres â&#x20AC;˘ Low maintance cost at the expansion joints. (in function of the type of joint)
Seamless floors â&#x20AC;˘ No joints. (all day joints are tight together â&#x20AC;˘ Single plastic sheet â&#x20AC;˘ Dramix 4D + mesh according special SLS design
ď&#x20AC;¨
w k ď&#x20AC;˝ sr ,max ď&#x192;&#x2014; e f sm ď&#x20AC; e cm
ď&#x20AC;Š
â&#x20AC;˘ For high output distribution centres â&#x20AC;˘ No movement joints so no maintance costs
CONCLUSIONS • A state of the art floor design is complicated – ULS to define slab thickness, and reinforcement (steel fibre type and dosage or combined reinforcement Steelfibers + Mesh) – SLS check if specific serviceability requirements are met.
• A correct definition of the design parameters is essential – Validaton of the subbase by onsite checking – Obtaining the correct load case from the client – Quality control of the steelfibre concrete performance
• A correct design is only a part of the succes of a project in addition to … – – – –
An experienced flooring contractor Quality materials (concrete, steelfibers, additives,…) Quality joints Quality control on the jobsite
Insert local company logo here