74
Neutrosophic Sets and Systems, Vol. 17, 2017
University of New Mexico
More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set R. Anitha Cruz and F. Nirmala Irudayam R. Anitha Cruz, Department of Mathematics Nirmala College for Women, Coimbatore, 641018, India, anithacruz@gmail.com F.Nirmala Irudayam, Assistant Proffesor, Departmentof Mathematics, Nirmala College for Women, Coimbatore, 641018, India, nirmalairudayam@ymail.com
1 2
Abstract:The P-union ,P-intersection, P-OR and P-AND of neutrosophic soft cubic sets are introduced and their related properties are investigated. We show that the Punion and the P-intersection of two internal neutrosophic soft cubic sets are also internal neutrosophic soft cubic sets. The conditions for the P-union ( P-intersection ) of two T-external (resp. I- external, F- external) neutrosophic soft cubic sets to be T-external (resp. I- external, Fexternal) neutrosophic soft cubic sets is also dealt with.
We provide conditions for the P-union ( P-intersection ) of two T-external (resp. I- external, F- external) neutrosophic soft cubic sets to be T-internal (resp. I- internal,F- internal) neutrosophic soft cubic sets. Further the conditions for the P-union (resp. P-intersection ) of two neutrosophic soft cubic sets to be both T-external (resp. I- external, Fexternal) neutrosophic soft cubic sets and T-external (resp. I- external, F- external) neutrosophic soft cubic sets are also framed.
Keywords: Cubic set, Neutrosophic cubic set, Neutrosophic soft cubic set, T-internal (resp. I- internal,F- internal) neutrosophic soft cubic sets , T-external (resp. I- external, F- external) neutrosophic soft cubic set.
1 Introduction Florentine Smarandache[10,11] coined neutrosophic sets and neutrosophic logic which extends the concept of the classical sets, fuzzy sets and its extensions. In neutrosophic set, indeterminacy is quantified explicity and truthmembership, indeterminacy-membership and falsity – membership are independent. This assumption is very important in many applications such as information fusion in which we try to combine the data from different sensors. Pabita Kumar Majii[18] had combined the Neutrosophic set with soft sets and introduced a new mathematical model ‘ Nuetrosophic soft set’. Y. B. Jun et al[2]., introduced a new notion, called a cubic set by using a fuzzy set and an interval-valued fuzzy set, and investigated several properties. Jun et al. [19] extended the concept of cubic sets to the neutrosophic cubic sets. [1] introduced neutrosophic soft cubic set and the notion of truth-internal ( indeterminacy-internal, falsity-internal) neutrosophic soft cubic sets and truth-external ( indeterminacy-internal, falsity-internal) neutrosophic soft cubic sets As a continuation of the paper [1]We show that the Punion and the P-intersection of T-internal (resp. Iinternal,F-internal) neutrosophic soft cubic sets are also Tinternal (resp. I-internal,F-internal) neutrosophic soft cubic sets. We also provide conditions for the P-union ( Pintersection ) of two T-external (resp. I- external,Fexternal) neutrosophic soft cubic sets to be T-external (resp. I- external,F- external) neutrosophic soft cubic sets. We provide conditions for the P-union ( P-intersection ) of two T-external (resp. I- external,F- external)
neutrosophic soft cubic sets to be T-internal (resp. Iinternal,F- internal) neutrosophic soft cubic sets. We provide conditions for the P-union (resp. Pintersection ) of two NSCS to be both T-external (resp. Iexternal,F- external) neutrosophic soft cubic sets and Texternal (resp. I- external,F- external) neutrosophic soft cubic sets. 2 Preliminaries 2.1 Definition: [5] Let E be a universe. Then a fuzzy set μ over E is defined by X = { μx (x) / x: x є E }where μx is called membership function of X and defined by μx : E → [0,1]. For each x E, the value μx(x) represents the degree of x belonging to the fuzzy set X. 2.2 Definition: [2] Let X be a non-empty set. By a cubic set, we mean a structure in which A is an interval valued fuzzy set (IVF) and μ is a fuzzy set. It is denoted by . 2.3 Definition: [9]Let U be an initial universe set and E be a set of parameters. Consider A ⊂ E. Let P( U ) denotes the set of all neutrosophic sets of U. The collection ( F, A ) is termed to be the soft neutrosophic set over U, where F is a mapping given by F : A → P(U). 2.4 Definition : [4] Let X be an universe. Then a neutrosophic (NS) set λ is an object having the form λ = {< x : T(x),I(x),F(x) >: x ∈ X} where the functions T, I, F : X → ]–0, 1+[ defines respectively the degree of Truth, the degree of
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
75
Neutrosophic Sets and Systems, Vol. 17, 2017
indeterminacy, and the degree of Falsehood of the element x ∈ X to the set λ with the condition. − 0 ≤ T(x) + I(x) + F(x) ≤ 3+ 2.5 Definition : [7] Let X be a non-empty set. An interval neutrosophic set (INS) A in X is characterized by the truth-membership function AT, the indeterminacymembership function AI and the falsity-membership function AF. For each point x ∈ X, AT (x),AI (x),AF (x) ⊆ [0,1]. For two INS A = {<x, [AT-(x), AT+(x)], [AI-(x), AI+(x) ], [AF-(x), AF+(x)]>: x ∈ X} and B = {<x, [BT-(x), BT+(x)], [BI-(x), BI+(x) ], [BF-(x), BF+(x)]>: x ∈ X} Then, ~ B if and only if 1. A
AT ( x) BT ( x) , AT ( x) BT ( x) AI ( x) BI ( x) , AI ( x) BI ( x) AF ( x) BF ( x) , AF ( x) BF ( x)
2.
where P is a mapping
2.7 Definition: [1] Let X be an initial universe set. A neutrosophic soft cubic set (P, A) in X is said to be • truth-internal (briefly, T-internal) if the following inequality is valid T T T ( x X , ei E ) ( Ae x e x Ae x ), (2.1) i
i
i
• indeterminacy-internal (briefly, I-internal) if the following inequality is valid I I I ( x X , ei E ) ( Ae ( x) e ( x) Ae ( x) ) , (2.2) i
i
i
• falsity-internal (briefly, F-internal) if the following inequality is valid F F F ( x X , ei E ) ( Ae x e x Ae x ). (2.3) i
i
i
If a neutrosophic soft cubic set in X satisfies (2.1), (2.2) and (2.3) we say that ( P, A) is an internal
X
neutrosophic soft cubic set in 2.8 Definition: [1]
for all x∈ X.
A B if and only if
Let
AT ( x) BT ( x) , AT ( x) BT ( x)
X
AF ( x) BF ( x) , AF ( x) BF ( x) for all x ∈ X. ~
AC { x, [ A-F (x), AF (x)],[A-I (x), AI (x)],[A-T (x), AT (x)] : x X }
.
be an initial universe set. A neutrosophic soft
cubic set ( P, A) in
AI ( x) BI ( x) , AI ( x) BI ( x)
3.
U
neutrosophic soft cubic set over given by P : A NC(U) .
X
is said to be
• truth-external (briefly, T -external) if the following inequality is valid T T T ( x X , ei E ) (e x ( Ae x , Ae x )), (2.4) i
i
i
• indeterminacy-external (briefly, I -external) if the 4.
following inequality is ( x X , ei E ) (eI x ( Ae I x , Ae I x )),
~ B { x, [min {A - (x), B (x)} , min {A (x), B (x)}], A T T T T [max{A-I (x), BI (x)}, max{AI (x), BI (x)}],
i
i
• falsity-external (briefly, F -external) if the following inequality is valid ( x X , ei E ) (eF x ( Ae F x , Ae F x )). (2.6)
[max{A-F (x), BF (x)}, max{AF (x), BF (x)}] : x X }
i
5. ~ A B { x, [max{A -T (x), BT (x)} , max {A T (x), BT (x)}] , [min{A -I (x), BI (x)}, min{A I (x), BI (x)}], [min{A -F (x), BF (x)}, min{A F (x), BF (x)}] : x X }
2.6 Definition: [1] Let U be an initial universe set. Let NC(U) denote the set of all neutrosophic cubic sets and E be the set of A E parameters. Let then ( P, A) { P(ei ) { x, Aei ( x), ei ( x) : x U } ei A E }
where
Aei ( x) { x, AeT x , AeI x , AeF x / x U } is an i
i
i
interval neutrosophic set T I T ei ( x) { x, (e x , e x , e x / x U } i
i
i
is
i
valid (2.5)
, a
neutrosophic set. The pair ( P, A) is termed to be the
i
i
If a neutrosophic soft cubic set ( P, A) ) in X satisfies (2.4), (2.5) and (2.6), we say that ( P, A) is an external neutrosophic soft cubic set in X. 2.9 Definition [1] Let
(P, I) = { P(ei ) = {< x, Ae (x), e (x) > : x X} ei I } i
i
and
(Q, J) = { Q(ei ) = Bi = {< x, Be (x), e (x) > : x X} ei J } i
i
be two neutrosophic soft cubic sets in X. Let I and J be any two subsets of E (set of parameters), then we have the following 1. (P, I) = (Q, J) if and only if the following conditions are satisfied a) I = J and
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
76
Neutrosophic Sets and Systems, Vol. 17, 2017
P(ei ) = Q(ei ) for all
b)
and only if
if
Aei ( x) Bei ( x)
and ei ( x) ei ( x)
2.
ei I
ei
ei
ei
ei
F (ei ) P G (ei ) = F
F
for
all
{< x, max{ A F (x), B F (x)}, ( F F )(x) > : x X} e i I J .
x X corresponding each ei I .
to
2.11 Definition: [1] Let ( F , I ) and (G , J ) be two neutrosophic soft cubic sets (NSCS) in X where I and J are any subsets of parameter’s set E. Then we define P-intersection of neutrosophic soft cubic set as ( F , I ) p (G, J ) ( H , C) where C I J ,
(P, I) and (Q, J) are two neutrosophic soft cubic set then we define and denote Porder as (P, I) P (Q, J) if and only if the following conditions are satisfied c) I J and d) P(ei ) P Q(ei ) for all ei I
ei
ei
ei
ei
H (ei ) = F (ei ) P G(ei ) = F (ei ) P G(ei ) and H ( ei )
ei I J . Here
F (ei ) P G(ei ) is defined as
if and only if Aei ( x) Bei ( x) and ei ( x) ei ( x) for all
F (ei ) P G (ei ) =
x X
corresponding to each
{< x, min{ A e (x), B e (x) }, ( e e )(x) > : x X} e i I J
(P, I) and (Q, J) are two neutrosophic
. where A e (x), B e (x) represent interval neutrosophic sets.
ei I . 3.
{< x, max{ A I (x), BI (x)}, ( I I )(x) > : x X} ei I J ,
soft cubic set then we define and denote P- order as (P, I) R (Q, J) if and only if the following conditions are satisfied e) I J and
P(ei ) R Q(ei ) for all if and only
f)
ei I if
Aei ( x) Bei ( x)
and ei ( x) ei ( x)
for
all
x X corresponding to each ei I . 2.10 Definition: [1] Let (F , I ) and (G, J ) be two neutrosophic soft cubic sets (NSCS) in X where I and J are any two subsets of the parameteric set E. Then we define P-union of neutrosophic soft cubic set as ( F , I ) p (G, J ) ( H , C ) where C I J if ei I J if ei J I if ei I J
F (ei ) G (ei ) F (e ) G (e ) i i P
=
H ( ei )
where F (ei ) P G (ei ) is defined as {< x, max{ A e (x), B e (x) }, ( e e )(x) > : x X} e i I J i
i
i
where A e (x), B e (x) represent interval neutrosophic sets. i
i
i
i
i
Hence F T (ei ) P GT (ei )
{< x, min{ A T (x), BT (x) }, ( T T ) (x) > : x X} ei I J , ei
ei
ei
ei
F (ei ) P G (ei ) I
I
{< x, min{ A I (x), BI (x) }, ( I I )(x) > : x X} ei I J , ei
ei
ei
ei
F F (ei ) P G F (ei ) {< x, min{ A F (x), B F (x) }, ( F F ) (x) > : x X} e i I J ei
ei
ei
ei
3 More On P-union And P-intersection Of Neutrosophic Soft Cubic Set Defintion: 3.1 Let (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i i (G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
neutrososphic soft cubic set (NSCS) in X. Then [1] P-OR is denoted by ( F , I ) p (G, J ) and deH (i , i ) F (i ) P G( i ) for all (i , i ) I J . [2] P-AND is denoted by ( F , I ) p (G, J ) and de-
fined as ( F , I ) p (G, J ) ( H , I J ) where
Hence F T (ei ) P GT (ei ) =
{< x, max{ A T (x), BT (x)}, ( T T ) (x) > : x X} ei I J , ei
i
i
ei
ei
=
fined as ( F , I ) p (G, J ) ( H , I J ) where
F (ei ) P G(ei ) i
i
H (ei )
H (i , i ) F (i ) P G( i ) for all (i , i ) I J .
ei
F I (ei ) P G I (ei )
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
77
Neutrosophic Sets and Systems, Vol. 17, 2017
Example: 3.2 Let X = {x1, x2,x3} be initial universe and E = {e1, e2} parameter’s set. Let (F, I) be a neutrosophic soft cubic set over X and defined as (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i i X F(e1) F(e2) <Ae1(x), λ e1(x) > <Ae2(x), λ e2(x) > x [0.5,0.6][0.6,0. [0.4,0. [0.3,0.6][0.2,0. [0.3,0. 7][0.5,0.6] 5,0.6] 7][0.2,0.4] 4,0.4] 1 x [0.4,0.5][0.7,0. [0.5,0. [0.3,0.5][0.6,0. [0.4,0. 8][0.2,0.3] 6,0.6] 8][0.2,0.6] 7,0.5] 2 x [0.2,0.3][0.2,0. [0.3,0. [0.4,0.7][0.2,0. [0.5,0. 3][0.3,0.5] 4,0.6] 5][0.3,0.6] 6,0.6] 3 (G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } i
i
X
G(e1) <Be1(x), μ e1(x) > x [0.7,0.9][0.3,0 [0.7,0. .5][0.3,0.4] 4,0.6] 1 x [0.5,0.6][0.3,0 [0.6,0. .7][0.1,0.2] 4,0.2] 2 x [0.3,0.4][0.1,0 [0.5,0. .2][0.2,0.4] 3,0.5] 3 ( H , I J) P-OR is denoted by
G(e2) < Ae2(x), μ e2(x) > [0.4,0.7][0.1,0 [0.5,0. .3][0.1,0.2] 2,0.2] [0.4,0.6][0.4,0 [0.6,0. .7][0.2,0.5] 5,0.4] [0.5,0.8][0.1,0 [0.7,0. .4][0.1,0.4] 3,0.4] ( F , I ) p (G, J )
where
I J {(e1 , e1 ), (e1 , e2 ), (e2 , e1 ), (e2 , e2 )}is defined
X
x 1
x 2
x 3
H(e1,e1) F(e1) ꓴ G(e1)
H(e1,e2) F(e1) ꓴ G(e2)
H(e2,e1) F(e2) ꓴ G(e1)
H(e2,e2) F(e2) ꓴ G(e1)
[0.7,0.9
[0.7
[0.5,0.6
[0.5
[0.7,0.9
[0.7
[0.4,00.
[0.5
][0.6,0.
,0.5
][0.6,0.
,0.5
][0.3,0.
,0.4
7][0.2,0.
,0.4
7][0.5,0
,0.6
7][0.5,0
,0.6
5][0.3,0
,0.5
7][0.2,0.
,0.4
.6]
]
.6]
]
.4]
]
4]
]
[0.5,0.6
[0..
[0.4,0.6
[[0.
[0.5,0.6
[0..
[0.4,0.6]
[0.6
][0.7,0.
6,0.
][0.7,0.
6,0.
][0.6,0.
6,0.
[0.6,0.8]
,0.7
8][0.2,0
6,0.
8][0.2,0
6,0.
8][0.2,0
7,0.
[0.2,0.6]
,0.5
.3]
6]
.5]
6]
.6]
5]
[0.3,0.4
[0.5
[0.5,0.8
[0.7
[0.4,0.7
[0.5
[0.5,0.8]
[0.7
][0.2,0.
,0.4
][0.2,0.
,0.4
][0.2,05
,0.6
[0.2,0.5]
,0.6
3][0.3,0
,0.6
3][0.3,0
,0.6
][0.3,06
,0.6
[0.3,0.6]
,0.6
.5]
]
.5]
]
]
]
]
]
Definition:3.3 The complement of a neutrosophic soft cubic set (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } is i
denoted by (F, I)
C
i
and defined as
C c c c (F, I) = {( (F, I) = (F , I) } , where F : I NC ( X )
and Fc (ei ) (F(ei ))c for all ei I
c (F, I) c = {( F(ei ))c = {< x, A c ei (x), ei (x) > : x X} ei I }.
(F, I) c
{< x, [1 AeT ,1 AeT ],[1 Ae I ,1 Ae I ],[1 Ae F ,1 Ae F ] ,
i i T I F 1 e ,1 e ,1 e i i i
> x X} e I . i
i
i
i
i
Example:3.4 Let X = {x1, x2} be initial universe and E = {e1, e2} parameter’s set. Let (F, I) be a neutrosophic soft cubic set over X and defined as (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } i i X F(e1) F(e2) < Ae1(x), < Ae2(x), λ e1(x) > λ e2(x) > x [0.3,0.5][0.1,0. [0.6,0. [0.4,0.6][0.5,0. [0.5,0. 4][0.5,0.8] 5.0.7] 7][0.6,0.9] 4,0.4] 1 x [0.6,0.8][0.4,0. [0.7,0. [0.2,0.4][0.4,0. [0.3,0. 7][0.4,0.7] 5,0.3] 7][0.3,0.6] 7,0.8] 2 Then c c c c (F, I) = {( F(ei )) = {< x, A e (x), e (x) > : x X} e i I } i
is defined as. X Fc (e1) < Ac e1(x), c λ e1(x) > x [0.5,0.7][0.6,0.9 [0.4,0. ][0.2,0.5] 5,0.3] 1 x [0.2,0.4][0.3,0.6 [0.3,0. ][[0.3,0.6] 5,0.7] 2
i
Fc (e2) Ac e1(x),
< λc e1(x) > [0.4,0.6][0.3,0. 5][0.1,0.4] [0.6,0.8][0.3,0. 6][0.4.0.7]
[0.5,0. 6,0.6] [0.7,0. 3,0.2]
Proposition :3.5 Let X be initial universe and I, J, L and S subsets of parametric set E. Then for any neutrosophic soft cubic sets , , , the following properties hold (1) if . c (2) if ⊆P then c . (3) if ⊆P and ⊆P C then ⊆P ∩P . (4) if ⊆P and ⊆P then ∪P ⊆P . (5) if ⊆P and ⊆P then ∪P ⊆P ∪P and ∩ P ⊆P ∩ P . Proof: Proof is straight forward Theorem:3.6 Let (F, I) be a neutrosophic soft cubic set over X. (1) If (F, I) is an internal neutrosophic soft cubic set, then
(F, I) c is also an internal neutrosophic soft cubic set (INSCS). (2) If (F, I) is an external neutrosophic soft cubic set, then (F, I) c is also an external Neutrosophic soft cubic set (ENSCS).
(F(ei ))c (as ( ei ) ei )
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
78
Neutrosophic Sets and Systems, Vol. 17, 2017
Proof. (1) Given (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } i i
is an INSCS this implies T T T Ae x e x Ae x , i i i I I I Ae ( x) e ( x) Ae ( x) , i i i F F F Ae x e x Ae x , i i i
i F 1 e i
0
i
&
i
i
i
i
&
i I Be ( x) i
( x)
i
,
i
Be F i
x eFi x BeiF x
for all ei J and for all x X. Then we have
i
i
ei
(
I ei
ei
i
i
)( x ) max{ Ae I x , B e I x }, i i
I ei
H (e i )
i
i
i
this implies 1 Te x 1 AeT x or 1 AeT x 1 Te x , i
i
ei
ei
i
i
for all ei I J and for all x X. . Now by definition of P-union of (F, I) and (G, J) , we have (F, I) p (G, J ) ( H , C ) where I J C and
i
i
i
eI i
max{ Ae F x , Be F x } ( F F )( x ) max{ Ae F x , Be F x },
eF x Ae F x or Ae F x eF x
i
i
i
Be I ( x) i
max{ Ae I x , B e I x } i i
eI x Ae I x or Ae I x eI x , i
i
max{ AeT x , BeT x } ( T T )( x ) max{ AeT x , B eT x },
) &
i
i
Also for (G, J) we BeT x eT x BeT x ,
So we have T T T T e x Ae x or Ae x e x , i
AeT x Te x AeT x , for all ei I and for all x X.
x ( Ae F x , Ae F x i i F F Ae x Ae x 1 i i
soft cubic sets. So for (F, I) we have i
0 Ae I x Ae I x 1 ,
eF i
Since (F, I) and (G, J) are internal neutrosophic
F F F Ae I ( x) eI ( x) Ae I ( x) , Ae x e x Ae x i i i i i i
Te x ( AeT x , AeT x )
i
i
(2) (F, I) p (G , J ) is an INSCS
for all ei I and for all x X.
i
x )
i
i
)
x 1 , eI x ( Ae I x , Ae I x i i i
x ,1
i Ae F i
be internal nuetrosophic cubic soft sets. Then, (1) (F, I) p (G , J ) is an INSCS
i i i I I I e x ( Ae x , Ae x ) i i i F F e x ( Ae x , Ae F x i i i
x
x (1
i F Ae i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J }
an ENSCS this implies Te x ( AeT x , AeT x ) ,
0
i
i
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } is i i
AeT i
i
d
Proof: (1)
i AeT i
i
(F, I) = { F(ei ) = {< x, A e (x), e (x) > : x X} e i I } an
Given
Since
i
Theorem: 3.7 Let
i
i
Hence (F, I) is an ENSCS .
(F, I) c is an INSCS .
i
i
for all ei I and for all x X.
(2)
i
i
1 eI x (1 Ae I x ,1 Ae I x ) ,
thisimplies 1 AeT x 1 Te x 1 AeT x , i i i I I 1 Ae ( x) 1 e ( x) 1 Ae I ( x) , i i i F F F 1 Ae x 1 e x 1 Ae x
Hence
i
Thus 1 Te x (1 AeT x ,1 AeT x ) ,
i
i
1 eF x 1 Ae F x or 1 Ae F x 1 eF x , for all ei I and for all x X.
for all ei I and for all x X.
i
1 eI x 1 Ae I x or 1 Ae I x 1 eI x ,
i
F (e i ) G (e i ) F (e ) G (e ) i p i
if e I J if e J I if e I J
if ei I J , then F (ei ) p G(ei ) is defined as F (ei ) p G(ei ) =
H (e i ) =
x, max{Ae ( x), Be ( x)},(e i
i
i
ei )(x), x X , ei I J
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
.
79
Neutrosophic Sets and Systems, Vol. 17, 2017
(G, J)* = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } res
where
F (e i ) p G (e i ) T
x, max{A
i
T
( x), B Te ( x)}, (ei ei ) T ( x), x X , ei I J ,
T ei
i
F (ei ) p G (ei ) I
I
x, max{A (x), B (x)},( I
I
ei
ei
ei
F F (ei ) p G F (ei )
x, max{A (x), B F
F
ei
ei
Theorem 3.9 For two ENSCSs
ei ) I ( x), x X , ei I J ,
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
ei I J .
If ei I J or ei J I then the result is trivial. Hence (F, I) p (G, J ) is an INSCS in all cases.
,
i
(F, I)* and(G, J )* are
if
F (ei ) p G(ei ) is defined as
i
ei ) ( x) x X , e I J
. Also
ENSCS. Then for
x
(F, I) we
( Ae I i
x
, Ae I i
i
i
have
Te x ( AeT x , AeT x ) ,
x )
i F e i
So
for all ei I and for all x X
far
we
have
AeT x Te x AeT x , Ae I ( x) eI ( x) Ae I ( x) ,
i Ae F i
x
i eF i
x
i Ae F i
i
x
i
for all ei I and for all x X. (G, J)
And for
BeT i
we have
x
eT i
i
i
i
i
for all ei J and for all x X. min{ AeT i
x
min{ Ae I i
, BeT i
x
x } (
, Be I i
T ei
x } (
I ei
T ei
)( x )
I ei
min{ AeT i
)( x )
x ,
, BeT i
min{ Ae I i
i
ei
ei
i
x },
x , Bei I x } i
i
i
i
i
i
i
for all ei J and for all x X.
Also
i
given
that
(F, I)* = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
so
this
implies
Ae I ( x) eI ( x) Ae I ( x) , i
i
i
i AeT i Ae F x i
x eTi x AeiT x , eFi x Aei F x
for all ei I and for all x X. And BeT x Te x BeT x i I Be ( x) i
sets
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } ,
if
we interchange λ and μ , Then the new neutrosophic soft cubic set (NSCS) are denoted and defined as * (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
INSCS
i
i
i
i
(NSCS) (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
cubic
x )
(G, J) we have
and
i
eI i
i
( x) Be I ( x) , Be F x eF x Be F x . i
i
for all ei J and for all x X.
soft
x
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J} are
for all ei I J and for all x X. Hence (F, I) p (G, J ) is an INSCS . Definition: 3.8 Given two neutrosophic
x
i F , Ae i
*
min{ Ae F x , Be F x } ( F F )( x) min{ Ae F x , Be F x } i
i
eF x ( Be F x , Be F x )
x BeT i Be F x i
x
,
i F ( Ae i
eT x ( BeT x , BeT x ) , eI x ( Be I x , Be I x ) ,
i
Be I ( x) eI ( x) Be I ( x) , Be F x eF x i
then
i
given that (F, I) and (G, J) are INSCS.
i
X
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and
eI i
i
in
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } are
H ( ei ) F ( ei ) p G ( ei ) i
INSCS
Proof: Since
and H (ei ) F (ei ) p G(ei ) . If
x, min {Ae ( x), Be ( x)},(e
i
X
(F, I) P (G, J ) is an INSCS in X.
Since (F, I) p (G, J ) ( H , C ) where I J C
ei I J then
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } in
( x)}, (ei ei ) F ( x), x X , ei I J .
Thus (F, I) p (G, J ) is an INSCS if
(2)
i
pectively.
*
i
i
Since (F, I) and (G, J)
*
are ENSCS and (F, I) and (G , J ) are INSCS. Thus by definition of ENSCS and INSCS all the possibilities are under 1) (a1) Te x AeT x eT x AeT x (a2) (a3)
i
(b1)
i I e i F e i T e i
x x x
i I Ae i F Ae i T Be i
i I e i F e i T e i
x x x
i I x Ae x i x Ae F x i T x Be x i
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
80
Neutrosophic Sets and Systems, Vol. 17, 2017
(b2) eI x Be I x eI x Be I x (b3) 2) (a1) (a2) (a3) (b1) (b2) (b3) 3) (a1) (a2) (a3) (b1) (b2) (b3) 4) (a2) (a2) (a2) (b1) (b2) (b2)
F I (e i ) P G I (e i )
i i i i eF x Be F x eF x Be F x i i i i AeT x eT x AeT x Te x i i i i I I I I Ae x e x Ae x e x i i i i F F F Ae x e x Ae x eF x i i i i T T T T Be x e x Be x e x i i i i I I I I Be x e x Be x e x i i i i Be F x eF x Be F x eF x i i i i Te x AeT x eT x AeT x i i i i I I I I e x Ae x e x Ae x i i i i F F F e x Ae x e x Ae F x i i i i T T T T Be x e x Be x e x i i i i I I I I Be x e x Be x e x i i i i Be F x eF x Be F x eF x i i i i AeT x eT x AeT x Te x i i i i I I I I Ae x e x Ae x e x i i i i F F F Ae x e x Ae x eF x i i i i T T T T e x Be x e x Be x i i i i I I I I e x Be x e x Be x i i i i eF x Be F x eF x Be F x i i i i
I I I I x, max{ Aei ( x), B ei ( x)}, ( e e ( x), x X , ei I J i i ,
F F (ei ) P G F (ei ) F F F F x, max{ A ei ( x), B ei ( x)}, ( e e ( x), x X , ei I J i i for all ei I J and for all x X. . Case: 1 If H (ei ) F (ei ) that is if ei I J then from (1)(a1) and (2)(a1) , we have
Te x AeT x and Te x AeT x i
where
i
i
i
i
i
T T T x, max{ Aei ( x), B ei ( x)}, ( e i
i
i
i
i
i
i
i
for all ei I and for all x X. Thus
I J C and
ei )(x), x X , ei I J
F T (ei ) P GT (ei )
i
i
i
H (e i ) =
where
i
for all ei I J and for all x X. Case: 2 If H (ei ) G(ei ) that is if ei J I then from (1)(b1) and (2)(b1) , we have T T e x Be x and eT x BeT x
if e I J H (e i ) if e J I if e I J if ei I J , then F (ei ) R G(ei ) is defined as
x, max{Ae ( x), Be ( x)},(e
i
Ae F x eF x Ae F x ,
F (e i ) G (ei ) F (e ) G (e ) i P i
F (ei ) P G(ei ) =
i
for all ei I J and for all x X. Similarly we can prove for (1)(a2) , (2)(a2) and (1)(a3) , (2)(a3). Ae I x eI x Ae I x and Thus
Since P-union of (F, I) and (G, J) is denoted and defined as (F, I) P (G, J ) ( H , C )
i
for all ei I and for all x X. Thus AeT x Te x AeT x ,
BeT x eT x BeT x , i
i
i
for all ei J - I and for all x X. Similarly we can prove for (1)(b2) and (2)(b2) and (1)(b3) and (2)(b3). Thus Be I x eI x Be I x and i F Be i
x
i eF i
x
i Be F i
x ,
for all ei J I and for all x X. Case: 3 If H (ei ) F (ei ) P G(ei ) that is if ei I J , then from (1)(a1) and (1)(b1) , we have T T T Ae x e x Ae x for all ei I and for all x X. i
i
i
and T )( x), x X , ei I J B T x T x B T x for all e J and for all x X. ei ei ei i ei
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
81
Neutrosophic Sets and Systems, Vol. 17, 2017
eT x ( BeT x , BeT x ) , eI x ( Be I x , Be I x ) ,
Hence (i) ei I J then
max{ AeT x , BeT x } T T ( x) max{ AeT x , BeT x } . i
ei
i
ei
i
i
Similarly we can prove (1)(a2) , (1)(b2) and (1)(a3), (1)(b3) . Thus max{Ae I i
x
I , Be i
x } I I ( x) max{Ae I x , Be I x } i i e e i i
, max{ Ae F x , Be F x } F F ( x) max{ Ae F x , Be F x } i
ei
i
ei
i
i
. Thus in all the three cases (F, I) P (G, J ) is an INSCS in
i
i
i
i
i
i
i
i
i
eF x ( Be F x , Be F x ) for all ei J and for all x X.
eT x ( AeT x , AeT x ) , eI x ( Ae I x , Ae I x ) ,
i F e i
x
i F ( Ae i
i F , Ae i
x
i
x )
i
i
for all ei I and for all x X.
Te x ( BeT x , BeT x ) , eI x ( Be I x , Be I x ) ,
i F e i
x
i F ( Be i
i F , Be i
x
x ) for all
i
i
i
ei J and for all x X
respectively. Thus we have
X.
T T e ei i
Theorem: 3.10 For two ENSCSs
I I ( x) { max{ Ae I x , Be I x }, max{ Ae I x , Be I x }}, e i i i i e i i
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } in i
i
( x) { max{ AeT x , BeT x }, max{ Ae T x , Be T x }} , i i i i
F F ( x ) { max{ Ae F x , Be F x } , max{ Ae F x , Be F x }} e i i i i ei i
for all ei I J and for all x X. Thus
we
have
X if * (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and
e e ( x) max{ Ae x , Be x } i i i i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } are
for all ei I J and for all x X. Also since (F, I) P (G, J ) ( H , C ) where I J C and
i
i
*
i
i
INSCS in X then (F, I) P (G, J ) is an INSCS in X. Proof: By similar way to Theorem 3.9 we can obtain the result. Theorem: 3.11 Let
H (e i )
F (e i ) G (ei ) F (e ) G (e ) i p i
if e I J if e J I if e I J
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and
if e I J , then F (ei ) p G(ei ) is defined as
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be
F (ei ) p G(ei ) =
i
i
i
i
ENSCSs in X such that * (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J)* = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
ENSCS in X. Then P-union of (F, I) and (G, J) is an ENSCS in X. Proof: Since (F, I) , (G, J) , (F, I)* and(G, J )* are ENSCS so by definition of an external soft cubic set for (F, I) ,
(G, J) , (F, I)* and(G, J )* we have T T T I I I e x ( Ae x , Ae x ) , e x ( Ae x , Ae x ) , i F e i
x
i F ( Ae i
x
i F , Ae i
x ) ,
i
i
x, max{Ae ( x), Be ( x)},(e i
i
i
H (e i ) =
ei )(x), x X , ei I J .
where
F T (ei ) p GT (ei ) T T T T x, max{ Aei ( x), B ei ( x)}, ei ei
( x), x X , ei I J
F I (e i ) p G I (e i ) I I I I x, max{ A ei ( x), B ei ( x)}, ( x), x X , ei I J ei ei
i
for all ei I and for all x X.
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
82
Neutrosophic Sets and Systems, Vol. 17, 2017
For each e I J , Take
F F (ei ) p G F (ei )
F F F F T x, max{Aei ( x), B ei ( x)}, ( x), x X , ei I J ei min max{AeT x , BeT x }, max{AeT x , BeT x } and i i i i e e i i eTi max { min{ AT x , B T x }, min{ AT x , B T x } ei ei ei ei By definition of an external soft cubic set (F, I) P (G, J ) is an ENSCS in X. . T Then ei is one of AeT x , B T x , AeT x , BeT x . ei Example: 3.12 i i i Let (P, I ) and (Q, J ) be neutrosophic soft cubic sets in X T Now we consider ei = AT x or AT x only, as the where ei ei (P, I) = P(e1 ) remaining cases are similar to this one. = {< x, [0.3,0.5],[0.2,0.5],[0.5,0.7], 0.8,0.3,0.4 > e1 I } eTi = If then AeT x , i (Q, J) = Q(e1 ) T T T eTi = Be x Be x AT x Ae x and so = {< x, [0.7,0.9][0.6,0.8][0.4,0.7], 0.4,0.7,0.3 > e1 J } i i i ei for all x X T Then (P, I ) and (Q, J ) are T-external neutrosophic cubic Bei x sets in X and (P, I) P (Q, J ) = T T T T thus B T x (Aei Bei ) ( x) (Aei Bei ) ( x) = ( P, I ) (Q, J ) P Q(e1 ) ei
{< x, [0.3,0.5][0.2,0.5],[0.4,0.7], 0.4,0.3,0.3 > e1 I J }
for all x X . (P, I) P (Q, J ) is not an T-external neutrosophic cubic set since T T x = 0.4 (0.3,0.5) = e1 ∈ e AT BT 1 x , AT BT x e1
e1
e1
e1
From the above example it is clear that P-intersection of Texternal neutrosophic soft cubic sets may not be an Texternal neutrosophic soft cubic set. We provide a condition for the P-intersection of T-external (resp. Iexternal and F-external) neutrosophic soft cubic sets to be T-external (resp. I-external and F-external) neutrosophic soft cubic set. Theorem: 3.13 Let
(F, I) = { F(ei ) = {< x, A e (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
T- ENSCSs in X such that max { min{A T x , B T x } , min{A T x , B T x }, ei ei ei ei T T ( x ) ei ei T T T T min max{Ae x , Be x } , max{Ae x , Be x } i i i i
(3.7)
for all ei I and for all ei J and for all x X. Then (F, I) P (G, J ) is also an T- ENSCS.
BeT x i
Te eT (x) . i i
T = ei
T T e e (x) i i
AeT x BeT x . i i
So
we
from
this
T T e e (x) i i
BeT x i
can
AeT x i
write
Te eT (x) = i i
AeT x i
AeT x i
or
B T x . e i
T T BeT x AT x (x) e e e i i i i T T Ae x Be x it is contradiction to the fact that
For this case i
i
(F, I) and (G, J) are T-ENSCS.
where H (ei ) = F (ei ) p G(ei ) is defined as
For
= x, min{ Aei ( x), Bei ( x)}, (ei ei )(x), x X , ei I J .
BeT x i
AeT x B T x ei i
Proof Consider (F, I) P (G, J ) ( H , C ) where I J C F (ei ) p G(ei ) = H (ei )
T T T T T T Hence e e (x) (Aei Bei ) ( x) , ( Aei Bei ) ( x) i i . T If ei = AT x , then BeT x AeT x BeT x ei i i i T and so ei = max{AeT x , BeT x } . i i T Assume that ei = AT x then BeT x AT x ei ei i
the
case
AeT x BeT x i i
T Be x AT x i ei
we
have
T T e e (x) = i i T T e e (x) i i
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
83
Neutrosophic Sets and Systems, Vol. 17, 2017
Theorem : 3.15
(A
T ei
BeTi ) ( x) , ATei BeTi ) ( x) because Te eT (x) = i i
AeT x i
=
(ATei
BeTi
) ( x) . Again assume that
eTi
=
BeT x then AeT x BeT x i i i T T e e (x) AT x B T x . From this we can ei ei i i write AeT x BeT x i
T T e e (x) i i
i
AeT x BeT x i i
or AT x B T x e e i
i
Let
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
F- ENSCSs in X such that min max{ A F x , B F x } , max{ A F x , B F x }, e e e e i i i i F F e e ( x) i i max { min{ A F x , B F x } , min{ A F x , B F x } e e e e i i i i …………..(3.9) for all ei I and for all ei J and for all x X. Then (F, I) P (G, J ) is also an F- ENSCS. Proof : By similar way to Theorem 3.13, we can obtain the
Te eT (x) = AeT x B T x . For this case result i i e i
i T T AeT x BeT x e e (x ) AeT x BeT x i i i i i i it is contradiction to the fact that (F, I) and (G, J) are T-
ENSCS. And if we take the case AT x B T x e e i
T T e e (x) = AT x ei i i
BeT x , i
(A
T T e e (x) i i
T ei
i
we
get
have
BeTi ) ( x) , ATei BeTi ) ( x)
T T (x) = AT x = (ATe BeT ) ( x) . i i ei because ei ei Hence in all the cases (F, I) P (G, J ) is an T-ENSCS in
Corallary:3.16 Let
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
ENSCSs in X. Then P-intersection (F, I) P (G, J ) is also an ENSCS in X when the conditions (3.7), (3.8)and (3.9) are valid. Theorem: 3.17 If neutrosophic
soft
cubic
set
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } in i
X
X.
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i i
satisfy
i
the following condition
min max{AT x , B T x } , max{AT x , B T x } ei ei ei ei
Theorem: 3.14
i
(x ) i
i
Te eT
Let
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
I- ENSCSs in X such that min max{ A I x , B I x }, max{ A I x , B I x }, ei ei ei ei I I e e ( x) i i I I I I max { min{ A x , B x }, min{ A x , B x } e e e e i i i i
(3.8)
for all ei I and for all ei J and for all x X. Then (F, I) P (G, J ) is also an I – ENSCS Proof: By similar way to Theorem 3.13, we can obtain the result.
max{ min{AeT x , BeT x }, min{AeT x , BeT x } ….(11.1) i
i
i
then the (F, I) P (G, J ) is both an T-Internal Neutrosophic Soft Cubic Set and T-External Soft Neutrosophic Cubic Set in X. Proof: Consider where (F, I) P (G, J ) ( H , C )
I J C
where
F (ei ) p G(ei )
H (e i ) =
defined as F (ei ) P G(ei ) =
H (ei )
is
=
{< x, min{ Ae (x), Be (x)}, ( e e )(x) > : x X} ei I J } where
i
i
i
i
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
84
Neutrosophic Sets and Systems, Vol. 17, 2017
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } in
F T (ei ) P GT (ei ) =
x, min{ A T ei
{<
.For T
e
i
(x)}, ( T ei
(x), BT ei
T ei
ei I J Take
each
T e max{ min{AT x , B T x }, min{AT x , B T x } . i ei ei ei ei T
T T T T Ae x , Be x , Ae x , Be x . i i i i T Ae x i
T consider ei = AT x , or e
i
cases are similar to this one. If
BeT x BeT x i i
Then
Now we
= AT x then ei
BeT x i
T Ae x , and so ei = i T I T this implies A T x = ei = e e (x) = i ei i
eTi =
BeT x . i
T Ae x , i
T
T T (x) = AT x A T x , which implies e e ei ei i i that
T T BeT x = ( A ei Bei ) ( x) . i
T T T T T T Hence e e (x) (Aei Bei ) ( x) , ( Aei Bei ) ( x) i i and
(ATei
BeTi ) ( x )
T T (x ) ei ei
( A Tei
BeTi ) ( x) .
= A T x then BeT x A T x BeT x , i i ei ei T T T T and so e e (x) = A T x = ( A ei Bei ) ( x ) . i i ei If
eT
i
Hence
(ATei
BeTi ) ( x) , ( ATei
following
condition
i
(x ) i
i
max{ min{Ae I x , Be I x } , min{Ae I x , Be I x } …….(11.2) i
i
i
then the (F, I) P (G, J ) is both an I-internal neutrosophic soft cubic set and an I-external soft neutrosophic cubic set in X. Theorem :3.19 If neutrosophic
soft
cubic
set
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } in i i B T x B T x = X satisfy the following condition ei ei
Thus
T T e e (x) = i i
i
the
eI eI
only, as the remaining T ei
satisfy
min max{A I x , B I x } , max{A I x , B I x } ei ei ei ei
min max{AT x , B T x }, max{AT x , B T x } and ei ei ei ei
e is one of i
i
)(x) > : x X} ei I X J}
BeTi ) ( x)
T T e e (x) i i and
min max{ A F x , B F x }, max{ A F x , B F x } ei ei ei ei
F F (x) ei ei max { min{ A F x , B F x } , min{ A F x , B F x } e e e e i i i i ……….(11.3)then the
(F, I) P (G, J ) is both
an F-internal neutrosophic soft cubic set and an F-external soft neutrosophic cubic set in X. Corollary:3.20 Let (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei I } i
i
be
NSCSs in X. Then P-intersection (F, I) P (G, J ) is also an ENSCS and an INSCS in X when the conditions (11.1), (11.2)and (11.3) are valid.
(ATei BeTi ) ( x) Te eT (x) ( ATei BeTi ) ( x) . i i The following example shows that the P-union of TConsequently we note that (F, I) P (G, J ) is both T-internal neutrosophic soft cubic set and T-external soft neutrosophic cubic set in X. Similarly we have the following theorems Theorem 3.18 If neutrosophic soft cubic set (F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
external neutrosophic soft cubic sets may not be an Texternal neutrosophic soft cubic set. Example 3.21. Let (P, I ) and (Q, J ) be neutrosophic soft cubic sets in X where (P, I) = P(e1 ) = {< x, [0.3,0.5],[0.2,0.5],[0.5,0.7], 0.8,0.3,0.4 > e1 I }
,
(Q, J) = Q(e1) = {< x, [0.7,0.9][0.6,0.8][0.4,0.7], 0.4,0.7,0.3 > e1 J}
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
85
Neutrosophic Sets and Systems, Vol. 17, 2017
Then (P, I ) and (Q, J ) are T-external neutrosophic cubic sets in X and ( P, I ) (Q, J ) P Q (e1 ) {< x, [0.7,0.9][0.6,0.8],[0.5,0.7], 0.8,0.7,0.4 > } ( P, I ) p (Q, J ) is not an T-external neutrosophic cubic set in X since T T x = 0.8 ∈ (0.7,0.9) = e1 e2 AT B T x , AT B T x e . e1 e1 e1 1 We consider a condition for the P-union of T-external (resp. I-external and F-external) neutrosophic soft cubic sets to be T-external (resp. I-external and F-external) neutrosophic soft cubic set.
= AT x or AeT x , only as the remaining ei i cases are similar to this one. consider
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
T- ENSCSs in X such that max { min{A T x , B T x } , min{A T x , B T x }, ei ei ei ei T T ( x ) ei ei T T T T min max{Ae x , Be x } , max{Ae x , Be x } i i i i
…………..(12.1) for all ei I and for all ei J and for all x X. Then (F, I) P (G, J ) is also an T- ENSCS.
i
eT
If
T ei
BeTi ) ( x) , ATei BeTi ) ( x) . If eTi =
BeT x . i
So
from
F (e i ) if e I J H (e i ) G (e i ) if e J I F (e ) G (e ) if e I J i p i where H (ei ) = F (ei ) p G(ei ) is defined as
T T e e (x) i i
i
i
i
ei )(x), x X , ei I J ,
where
F T (ei ) p G T (ei )
x, max{A (x), B (x)},( If e I J , i
T
T
ei
ei
T ei
eT )( x), x X , ei I J , i
For
this
then
or
AeT x i
the
we
can
write
T T e e (x) i i BeT x AT x = ei i
AeT x i
A T x BeT x i ei
x, max{Ae ( x), Be ( x)},(e
AeT x , i
eTi = BeT x AeT x BeT x and so i i i T T T max{Ae x , Be x } . Assume that ei = AT x then ei i i T T BeT x AT x e e (x) AT x ei i i ei i BeT x i
H (e i ) =
then
T BeT x BeT x A T x AeT x , and so ei = i i i ei T (ATei BeTi ) ( x) = BeT x .Thus AT x = ei i ei T T T T (x ) . Hence e e (x) e e i i i i
Proof: Consider (F, I) P (G, J ) ( H , C ) where I J C and
F (ei ) p G(ei ) =
AeT x i
=
i
(A
Theorem 3.22 Let
eT
BeT x . i
BeT x i
case
AeT x i
T T e e (x) AT x B T x it is contradiction to ei ei i i the fact that (F, I) and (G, J) are T-ENSCS. For the case BeT x i AeT x i
AeT x = i
B T x ei
we
have
T T e e (x) i i
T T e e (x) i i
T T T T because (Aei Bei ) ( x) , Aei Bei ) ( x) T T T T min max{ A x , B x } , max{ A x , B x } e e e e i i i i T (A ei BeTi ) ( x) = A T x = T T (x) . and ei ei ei eTi max { min{ AT x , B T x }, min{ AT x , B T x } Again assume that T = BT x then T ei ei ei ei Ae x ei ei i eTi is Then one of T T BeT x e e (x ) AeT x BeT x , so from i i i i i T T T T Now we AeT x , Be x , ei Ae x , Be x . i i i i
eTi
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
86
Neutrosophic Sets and Systems, Vol. 17, 2017
this
we
can
AeT x i
write
T T e e (x) i i
AeT x i
T T = e e (x) i i
BeT x i
AeT x i
or AT x e i
BeT x . i
BeT x i
BeT x i
For this case
Te eT (x) AeT x BeT x i i i i it is contradiction to the fact that (F, I) and (G, J) are TENSCS. And if we take the case AT x B T x = AeT x i
BeT x i
ei
T T e e (x) i i T T e e (x) i i
(A
T ei
AeT x BeT x , i i
we
ei
get
have
BeTi ) ( x) , ATei BeTi ) ( x) because (ATei BeTi ) ( x)
T T = B T x = e e (x) . If ei I J or ei J I ,then ei i i we have trivial result. Hence (F, I) P (G, J ) is an TENSCS in X. Similarly we have the following theorems Theorem:3.23 Let
(F, I) = { F(ei ) = {< x, A e (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
T- ENSCSs in X such that max { min{A T x , B T x } , min{A T x , B T x }, ei ei ei ei T T ( x ) ei ei min max{A T x , B T x } , max{A T x , B T x } ei ei ei ei
…………..(12.2) for all ei I and for all ei J and for all x X. Then (F, I) P (G, J ) is also an T- ENSCS. Theorem :3.24 Let
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i
i
T- ENSCSs in X such that max { min{A T x , B T x } , min{A T x , B T x }, ei ei ei ei T T ( x ) ei ei T T T T min max{Ae x , Be x } , max{Ae x , Be x } i i i i
…………..(12.3) for all ei I and for all ei J and for all x X. Then (F, I) P (G, J ) is also an T- ENSCS.
Corollary:3.25 Let
(F, I) = { F(ei ) = {< x, Ae (x), e (x) > : x X} ei I } and i
i
(G, J) = { G(ei ) = {< x, Be (x), e (x) > : x X} ei J } be i i ENSCSs in X. Then (F, I) P (G, J ) is also an ENSCS in X when the conditions (12.1), (12.2)and (12.3) are valid. References [1] R. Anitha Cruz and F. Nirmala Irudayam, Neutrosophic Soft Cubic Set, International Journal of Mathematics Trends and Technology, 46 (2) (2017), 88-94. [2] Y.B. Jun, C.S. Kim and K.O. Yang, Cubic sets, Annals of Fuzzy Mathematics and Informatics 4(3) (2012), 83–98. [3] Turksen,“Interval valued fuzzy sets based on normal forms”. Fuzzy Sets and Systems, 20, (1968), pp. 191–210. [4] F. Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic, Rehoboth: American Research Press, 1999. [5] L. A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338–353. [6] I. B. Turksen, Interval-valued strict preference with Zadeh triples, Fuzzy Sets and Systems 78 (1996) 183– 195. [7] H. Wang, F. Smarandache, Y. Q. Zhangand, R. Sunderraman, Interval Neutrosophic Sets and logic: Theory and Applictionsin Computing, Hexis; Neutrosophic book series, No. 5, 2005. [8] D. Molodtsov , Soft Set Theory–First Results, Computers and Mathematics with Application, 37 (1999) 19–31. [9] Pabitra Kumar Maji, “Neutrosophic soft set” Annals of Fuzzy Mathematics and Informatics 5 (2013), 157–168. [10] F. Smarandache, Neutrosophic set, a generalization of the intuitionistic fuzzy sets, Inter. J. Pu Bre Appl. Math. 24 (2005) 287–297. [11] F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophy Logic, Set, Probability and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002). [12] L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist paradigm and BKrelational products, in: R.B. Kearfort et al. (Eds.), Applications of Interval Computations, Kluwer, Dordrecht, 1996, pp. 291–335. [13] R. Sambuc, Functions Φ-Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne, These de Doctorat en Medecine, Marseille, 1975.
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set
87
Neutrosophic Sets and Systems, Vol. 17, 2017
[14] I. B. Turksen, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets and Systems 51 (1992) 295–307. [15] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8 (1975) 199–249. [16] P. K. Maji , R. Biswas ans A. R. Roy, “Fuzzy soft sets”, Journal of Fuzzy Mathematics, Vol. 9, no. 3, 2001, pp. 589-602, [17] P.K.Maji, R. Biswas ans A.R.Roy, “Intuitionistic Fuzzy soft sets”, The journal of fuzzy Mathematics, Vol 9, (3)(2001), 677 – 692. [18] Pabitra Kumar Maji, Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics, Volume 5, No.1,(2013).,157-168. [19] Jun YB, Smarandache F, KimCS (2017) Neutrosophic cubic sets. New Mathematics and Natural Computation 13:41-54. [20] Abdel-Basset, M., Mohamed, M., & Sangaiah, A. K. (2017). Neutrosophic AHP-Delphi Group decision making model based on trapezoidal neutrosophic numbers. Journal of Ambient Intelligence and Humanized Computing. [21] Abdel-Basset, M., Mohamed, M., Hussien, A. N., & Sangaiah, A. K. (2017). A novel group decisionmaking model based on triangular neutrosophic numbers. Soft Computing, 1-15. http://doi.org/ 10.1007/s00500-017-2758-5 [22] F. Smarandache, M. Ali, Neutrosophic Triplet as extension of Matter Plasma, Unmatter Plasma, and Antimatter Plasma, 69th Annual Gaseous Electronics Conference, Bochum, Germany, Veranstaltungszentrum & Audimax, Ruhr-Universitat, October 1014, 2016.
[23] F. Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications. Pons Editions, Bruxelles, 325 p., 2017. [24] Topal, S. and Öner, T. Contrastings on Textual Entailmentness and Algorithms of Syllogistic Logics, Journal of Mathematical Sciences, Volume 2, Number 4, April 2015, pp 185-189. [25] Topal S. An Object- Oriented Approach to Counter-Model Constructions in A Fragment of Natural Language, BEU Journal of Science, 4(2), 103111, 2015. [26] Topal, S. A Syllogistic Fragment of English with Ditransitive Verbs in Formal Semantics, Journal of Logic, Mathematics and Linguistics in Applied Sciences, Vol 1, No 1, 2016. [27] Topal, S. and Smaradache, F. A Lattice-Theoretic Look: A Negated Approach to Adjectival (Intersective, Neutrosophic and Private) Phrases. The 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA 2017); (accepted for publication). [28] Taş, F. and Topal, S. Bezier Curve Modeling for Neutrosophic Data Problem. Neutrosophic Sets and Systems, Vol 16, pp. 3-5, 2017. [29] Topal, S. Equivalential Structures for Binary and Ternary Syllogistics, Journal of Logic, Language and Information, Springer, 2017, DOI: 10.1007/s10849017-9260-4
Received: August 1, 2017. Accepted: August 21, 2017.
R. Anitha Cruz and F. Nirmala Irudayam. More On P-Union and P-Intersection of Neutrosophic Soft Cubic Set