International Journal of Mathematical Archive-8(3), 2017, 144-149
Available online through www.ijma.info ISSN 2229 Γ’€“ 5046 AN INTRODUCTION TO FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES Y. VEERESWARI* Research Scholar, Govt. Arts College, Coimbatore, (T.N.), India. (Received On: 05-02-17; Revised & Accepted On: 23-03-17)
ABSTRACT
In
this paper we introduce fuzzy neutrosophic topological spaces and its some properties. Also we provide fuzzy continuous and fuzzy compactness of fuzzy neutrosophic topological space and its some properties and examples. Keywords: fuzzy neutrosophic set, fuzzy neutrosophic topology, fuzzy neutrosophic topological spaces, fuzzy continuous and fuzzy compactness.
1. INTRODUCTION Fuzzy sets were introduced by Zadeh in 1965. The concepts of intuitionistic fuzzy sets by K. Atanassov several researches were conducted on the generalizations of the notion of intuitionistic fuzzy sets. Florentin Smarandache [5, 6] developed Neutrosophic set &logic ofA Generalization of the Intuitionistic Fuzzy Logic& set respectively. A.A.Salama & S.A.Alblowi [1] introduced and studied Neutrosophic Topological spaces and its continuous function in [2]. In this paper, we define thenotion of fuzzy neutrosophic topological spaces and investigate continuity and compactness by using CokerΓ’€™s intuitionistic topological spaces in [4]. We discuss New examples of FNTS. 2. PRELIMINARIES Here we shall present the fundamental definitions. The following one is obviously inspired by Haibin Wang and Florentin Smarandache in [7] and A.A.Salama, S.S.Alblow in [1]. Smarandache introduced the neutrosophic set and neutrosophic components. The sets T, I, F are not necessarily intervals but may be any real sub-unitary subsets of ]Γ’ˆ’ 0, 1+ [. The neutrosophic components T, I, F represents the truth value, indeterminacy value and falsehood value respectively. Definition 2.1 [7]: Let Δ?‘‹Δ?‘‹ be a non-empty fixed set. A fuzzy neutrosophic set (FNS for short) Δ??Β΄Δ??Β΄ is an object having the form Δ??Β΄Δ??Β΄ = {Γ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)Γ’ŒΕ: Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹} where the functions Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ : Δ?‘‹Δ?‘‹ Γ’†’]Γ’ˆ’ 0, 1+ [, Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ : Δ?‘‹Δ?‘‹ Γ’†’]Γ’ˆ’ 0, 1+ [ Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ : Δ?‘‹Δ?‘‹ Γ’†’]Γ’ˆ’ 0, 1+ [, denote the degree of membership function (namely Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)), the degree of indeterminacy function (namely Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)) and the degree of non-membership (namely Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)) respectively of each element Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹ to the set Δ??Β΄Δ??Β΄ and + 0 Γ’‰Β€ Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½) + Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½) + Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½) Γ’‰Β€ 1+ , for each Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹. Remark 2.2 [7]: Every fuzzy set Δ??Β΄Δ??Β΄ on a non-empty set Δ?‘‹Δ?‘‹ is obviously a FNS having the form Δ??Β΄Δ??Β΄ = {Γ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), 1 Γ’ˆ’ Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)Γ’ŒΕ: Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹}
A fuzzy neutrosophic set Δ??Β΄Δ??Β΄ = {Γ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)Γ’ŒΕ: Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹} can be identified to an ordered triple Γ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ , Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ , Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ Γ’ŒΕ in ]Γ’ˆ’ 0, 1+ [ on Δ?‘‹Δ?‘‹.
Definition 2.3[1]: Let Δ?‘‹Δ?‘‹ be a non-empty set and the FNSs Δ??Β΄Δ??Β΄ and Δ??ΔΎΔ??ΔΎ be in the form Δ??Β΄Δ??Β΄ = {Γ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)Γ’ŒΕ: Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹ and Δ??ΔΎΔ??ΔΎ=Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??ΔΎΔ??ΔΎΔ?‘Δ½Δ?‘Δ½, Δ?œŽΔ?œŽΔ??ΔΎΔ??ΔΎΔ?‘Δ½Δ?‘Δ½, Δ?œˆΔ?œˆΔ??ΔΎΔ??ΔΎΔ?‘Δ½Δ?‘Δ½:Δ?‘Δ½Δ?‘Δ½Γ’ˆˆΔ?‘‹Δ?‘‹ on Δ?‘‹Δ?‘‹ and let Δ??Β΄Δ??Β΄Δ?‘–Δ?‘–:Δ?‘–Δ?‘–Γ’ˆˆΔ??ΛΔ??Λ be an arbitrary family of FNSΓ’€™s in Δ?‘‹Δ?‘‹, where Δ??Β΄Δ??Β΄Δ?‘–Δ?‘–=Δ?‘Δ½Δ?‘Δ½, Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄Δ?‘–Δ?‘–Δ?‘Δ½Δ?‘Δ½, Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄Δ?‘–Δ?‘–Δ?‘Δ½Δ?‘Δ½, Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄Δ?‘–Δ?‘–Δ?‘Δ½Δ?‘Δ½:Δ?‘Δ½Δ?‘Δ½Γ’ˆˆΔ?‘‹Δ?‘‹e. a) Δ??Β΄Δ??Β΄ Γ’Š† Δ??ΔΎΔ??ΔΎ iff Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½) Γ’‰Β€ Δ?œ‡Δ?œ‡Δ??ΔΎΔ??ΔΎ (Δ?‘Δ½Δ?‘Δ½), Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½) Γ’‰Β€ Δ?œŽΔ?œŽΔ??ΔΎΔ??ΔΎ (Δ?‘Δ½Δ?‘Δ½) and Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½) Γ’‰Δ½ Δ?œˆΔ?œˆΔ??ΔΎΔ??ΔΎ (Δ?‘Δ½Δ?‘Δ½) for all Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹. b) Δ??Β΄Δ??Β΄ = Δ??ΔΎΔ??ΔΎ iff Δ??Β΄Δ??Β΄ Γ’Š† Δ??ΔΎΔ??ΔΎ and Δ??ΔΎΔ??ΔΎ Γ’Š† Δ??Β΄Δ??Β΄. c) Δ??Β΄Δ??Β΄Δ… = {Γ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), 1 Γ’ˆ’ Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½), Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄ (Δ?‘Δ½Δ?‘Δ½)Γ’ŒΕ: Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹} d) Γ’ˆΕ Δ??Β΄Δ??Β΄Δ?‘–Δ?‘– = ΔΕΌΛΓ’ŒΕ Δ?‘Δ½Δ?‘Δ½, Γ’‹ Δ?‘–Δ?‘–Γ’ˆˆΔ??ΛΔ??Λ Δ?œ‡Δ?œ‡Δ??Β΄Δ??Β΄Δ?‘–Δ?‘– (Δ?‘Δ½Δ?‘Δ½) , Γ’‹ Δ?‘–Δ?‘–Γ’ˆˆΔ??ΛΔ??Λ Δ?œŽΔ?œŽΔ??Β΄Δ??Β΄Δ?‘–Δ?‘– (Δ?‘Δ½Δ?‘Δ½) , Γ’‹€Δ?‘–Δ?‘–Γ’ˆˆΔ??ΛΔ??Λ Δ?œˆΔ?œˆΔ??Β΄Δ??Β΄Δ?‘–Δ?‘– (Δ?‘Δ½Δ?‘Δ½)Γ’ŒΕ: Δ?‘Δ½Δ?‘Δ½ Γ’ˆˆ Δ?‘‹Δ?‘‹ΔΕΌΛ
Corresponding Author: Y. Veereswari* Research Scholar, Govt. Arts College, Coimbatore, (T.N.), India.
International Journal of Mathematical Archive- 8(3), March Γ’€“ 2017
144
Y. Veereswari* / An Introduction to Fuzzy Neutrosophic Topological Spaces / IJMA- 8(3), March-2017.
e) f) g) h) i)
β© π΄π΄ππ = οΏ½β©π₯π₯, βππβπ½π½ πππ΄π΄ππ (π₯π₯) , βππβπ½π½ πππ΄π΄ππ (π₯π₯) , βππβπ½π½ πππ΄π΄ππ (π₯π₯)βͺ: π₯π₯ β πποΏ½ π΄π΄ β π΅π΅ = οΏ½β©π₯π₯, πππ΄π΄ (π₯π₯) β§ πππ΅π΅ (π₯π₯), πππ΄π΄ (π₯π₯) β§ οΏ½1 β πππ΅π΅ (π₯π₯)οΏ½, πππ΄π΄ (π₯π₯) β¨ πππ΅π΅ (π₯π₯)βͺ: π₯π₯ β πποΏ½ []π΄π΄ = {β©π₯π₯, πππ΄π΄ (π₯π₯), πππ΄π΄ (π₯π₯), 1 β πππ΄π΄ (π₯π₯)βͺ: π₯π₯ β ππ} <> π΄π΄ = {β©π₯π₯, 1 β πππ΄π΄ (π₯π₯), πππ΄π΄ (π₯π₯), πππ΄π΄ (π₯π₯)βͺ: π₯π₯ β ππ} 0ππ = β©π₯π₯, 0, 0, 1βͺ and 1ππ = β©π₯π₯, 1, 1, 0βͺ
Example 2.4: Let ππ = {ππ, ππ, ππ} and ππ ππ ππ ππ ππ ππ ππ ππ ππ , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ, π΄π΄ = β©π₯π₯, οΏ½ , 0.5 0.2 0.3 0.3 0.2 0.2 0.3 0.4 0.5 ππ ππ ππ ππ ππ ππ ππ ππ ππ π΅π΅ = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ, 0.5 0.5 0.4 0.4 0.5 0.2 0.2 0.4 0.4 ππ ππ ππ ππ ππ ππ ππ ππ ππ πΆπΆ = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ, 0.5 0.5 0.5 0.5 0.5 0.3 0.2 0.2 0.2 ππ ππ ππ ππ ππ ππ ππ ππ ππ π·π· = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ 0.3 0.4 0.4 0.4 0.2 0.2 0.3 0.4 0.4
ππ ππ ππ ππ ππ ππ ππ ππ ππ Here π΄π΄Μ = β©π₯π₯, οΏ½ , , οΏ½ , οΏ½ , , οΏ½ , οΏ½ , , οΏ½βͺ and π΄π΄ β πΆπΆ because πππ΄π΄ (π₯π₯) β€ πππ΅π΅ (π₯π₯), πππ΄π΄ (π₯π₯) β€ πππ΅π΅ (π₯π₯) and πππ΄π΄ (π₯π₯) β₯ 0.3 0.2 0.2 0.5 0.8 0.7 0.3 0.4 0.5 πππ΅π΅ (π₯π₯) for all π₯π₯ β ππ. Further, π΄π΄ βͺ π΅π΅ = β©π₯π₯, πππ΄π΄ (π₯π₯) β¨ πππ΅π΅ (π₯π₯), πππ΄π΄ (π₯π₯) β¨ πππ΅π΅ (π₯π₯), πππ΄π΄ (π₯π₯) β§ πππ΅π΅ (π₯π₯)βͺ ππ ππ ππ ππ ππ ππ ππ ππ ππ = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ 0.5 0.5 0.5 0.5 0.5 0.3 0.2 0.2 0.2
π΄π΄ β© π΅π΅ = β©π₯π₯, πππ΄π΄ (π₯π₯) β§ πππ΅π΅ (π₯π₯), πππ΄π΄ (π₯π₯) β§ πππ΅π΅ (π₯π₯), πππ΄π΄ (π₯π₯) β¨ πππ΅π΅ (π₯π₯)βͺ ππ ππ ππ ππ ππ ππ ππ ππ ππ = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ 0.3 0.4 0.4 0.4 0.2 0.2 0.3 0.4 0.4
Corollary 2.5: Let π΄π΄, π΅π΅, πΆπΆ and π΄π΄ππ be FNSβs in ππ(ππ β π½π½). Then a) π΄π΄ππ β π΅π΅ for each ππ β π½π½ βΉ βͺ π΄π΄ππ β π΅π΅ b) π΅π΅ β π΄π΄ππ for each ππ β π½π½ βΉ π΅π΅ β β© π΄π΄ππ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ c) βͺ π΄π΄ππ =β© π΄π΄οΏ½ππ and οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ β© π΄π΄ππ =βͺ π΄π΄οΏ½ππ d) π΄π΄ β π΅π΅ βΊ π΅π΅οΏ½ β π΄π΄Μ οΏ½οΏ½οΏ½οΏ½οΏ½Μ ) = π΄π΄ e) (π΄π΄ οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½ f) 0οΏ½οΏ½ ππ = 1ππ and 1ππ = 0ππ
Now we shall define the image and preimage of FNSβs. Let ππ, ππ be two non-empty sets and ππ: ππ βΆ ππ a function.
Definition 2.6[4]: a) If π΅π΅ = {β©π¦π¦, πππ΅π΅ (π¦π¦), πππ΅π΅ (π¦π¦), πππ΅π΅ (π¦π¦)βͺ: π¦π¦ β ππ} is an FNS in ππ then the preimage of π΅π΅ under ππ, denoted by ππ β1 (π΅π΅), is the FNS in ππ defined by ππ β1 (π΅π΅) = {β©π₯π₯, ππ β1 (πππ΅π΅ )(π₯π₯), ππ β1 (πππ΅π΅ )(π₯π₯), ππ β1 (πππ΅π΅ )(π₯π₯)βͺ: π₯π₯ β ππ} β1 (ππ )(π₯π₯) = πππ΅π΅ ππ(π₯π₯), ππ β1 (πππ΅π΅ )(π₯π₯) = πππ΅π΅ ππ(π₯π₯) and ππ β1 (πππ΅π΅ )(π₯π₯) = πππ΅π΅ ππ(π₯π₯) Where ππ π΅π΅ b) If π΄π΄ = {β©π₯π₯, πππ΄π΄ (π₯π₯), πππ΄π΄ (π₯π₯), πππ΄π΄ (π₯π₯)βͺ: π₯π₯ β ππ} is a FNS in ππ, then the image of π΄π΄ under ππ, denoted by ππ(π΄π΄), is the FNS in ππ defined by ππ(π΄π΄) = οΏ½β©π¦π¦, ππ(πππ΄π΄ )(π¦π¦), ππ(πππ΄π΄ )(π¦π¦), οΏ½1 β ππ(1 β πππ΄π΄ )οΏ½(π¦π¦)βͺ: π¦π¦ β πποΏ½ sup πππ΄π΄ (π₯π₯) ππππ ππ β1 (π¦π¦) β β ππ(πππ΄π΄ )(π¦π¦) = οΏ½π₯π₯βππ β1 (π¦π¦) 0 ππππβππππππππππππ sup πππ΄π΄ (π₯π₯) ππππ ππ β1 (π¦π¦) β β ππ(πππ΄π΄ )(π¦π¦) = οΏ½π₯π₯βππ β1 (π¦π¦) 0 ππππβππππππππππππ inf πππ΄π΄ (π₯π₯) ππππ ππ β1 (π¦π¦) β β β1 οΏ½1 β ππ(1 β πππ΄π΄ )οΏ½(π¦π¦) = οΏ½π₯π₯βππ (π¦π¦) 1 ππππβππππππππππππ For the sake of simplicity, let us use the symbol ππ_(πππ΄π΄ ) for οΏ½1 β ππ(1 β πππ΄π΄ )οΏ½. Corollary 2.7[4]: Let π΄π΄, π΄π΄ππ (ππ β π½π½) be FNSβs in ππ, π΅π΅, π΅π΅ππ (ππ β πΎπΎ) be FNSβs in ππ, and ππ: ππ βΆ ππ a function. a) π΄π΄1 β π΄π΄2 βΉ ππ(π΄π΄1 ) β ππ(π΄π΄2 ), π΅π΅1 β π΅π΅2 βΉ ππ β1 (π΅π΅1 ) β ππ β1 (π΅π΅2 ), b) π΄π΄ β ππ β1 (ππ(π΄π΄)), and if ππ is injective then π΄π΄ = ππ β1 (ππ(π΄π΄)) c) ππ β1 (ππ(π΅π΅)) β π΅π΅, and if ππ is surjective, then ππ β1 (ππ(π΅π΅)) = π΅π΅ d) ππ β1 οΏ½βͺ π΅π΅ππ οΏ½ =βͺ ππ β1 οΏ½π΅π΅ππ οΏ½, ππ β1 οΏ½β© π΅π΅ππ οΏ½ =β© ππ β1 οΏ½π΅π΅ππ οΏ½, e) ππ(βͺ π΄π΄ππ ) =βͺ ππ(π΄π΄ππ ), ππ(β© π΄π΄ππ ) ββ© ππ(π΄π΄ππ ); and if ππ is injective, then ππ(β© π΄π΄ππ ) =β© ππ(π΄π΄ππ ) f) ππ β1 (1ππ ) = 1ππ , ππ β1 (0ππ ) = 0ππ g) ππ(0ππ ) = 0ππ , ππ(1ππ ) = 1ππ , if ππ is surjective Β© 2017, IJMA. All Rights Reserved
145
Y. Veereswari* / An Introduction to Fuzzy Neutrosophic Topological Spaces / IJMA- 8(3), March-2017.
h) If Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; is surjective, then ΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛ Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ??Β΄Δ??Β΄) Γ’&#x160;&#x2020; Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ??Β΄Δ??Β΄Δ&#x2026;). If furthermore, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; is injective, then ΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛ Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ??Β΄Δ??Β΄) = Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ??Β΄Δ??Β΄Δ&#x2026;) Γ’&#x2C6;&#x2019;1 (Δ??ΔΎΔ??ΔΎ Γ’&#x2C6;&#x2019;1 ΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛ ΔΕΌΛ ) = Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; (Δ??ΔΎΔ??ΔΎ) i) Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;
3. FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES
Definition 3.1: A fuzzy neutrosophic topology (FNT for short) a non-empty set Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; is a family Δ?&#x153;?Δ?&#x153;? of fuzzy neutrosophic subsets in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; satisfying the following axioms. (NT1) 0Δ?&#x2018; Δ?&#x2018; , 1Δ?&#x2018; Δ?&#x2018; Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;? (NT2) Δ??ΕΔ??Ε1 Γ’&#x2C6;Ε Δ??ΕΔ??Ε2 Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;? for any Δ??ΕΔ??Ε1 , Δ??ΕΔ??Ε2 Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;? (NT3) Γ’&#x2C6;Ε Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?, Γ’&#x2C6;&#x20AC;{Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; : Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??Λ} Γ’&#x160;&#x2020; Δ?&#x153;?Δ?&#x153;?
In this case the pair (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) is called a Fuzzy neutrosophic topological space (FNTS for short) and any fuzzy neutrosophic set in Δ?&#x153;?Δ?&#x153;? is known as fuzzy neutrosophic open set (FNOS for short) in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. The elements of Δ?&#x153;?Δ?&#x153;? are called open fuzzy neutrosophic sets. The complement of FNOS in the FNTS (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) is called fuzzy neutrosophic closed set (FNCS for short).
Example 3.2: Let Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; = {Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D;, Δ?&#x2018;?Δ?&#x2018;?, Δ?&#x2018;?Δ?&#x2018;?} and consider the value of Δ??Β΄Δ??Β΄, Δ??ΔΎΔ??ΔΎ, Δ??ΕΔ??Ε, Δ??ΛΔ??Λ are defined in Example 2.4, the family Δ?&#x153;?Δ?&#x153;? = {0Δ?&#x2018; Δ?&#x2018; , 1Δ?&#x2018; Δ?&#x2018; , Δ??Β΄Δ??Β΄, Δ??ΔΎΔ??ΔΎ, Δ??ΕΔ??Ε, Δ??ΛΔ??Λ} of FNS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) is FNTS on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;.
Example 3.3: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a fuzzy topological space such that Δ?&#x153;?Δ?&#x153;? is not indiscrete. Suppose now that Δ?&#x153;?Δ?&#x153;? = {0, 1} Γ’&#x2C6;Ε {Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; : Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??Λ}. Then we can construct two FNTΓ’&#x20AC;&#x2122;s on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; as follows: a) Δ?&#x153;?Δ?&#x153;?1 = {0Δ?&#x2018; Δ?&#x2018; , 1Δ?&#x2018; Δ?&#x2018; } Γ’&#x2C6;Ε {Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;(Δ?&#x2018;Δ½Δ?&#x2018;Δ½), 0Γ’&#x152;Ε: Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??Λ}, b) Δ?&#x153;?Δ?&#x153;?2 = {0Δ?&#x2018; Δ?&#x2018; , 1Δ?&#x2018; Δ?&#x2018; } Γ’&#x2C6;Ε {Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, 0, Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;(Δ?&#x2018;Δ½Δ?&#x2018;Δ½), Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x152;Ε: Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??Λ}
Proposition 3.4: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a FNTS on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then we can also construct several FNTSΓ’&#x20AC;&#x2122;s on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; in the following way Δ?&#x153;?Δ?&#x153;?0,1 = {[ ]Δ??ΕΔ??Ε: Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?}, b) Δ?&#x153;?Δ?&#x153;?0,2 = {Γ’&#x152;Ε Γ’&#x152;ΕΔ??ΕΔ??Ε: Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?}
Definition 3.5: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?1 ), (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?2 ) be two FNTSΓ’&#x20AC;&#x2122;s on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then Δ?&#x153;?Δ?&#x153;?1 is said to be contained in Δ?&#x153;?Δ?&#x153;?2 (in symbols, Δ?&#x153;?Δ?&#x153;?1 Γ’&#x160;&#x2020; Δ?&#x153;?Δ?&#x153;?2 ), if Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?2 for each Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?1 . In this case, we also say that Δ?&#x153;?Δ?&#x153;?1 is coarser than Δ?&#x153;?Δ?&#x153;?2 .
Proposition 3.6: Let {Δ?&#x153;?Δ?&#x153;?Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; : Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??Λ} be a family of FNTΓ’&#x20AC;&#x2122;s on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then Γ’&#x2039;&#x201A;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Γ’&#x2C6;&#x2C6;Δ??ΛΔ??Λ Δ?&#x153;?Δ?&#x153;?Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; is FNT on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Furthermore, Γ’&#x2039;&#x201A;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Γ’&#x2C6;&#x2C6;Δ??ΛΔ??Λ Δ?&#x153;?Δ?&#x153;?Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; is the coarsest FNT on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; containing all Δ?&#x153;?Δ?&#x153;?Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x20AC;&#x2122;s.
Definition 3.7: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a FNTS on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. a) A family Δ?&#x203A;ΛΔ?&#x203A;Λ Γ’&#x160;&#x2020; Δ?&#x153;?Δ?&#x153;? is called a base for (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) iff each member of Δ?&#x153;?Δ?&#x153;? can written as a union of elements of Δ?&#x203A;ΛΔ?&#x203A;Λ. b) A family Δ?&#x203A;ΕΎΔ?&#x203A;ΕΎ Γ’&#x160;&#x2020; Δ?&#x153;?Δ?&#x153;? is called a subbase for (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) iff the family of finite intersections of elements in Δ?&#x203A;ΕΎΔ?&#x203A;ΕΎ forms a base for (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?). In this case the FNT Δ?&#x153;?Δ?&#x153;? is said to be generated by Δ?&#x203A;ΕΎΔ?&#x203A;ΕΎ.
Definition 3.8: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a FNTS and Δ??Β΄Δ??Β΄ = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??Β΄Δ??Β΄ , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ Γ’&#x152;Ε be a FNS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then the fuzzy interior and fuzzy closure of Δ??Β΄Δ??Β΄ are defined by Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) =Γ’&#x2C6;Ε {Δ??ΕΎΔ??ΕΎ: Δ??ΕΎΔ??ΕΎis a FNCS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; and Δ??Β΄Δ??Β΄ Γ’&#x160;&#x2020; Δ??ΕΎΔ??ΕΎ}, Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) =Γ’&#x2C6;Ε {Δ??ΕΔ??Ε: Δ??ΕΔ??Εis a FNOS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; and Δ??ΕΔ??Ε Γ’&#x160;&#x2020; Δ??Β΄Δ??Β΄} Now that Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) is a FNCS and Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) is a FNOS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Further, a) Δ??Β΄Δ??Β΄ is a FNCS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; iff Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) = Δ??Β΄Δ??Β΄ b) Δ??Β΄Δ??Β΄ is a FNOS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; iff Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) = Δ??Β΄Δ??Β΄
Example 3.9: Consider the FNTS (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) is defined in Example 3.2. If Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛΓ’&#x152;Ε Δ??Ε‘Δ??Ε‘ = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, ΔΕΌΛ , 0.4 0.3 0.2 0.2 0.3 0.3 0.4 0.5 0.4 Then, Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) = Δ??ΛΔ??Λ and Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) = 1Δ?&#x2018; Δ?&#x2018; .
Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄). Proposition 3.10: For any FNS Δ??Β΄Δ??Β΄ in (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?), we have Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄Δ&#x2026;) = ΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛ Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄), Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄Δ&#x2026;) = ΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛΔΕΌΛ
Proposition 3.11: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a FNTS and Δ??Β΄Δ??Β΄, Δ??ΔΎΔ??ΔΎ be FNSΓ’&#x20AC;&#x2122;s in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then the following properties hold: a) Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) Γ’&#x160;&#x2020; Δ??Β΄Δ??Β΄, Δ??Β΄Δ??Β΄ Γ’&#x160;&#x2020; Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) b) Δ??Β΄Δ??Β΄ Γ’&#x160;&#x2020; Δ??ΔΎΔ??ΔΎ Γ’&#x;Ε‘ Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) Γ’&#x160;&#x2020; Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??ΔΎΔ??ΔΎ), Δ??Β΄Δ??Β΄ Γ’&#x160;&#x2020; Δ??ΔΎΔ??ΔΎ Γ’&#x;Ε‘ Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) Γ’&#x160;&#x2020; Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??ΔΎΔ??ΔΎ) c) Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;ΔΕΌΛΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄)ΔΕΌΛ = Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄), Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?ΔΕΌΛΔ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄)ΔΕΌΛ = Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) d) Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄ Γ’&#x2C6;Ε Δ??ΔΎΔ??ΔΎ) = Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) Γ’&#x2C6;Ε Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??ΔΎΔ??ΔΎ), Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄ Γ’&#x2C6;Ε Δ??ΔΎΔ??ΔΎ) = Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) Γ’&#x2C6;Ε Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??ΔΎΔ??ΔΎ) e) Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(1Δ?&#x2018; Δ?&#x2018; ) = 1Δ?&#x2018; Δ?&#x2018; , Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(0Δ?&#x2018; Δ?&#x2018; ) = 0Δ?&#x2018; Δ?&#x2018; ΓΕ 2017, IJMA. All Rights Reserved
146
Y. Veereswari* / An Introduction to Fuzzy Neutrosophic Topological Spaces / IJMA- 8(3), March-2017.
Proposition 3.12: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a FNTS. If Δ??Β΄Δ??Β΄ = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??Β΄Δ??Β΄ , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ Γ’&#x152;Ε be a FNS in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Then we have a) Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) Γ’&#x160;&#x2020; Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x153;?Δ?&#x153;?1 (Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ ), Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x153;?Δ?&#x153;?1 (Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??Β΄Δ??Β΄ ), Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x153;?Δ?&#x153;?2 (Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ )Γ’&#x152;Ε Γ’&#x160;&#x2020; Δ??Β΄Δ??Β΄ b) Δ??Β΄Δ??Β΄ Γ’&#x160;&#x2020; Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x153;?Δ?&#x153;?2 (Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ ), Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x153;?Δ?&#x153;?2 (Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??Β΄Δ??Β΄ ), Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x153;?Δ?&#x153;?1 (Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ )Γ’&#x152;Ε Γ’&#x160;&#x2020; Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??Β΄Δ??Β΄) where Δ?&#x153;?Δ?&#x153;?1 and Δ?&#x153;?Δ?&#x153;?2 are FTS on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; defined by Δ?&#x153;?Δ?&#x153;?1 ={Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ : Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?}, Δ?&#x153;?Δ?&#x153;?2 = {1 Γ’&#x2C6;&#x2019; Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ : Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?} Corollary 3.13: Let Δ??Β΄Δ??Β΄ = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??Β΄Δ??Β΄ , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ Γ’&#x152;Ε be a FNS in (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) a) If Δ??Β΄Δ??Β΄ is a FNCS, then Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ is fuzzy closed in (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?2 ) and Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ is fuzzy open in (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?1 ). b) If Δ??Β΄Δ??Β΄ is a FNOS, then Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ is fuzzy open in (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?1 ) and Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ is fuzzy closed in (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?2 ).
Example 3.14: Consider the FNTS (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) is defined in Example 3.2. If Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ??Ε‘Δ??Ε‘ = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛΓ’&#x152;Ε 0.4 0.5 0.4 0.4 0.3 0.2 0.2 0.3 0.3 Then, Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??Β΄Δ??Β΄) = Δ??ΛΔ??Λ. Noting that we have Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛΔΕΌΛ Δ?&#x153;?Δ?&#x153;?1 = ΔΕΌΛ0, 1, ΔΕΌΛ , 0.3 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.3 0.4 0.4 Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x153;?Δ?&#x153;?2 = ΔΕΌΛ0, 1, ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛ,ΔΕΌΛ , , ΔΕΌΛΔΕΌΛ 0.7 0.8 0.8 0.8 0.6 0.6 0.8 0.8 0.8 0.7 0.6 0.6 Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;&#x17D;Δ?&#x2018;&#x17D; Δ?&#x2018;?Δ?&#x2018;? Δ?&#x2018;?Δ?&#x2018;? and Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x153;?Δ?&#x153;?1 (Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??Β΄Δ??Β΄ ) = ΔΕΌΛ , , ΔΕΌΛ , Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x153;?Δ?&#x153;?2 (Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??Β΄Δ??Β΄ ) = ΔΕΌΛ , , ΔΕΌΛ 0.3 0.4 0.4
4. FUZZY NEUTROSOPHIC CONTINUITY
0.3 0.4 0.4
Definition 4.1: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) and (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;) be two FNTSs and let Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; be a function. Then Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; is said to be fuzzy continuous iff the preimage of each FNS in Δ?&#x153;&#x2018;Δ?&#x153;&#x2018; is a FNS in Δ?&#x153;?Δ?&#x153;?. Definition 4.2: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) and (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;) be two FNTSs and let Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; be a function. Then Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; is said to be fuzzy open iff the image of each FNS in Δ?&#x153;?Δ?&#x153;? is a FNS in Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;. Example 4.3: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?0 ) and (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;0 ) be two fuzzy topological spaces. a) If Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; is fuzzy continuous in the usual sense, then in this case, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; is fuzzy continuous iff the preimage of each FNS in Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;0 is a FNS in Δ?&#x153;?Δ?&#x153;?0 . Consider the FNTs on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; and Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; respectively, as follows: Δ?&#x153;?Δ?&#x153;? = {Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε , 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε Γ’&#x152;Ε: Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?0 }, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018; = {Γ’&#x152;Ε Δ?&#x2018;ΕΔ?&#x2018;Ε, Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ , 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ Γ’&#x152;Ε: Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ Γ’&#x2C6;&#x2C6; Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;0 } In this case we have for each Γ’&#x152;Ε Δ?&#x2018;ΕΔ?&#x2018;Ε, Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ , 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ Γ’&#x152;Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;, Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ Γ’&#x2C6;&#x2C6; Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;0 , Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 Γ’&#x152;Ε Δ?&#x2018;ΕΔ?&#x2018;Ε, Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ , 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ Γ’&#x152;Ε = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ ), Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (0), Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (1 Γ’&#x2C6;&#x2019; Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ )Γ’&#x152;Ε = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ ), Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (0), 1 Γ’&#x2C6;&#x2019; Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ?&#x203A;ΕΌΔ?&#x203A;ΕΌΔ??Ε₯Δ??Ε₯ )Γ’&#x152;Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;? b) Let Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; be a fuzzy open in the usual sense, then Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; is fuzzy openaccording to Definition 4.2. In this case we have, for each Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε , 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε Γ’&#x152;Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;?Δ?&#x153;?0 , Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε , 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε Γ’&#x152;Ε = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε ), 0, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;_(1 Γ’&#x2C6;&#x2019; Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε )Γ’&#x152;Ε = Γ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε ), 0, 1 Γ’&#x2C6;&#x2019; Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;_(Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??Ε )Γ’&#x152;Ε Γ’&#x2C6;&#x2C6; Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;
Proposition 4.4: Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) Γ’&#x2020;&#x2019; (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;) is fuzzy continuous iff the preimage of each FNCS in Δ?&#x153;&#x2018;Δ?&#x153;&#x2018; is a FNCS in Δ?&#x153;?Δ?&#x153;?. Proposition 4.5: The following are equivalent to each other a) Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) Γ’&#x2020;&#x2019; (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;) is fuzzy continuous b) Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ??ΔΎΔ??ΔΎ)) Γ’&#x160;&#x2020; Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;(Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ??ΔΎΔ??ΔΎ)) for each FNS Δ??ΔΎΔ??ΔΎ in Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;. c) Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ??ΔΎΔ??ΔΎ)) Γ’&#x160;&#x2020; Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?Δ?&#x2018;?(Δ??ΔΎΔ??ΔΎ))for each FNS Δ??ΔΎΔ??ΔΎ in Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;.
Example 4.6: Let (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;) be a FNTS and Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; be a non-empty set and Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; a function. In this case Δ?&#x153;?Δ?&#x153;? = {Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C; Γ’&#x2C6;&#x2019;1 (Δ??Ε₯Δ??Ε₯): Δ??Ε₯Δ??Ε₯ Γ’&#x2C6;&#x2C6; Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;} is a FNT on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. Indeed, Δ?&#x2018;ΔΔ?&#x2018;Δ is the coarsest FNT on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; which makes the function Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; continuous. One may call the FNT Δ?&#x2018;ΔΔ?&#x2018;Δ on Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; the initial FNT with respect to Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;. 5. FUZZY NEUTROSOPHIC COMPACTNESS
Definition 5.1: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) be a FNTS. a) If a family Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; = ΔΕΌΛΓ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x152;Ε: Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??ΛΔΕΌΛ of FNOS is Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; satisfy the condition Γ’&#x2C6;Ε Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; = 1Δ?&#x2018; Δ?&#x2018; , then it is called a fuzzy open cover of Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;. A finite subfamily of fuzzy open cover Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; of Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, which is also a fuzzy open cover of Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; is called a finite subcover of Δ??ΕΔ??ΕΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; . b) A family Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; = ΔΕΌΛΓ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x152;Ε: Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x2C6;&#x2C6; Δ??ΛΔ??ΛΔΕΌΛ of FNCSs in Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; satisfies the finite intersection property iff every finite subfamily ΔΕΌΛΓ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x152;Ε: Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; = 1, 2, Γ’&#x20AC;Ε , Δ?&#x2018;&#x203A;Δ?&#x2018;&#x203A;ΔΕΌΛ of the family satisfies the condition Γ’&#x2039;&#x201A;Δ?&#x2018;&#x203A;Δ?&#x2018;&#x203A;Δ?&#x2018;&#x2013;Δ?&#x2018;&#x2013;=1ΔΕΌΛΓ’&#x152;Ε Δ?&#x2018;Δ½Δ?&#x2018;Δ½, Δ?&#x153;&#x2021;Δ?&#x153;&#x2021;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x17D;Δ?&#x153;&#x17D;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; , Δ?&#x153;&#x2C6;Δ?&#x153;&#x2C6;Δ??ΕΎΔ??ΕΎΔ?&#x2018;&#x2013;Δ?&#x2018;&#x2013; Γ’&#x152;ΕΔΕΌΛ Γ’&#x2030; 0Δ?&#x2018; Δ?&#x2018; .
Definition 5.2: A FNTS (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) is fuzzy compact iff every fuzzy open cover of Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; has a finite subcover. ΓΕ 2017, IJMA. All Rights Reserved
147
Y. Veereswari* / An Introduction to Fuzzy Neutrosophic Topological Spaces / IJMA- 8(3), March-2017.
Example 5.3: An FNTS (ππ, ππ), where ππ = {1, 2, 3}, πΊπΊππ = β©π₯π₯, οΏ½
1 ππ
ππ+1
,
2 ππ
ππ+2
,
3 ππ
ππ+3
1 2 3 1 2 3 οΏ½ , οΏ½ ππ+1 , ππ+2 , ππ+3 οΏ½ , οΏ½ 1 , 1 , 1 οΏ½βͺ ππ+2
ππ+3
ππ+4
ππ+2
ππ+3
ππ+4
and ππ = {0ππ , 1ππ } βͺ {πΊπΊππ : ππ β β}. Note that βππββ πΊπΊππ is an open cover for ππ, but this cover has no finite subcover. Consider 1 2 3 1 2 3 1 2 3 , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ πΊπΊ1 = β©π₯π₯, οΏ½ , 0.5 0.3 0.25 0.7 0.75 0.8 0.3 0.25 0.2 1 2 3 1 2 3 1 2 3 πΊπΊ2 = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ 0.7 0.5 0.4 0.75 0.8 0.8 0.25 0.2 0.2 1 2 3 1 2 3 1 2 3 πΊπΊ3 = β©π₯π₯, οΏ½ , , οΏ½,οΏ½ , , οΏ½,οΏ½ , , οΏ½βͺ 0.75 0.6 0.5 0.8 0.8 0.9 0.2 0.2 0.1 and observe that πΊπΊ1 βͺ πΊπΊ2 βͺ πΊπΊ3 = πΊπΊ3 . So, for any finite subcollection οΏ½πΊπΊππ ππ : ππ β I, where I is a finite subset of βοΏ½, βππ ππ βI πΊπΊππ ππ = πΊπΊππ β 1ππ , where ππ = ππππππ{ππππ : ππππ β I}. therefore the FNTS (ππ, ππ) is not compact. Proposition 5.4: Let (ππ, ππ) be a FNTS on ππ. Then (ππ, ππ) is fuzzy compact iff the FNTS οΏ½ππ, ππ0,1 οΏ½ is fuzzy compact.
Proof: Let (ππ, ππ) be fuzzy compact and consider fuzzy open cover οΏ½[ ]πΊπΊππ : ππ β πΎπΎοΏ½ of ππ in οΏ½ππ, ππ0,1 οΏ½. Since βͺ οΏ½[ ]πΊπΊππ οΏ½ = 1ππ . We obtain β¨ πππΊπΊππ = 1,β¨ πππΊπΊππ = 1 and hence, by πππΊπΊππ β€ 1 β πππΊπΊππ βΉβ§ πππΊπΊππ β€ 1 ββ¨ πππΊπΊππ = 0 βΉβ§ πππΊπΊππ = 0, we deduce βͺ πΊπΊππ = 1ππ . Since (ππ, ππ) is fuzzy compact there exist πΊπΊ1 , πΊπΊ2 , πΊπΊ3 , β¦ πΊπΊππ such that βππππ=1 πΊπΊππ = 1ππ from which we obtain βππππ=1 πππΊπΊππ = 1, βππππ=1 πππΊπΊππ = 1 and βππππ=1οΏ½1 β πππΊπΊππ οΏ½ = 0. That is, οΏ½ππ, ππ0,1 οΏ½ is fuzzy compact.
Suppose that οΏ½ππ, ππ0,1 οΏ½ is fuzzy compact and consider a fuzzy open cover οΏ½πΊπΊππ : ππ β πΎπΎοΏ½ of ππ in (ππ, ππ). Since βͺ πΊπΊππ = 1ππ , we obtain β¨ πππΊπΊππ = 1,β¨ πππΊπΊππ = 1 and 1 ββ¨ πππΊπΊππ = 0. Since οΏ½ππ, ππ0,1 οΏ½ is fuzzy compact, there exist πΊπΊ1 , πΊπΊ2 , πΊπΊ3 , β¦ πΊπΊππ such that βππππ=1οΏ½[ ]πΊπΊππ οΏ½ = 1ππ , that is, βππππ=1 πππΊπΊππ = 1, βππππ=1 πππΊπΊππ = 1 and βππππ=1οΏ½1 β πππΊπΊππ οΏ½ = 0. Hence πππΊπΊππ β€ 1 β πππΊπΊππ βΉ 1 = βππππ=1 πππΊπΊππ β€ 1 β βππππ=1 πππΊπΊππ = 0. βΉ βππππ=1 πππΊπΊππ = 0. Hence βππππ=1 πΊπΊππ = 1ππ . Therefore (ππ, ππ) is fuzzy compact. Corollary 5.5: Let (ππ, ππ) and (ππ, ππ) be two FNTSs and let ππ: ππ β ππ be a fuzzy continuous surjection. If (ππ, ππ) is fuzzy compact, then so is (ππ, ππ).
Corollary 5.6: A FNTS (ππ, ππ) is fuzzy compact iff every family οΏ½β©π₯π₯, πππΎπΎππ , πππΎπΎππ , πππΎπΎππ βͺ: ππ β π½π½οΏ½ of FNCSs in ππ having the FNP has a non-empty intersection.
Definition 5.7: a) Let (ππ, ππ) be a FNTS and π΄π΄ a FNS in ππ. If a family πΊπΊππ = οΏ½β©π₯π₯, πππΊπΊππ , πππΊπΊππ , πππΊπΊππ βͺ: ππ β π½π½οΏ½ of FNOSs in ππ satisfies the condition π΄π΄ ββͺ πΊπΊππ , then it is called a fuzzy open cover of π΄π΄. A finite subfamily of the fuzzy open cover πΊπΊππ of π΄π΄, which is also fuzzy open cover of π΄π΄, is called a finite subcover of πΊπΊππ . b) A FNS π΄π΄ = β©π₯π₯, πππ΄π΄ , πππ΄π΄ , πππ΄π΄ βͺ in a FNTS (ππ, ππ) is called fuzzy compact iff every fuzzy open cover of π΄π΄ has a finite subcover. Corollary 5.8: A FNS π΄π΄ = β©π₯π₯, πππ΄π΄ , πππ΄π΄ , πππ΄π΄ βͺ in a FNTS (ππ, ππ) is fuzzy compact iff for each family π’π’ = {πΊπΊππ : ππ β π½π½} where πΊπΊππ = οΏ½β©π₯π₯, πππΊπΊππ , πππΊπΊππ , πππΊπΊππ βͺ: ππ β π½π½οΏ½, of FNOS in ππ with properties πππ΄π΄ β€ βππβπ½π½ πππΊπΊππ , πππ΄π΄ β€ βππβπ½π½ πππΊπΊππ and 1 β πππ΄π΄ β€ βππβπ½π½ οΏ½1 β πππΊπΊππ οΏ½ there exists a finite subfamily {πΊπΊππ : 1, 2, β¦ , ππ} of π’π’ such that πππ΄π΄ β€ βππππ=1 πππΊπΊππ , πππ΄π΄ β€ βππππ=1 πππΊπΊππ and 1 β πππ΄π΄ β€ βππππ=1οΏ½1 β πππΊπΊππ οΏ½.
Example 5.9: Let ππ = πΌπΌ and consider the FNSs (πΊπΊππ )ππππ ππ2 , where πΊπΊππ = β©π₯π₯, πππΊπΊππ , πππΊπΊππ , πππΊπΊππ βͺ, ππ = 2, 3, β¦. and πΊπΊ = β©π₯π₯, πππΊπΊ , πππΊπΊ , πππΊπΊ βͺ defined by 0.7, ππππ π₯π₯ = 0 0.8, ππππ π₯π₯ = 0 0.1, ππππ π₯π₯ = 0 β§ β§ β§ βͺππππ, ππππ 0 < π₯π₯ < 1 βͺ(ππ + 1)π₯π₯, ππππ 0 < π₯π₯ < 1 βͺ 1 β ππππ, ππππ 0 < π₯π₯ < 1 πππΊπΊππ (π₯π₯) = πππΊπΊππ = ππ , πππΊπΊππ (π₯π₯) = ππ , ππ β¨ β¨ β¨ 1 1 1 βͺ 1, ππππ < π₯π₯ β€ 1 βͺ 1, βͺ 0, ππππ < π₯π₯ β€ 1 ππππ < π₯π₯ β€ 1 β© β© β© ππ ππ ππ 0.7 ππππ π₯π₯ = 0 0.8 ππππ π₯π₯ = 0 and πππΊπΊ = οΏ½ , ππ = οΏ½ , 1, ππππβππππππππππππ πΊπΊ 1, ππππβππππππππππππ 0.1 ππππ π₯π₯ = 0 . πππΊπΊ = οΏ½ 1, ππππβππππππππππππ Then ππ = {0ππ , 1ππ , πΊπΊ} βͺ {πΊπΊππ : ππ β ππ2 } is a FNT on ππ, and consider the FNSs πΆπΆπΌπΌ ,π½π½ ,πΎπΎ in (ππ, ππ) defined by πΆπΆπΌπΌ,π½π½ ,πΎπΎ = {β©π₯π₯, πΌπΌ, π½π½, πΎπΎβͺ: π₯π₯ β ππ}, where πΌπΌ, π½π½, πΎπΎ β πΌπΌ are arbitrary and πΌπΌ + π½π½ + πΎπΎ β€ 2. Then the FNSs πΆπΆ0.75,0.85,0.05 , πΆπΆ0.65,0.75,0.15 , πΆπΆ0.85,0.850 ,05 are all compact. Β© 2017, IJMA. All Rights Reserved
148
Y. Veereswari* / An Introduction to Fuzzy Neutrosophic Topological Spaces / IJMA- 8(3), March-2017.
Corollary 5.10: Let (Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?) and (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;) be two FNTSs and let Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;: Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039; Γ’&#x2020;&#x2019; Δ?&#x2018;&#x152;Δ?&#x2018;&#x152; be a fuzzy continuous function. If Δ??Β΄Δ??Β΄ is fuzzy compact in(Δ?&#x2018;&#x2039;Δ?&#x2018;&#x2039;, Δ?&#x153;?Δ?&#x153;?), then so is Δ?&#x2018;&#x201C;Δ?&#x2018;&#x201C;(Δ??Β΄Δ??Β΄) in (Δ?&#x2018;&#x152;Δ?&#x2018;&#x152;, Δ?&#x153;&#x2018;Δ?&#x153;&#x2018;). REFERENCES
[1] A.A.Salama, S.A.Alblowi, Neutrosophic Set and Neutrosophic Topological spaces, IOSR Journal of Mathematics, ISSN:2278-5728, Volume 3, Issue 4, SEP-OCT 2012, PP 31-35 [2] A.A.Salama, Florentin Smarandache and Valeri Kromov, Neutrosophic Closed Set and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, ISBN 9781599733098, Vol 4, 2014 [3] C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968)182-1 90. [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1) (1997), 81-89. [5] Floretin Smarandache, Neutrosophic Logic-A Generalization of the Intuitionistic Fuzzy Logic, Multispace & Multistructure Neutrosophic Transdisciplinarity, ISBN:978-952-67349-2-7, Vol. 4, 2010,396-402 [6] Floretin Smarandache, Neutrosophic Set-A Generalization of the Intuitionistic Fuzzy Logic, MMNT, ISBN:978-952-67349-2-7, Vol 4, 2010, 403-409 [7] Haibin Wang, Florentin Smarandache, Yanqing Zhang, Rajshekhar Sunderraman, Single valued Neutrosophic set, MMNT, ISBN:978-952-67349-2-7, Vol 4, 2010, 410-413 [8] K. Atanassov, intuitionistic fuzzy sets, in V.Sgurev, ed.,Vii ITKRS Session, Sofia(June 1983 central Sci. and Techn. Library, Bulg.Academy of Sciences (1984)). [9] K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986)87-96. [10] K. Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, 1988. [11] L.A. Zadeh, Fuzzy Sets, Inform and Control 8(1965), 338-353 [12] Reza Saadati, Jin HanPark, On the intuitionistic fuzzy topological space, Chaos, Solitons and Fractals 27(2006)331-344. [13] S.A. Alblowi, A.A. Salama and Mohmed Eisa, New Concepts of Neutrosophic Sets, IJMCAR, Vol. 3, Issue 3, Oct (2013) 95-102. Source of support: Nil, Conflict of interest: None Declared. [Copy right ΓΕ 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]
ΓΕ 2017, IJMA. All Rights Reserved
149