AN INTRODUCTION TO FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES

Page 1

International Journal of Mathematical Archive-8(3), 2017, 144-149

Available online through www.ijma.info ISSN 2229 – 5046 AN INTRODUCTION TO FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES Y. VEERESWARI* Research Scholar, Govt. Arts College, Coimbatore, (T.N.), India. (Received On: 05-02-17; Revised & Accepted On: 23-03-17)

ABSTRACT

In

this paper we introduce fuzzy neutrosophic topological spaces and its some properties. Also we provide fuzzy continuous and fuzzy compactness of fuzzy neutrosophic topological space and its some properties and examples. Keywords: fuzzy neutrosophic set, fuzzy neutrosophic topology, fuzzy neutrosophic topological spaces, fuzzy continuous and fuzzy compactness.

1. INTRODUCTION Fuzzy sets were introduced by Zadeh in 1965. The concepts of intuitionistic fuzzy sets by K. Atanassov several researches were conducted on the generalizations of the notion of intuitionistic fuzzy sets. Florentin Smarandache [5, 6] developed Neutrosophic set &logic ofA Generalization of the Intuitionistic Fuzzy Logic& set respectively. A.A.Salama & S.A.Alblowi [1] introduced and studied Neutrosophic Topological spaces and its continuous function in [2]. In this paper, we define thenotion of fuzzy neutrosophic topological spaces and investigate continuity and compactness by using Coker’s intuitionistic topological spaces in [4]. We discuss New examples of FNTS. 2. PRELIMINARIES Here we shall present the fundamental definitions. The following one is obviously inspired by Haibin Wang and Florentin Smarandache in [7] and A.A.Salama, S.S.Alblow in [1]. Smarandache introduced the neutrosophic set and neutrosophic components. The sets T, I, F are not necessarily intervals but may be any real sub-unitary subsets of ]− 0, 1+ [. The neutrosophic components T, I, F represents the truth value, indeterminacy value and falsehood value respectively. Definition 2.1 [7]: Let đ?‘‹đ?‘‹ be a non-empty fixed set. A fuzzy neutrosophic set (FNS for short) đ??´đ??´ is an object having the form đ??´đ??´ = {⌊đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ)âŒŞ: đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹} where the functions đ?œŽđ?œŽđ??´đ??´ : đ?‘‹đ?‘‹ →]− 0, 1+ [, đ?œˆđ?œˆđ??´đ??´ : đ?‘‹đ?‘‹ →]− 0, 1+ [ đ?œ‡đ?œ‡đ??´đ??´ : đ?‘‹đ?‘‹ →]− 0, 1+ [, denote the degree of membership function (namely đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ)), the degree of indeterminacy function (namely đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ)) and the degree of non-membership (namely đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ)) respectively of each element đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹ to the set đ??´đ??´ and + 0 ≤ đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ) + đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ) + đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ) ≤ 1+ , for each đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹. Remark 2.2 [7]: Every fuzzy set đ??´đ??´ on a non-empty set đ?‘‹đ?‘‹ is obviously a FNS having the form đ??´đ??´ = {⌊đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ), 1 − đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ)âŒŞ: đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹}

A fuzzy neutrosophic set đ??´đ??´ = {⌊đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ)âŒŞ: đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹} can be identified to an ordered triple ⌊đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??´đ??´ , đ?œŽđ?œŽđ??´đ??´ , đ?œˆđ?œˆđ??´đ??´ âŒŞ in ]− 0, 1+ [ on đ?‘‹đ?‘‹.

Definition 2.3[1]: Let đ?‘‹đ?‘‹ be a non-empty set and the FNSs đ??´đ??´ and đ??ľđ??ľ be in the form đ??´đ??´ = {⌊đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ)âŒŞ: đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹ and đ??ľđ??ľ=đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??ľđ??ľđ?‘Ľđ?‘Ľ, đ?œŽđ?œŽđ??ľđ??ľđ?‘Ľđ?‘Ľ, đ?œˆđ?œˆđ??ľđ??ľđ?‘Ľđ?‘Ľ:đ?‘Ľđ?‘Ľâˆˆđ?‘‹đ?‘‹ on đ?‘‹đ?‘‹ and let đ??´đ??´đ?‘–đ?‘–:đ?‘–đ?‘–∈đ??˝đ??˝ be an arbitrary family of FNS’s in đ?‘‹đ?‘‹, where đ??´đ??´đ?‘–đ?‘–=đ?‘Ľđ?‘Ľ, đ?œ‡đ?œ‡đ??´đ??´đ?‘–đ?‘–đ?‘Ľđ?‘Ľ, đ?œŽđ?œŽđ??´đ??´đ?‘–đ?‘–đ?‘Ľđ?‘Ľ, đ?œˆđ?œˆđ??´đ??´đ?‘–đ?‘–đ?‘Ľđ?‘Ľ:đ?‘Ľđ?‘Ľâˆˆđ?‘‹đ?‘‹e. a) đ??´đ??´ ⊆ đ??ľđ??ľ iff đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ) ≤ đ?œ‡đ?œ‡đ??ľđ??ľ (đ?‘Ľđ?‘Ľ), đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ) ≤ đ?œŽđ?œŽđ??ľđ??ľ (đ?‘Ľđ?‘Ľ) and đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ) ≼ đ?œˆđ?œˆđ??ľđ??ľ (đ?‘Ľđ?‘Ľ) for all đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹. b) đ??´đ??´ = đ??ľđ??ľ iff đ??´đ??´ ⊆ đ??ľđ??ľ and đ??ľđ??ľ ⊆ đ??´đ??´. c) đ??´đ??´Ě… = {⌊đ?‘Ľđ?‘Ľ, đ?œˆđ?œˆđ??´đ??´ (đ?‘Ľđ?‘Ľ), 1 − đ?œŽđ?œŽđ??´đ??´ (đ?‘Ľđ?‘Ľ), đ?œ‡đ?œ‡đ??´đ??´ (đ?‘Ľđ?‘Ľ)âŒŞ: đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹} d) âˆŞ đ??´đ??´đ?‘–đ?‘– = ďż˝âŒŠđ?‘Ľđ?‘Ľ, â‹ đ?‘–đ?‘–∈đ??˝đ??˝ đ?œ‡đ?œ‡đ??´đ??´đ?‘–đ?‘– (đ?‘Ľđ?‘Ľ) , â‹ đ?‘–đ?‘–∈đ??˝đ??˝ đ?œŽđ?œŽđ??´đ??´đ?‘–đ?‘– (đ?‘Ľđ?‘Ľ) , â‹€đ?‘–đ?‘–∈đ??˝đ??˝ đ?œˆđ?œˆđ??´đ??´đ?‘–đ?‘– (đ?‘Ľđ?‘Ľ)âŒŞ: đ?‘Ľđ?‘Ľ ∈ đ?‘‹đ?‘‹ďż˝

Corresponding Author: Y. Veereswari* Research Scholar, Govt. Arts College, Coimbatore, (T.N.), India.

International Journal of Mathematical Archive- 8(3), March – 2017

144


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.