L02

Page 1

OTTO ENGINE DYNAMICS PETRESCU Florian Ion*, PETRESCU Relly Victoria**, GRECU Barbu*** *,**,***

Polytechnic University of Bucharest –Romania

Abstract: Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Key words: Lagrange equation, dynamic model

1. INTRODUCTION The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston (1).

 J 2  cos 2  r2 J M  M *  mt  mbA  2  12  22  s' s' s' cos 2   J1 J2 1  2 2 2 M  mt  [(mbA  2 )  (1    sin  )  2  cos  ]  2 r l sin   (cos     cos  ) 2   m  (1  2  sin 2  )  m2  cos 2  M  mt  1 2  sin   (cos     cos  ) 2

(1)

Then it derives the reduced mass to the crank position angle (2). Were used for piston the next kinematics parameters (4). Lagrange equation is written in the form (3).

2  cos   (2  m1  m2 ) dM cos    sin   ( M  mt )  (2)  (  ) d sin  cos  sin   (cos     cos  ) 2 1 dM 2 M   2  x' '     x '  k  ( s  x )  Fp 2 d

 s  r  cos   l  cos   l  r  sin    (cos     cos  ) s '   cos    r    cos(2 ) r  3  sin 2   cos 2  s ' '   r  cos     cos  cos 3  

683

(2)

(3)

(4)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.