IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 10, Issue 2 Ver. I (Feb. 2017), PP 27-29 www.iosrjournals.org
Partial Derivatives Involving Generalized I–Function of Two Variables Shanti Swaroop Dubey1, Dr. S. S. Shrivastava2 1
ITM University, Raipur (C. G.) Institute for Excellence in Higher Education, Bhopal (M. P.)
2
Abstract: The aim of this paper is to derive partial derivatives involving generalized I–function of two variables. I. Introduction The generalized I–function of two variables introduced by Goyal and Agrawal [1], will be defined and represented as follows: [(a j :ιj ,A j )1,n ],[(a ji :ιji ,A ji )n +1,p i ] m,n:m ,n 1 :m 2 ,n 2 [x | ,q ′ :r ′ :p ′′ ,q ′′ :r ′′ y [(b j :βj ,B j )1,n ],[(b ji :βji ,B ji )1,q i ] ′ i i i i i i :[(c j ;γj )1,n 1 ],[(c ′ ;γ ′ )n 1 +1,p ′ ];[(e j ;E j )1,n 2 ],[(e ′′ ;E ′′ )n 2 +1,p ′′ ] ji ji ji ji
I[xy ] = Ip ,q :r:p1
i
i
:[(d j ;δj )1,m 1 ],[(d ′ ;δγ ′ )m 1 +1,q ′ ];[(f j ;F j )1,m 2 ],[(f ′′ ;F ′′ )m 2 +1,q ′′ ] ji ji ji ji i i
=
1 (2πω)2 L 1 L 2
]
ϕ1 Ξ, Ρ θ2 Ξ θ3 (Ρ) x Ξ y Ρ dΞdΡ,
(1)
where ϕ1 Ξ, Ρ =
r [ i=1
m n j=1 Γ(b j âˆ’Î˛j Ξ−B j Ρ) j=1 Γ(1−a j +Îąj Ξ+A j Ρ) pi qi Γ(a ji âˆ’Îąji Ξ−A ji Ρ) j=1 Γ(1−b ji +βji Ξ+B ji Ρ) j=n +1
,
θ2 Ξ =
m1 n1 j=1 Γ(d j −δj Ξ) j=1 Γ(1−c j +Îłj Ξ) q p ′ r′ [ i′ i Γ(1−d ji ′ +δji ′ Ξ) j=n Γ(c ji ′ âˆ’Îłji ′ Ξ) i ′ =1 j=m 1 +1 1 +1
θ3 Ρ =
m2 n2 j=1 Γ(f j −F j Ρ) j=1 Γ(1−e j +E j Ρ) q p ′′ r ′′ [ i ′′ i Γ(1−f ji ′′ +F ji ′′ Ρ) j=n Γ(e ji ′′ −E ji ′′ Ρ) i ′′ =1 j=m 2 +1 2 +1
,
,
x and y are not equal to zero, and an empty product is interpreted as unity p i, pi´, pi´´, qi, qi´, qi´´, m, n, n1, n2, nj and mk are non negative integers such that pi ď‚łď€ n ď‚łď€ 0, pi´ ď‚łď€ n1 ď‚łď€ 0, pi´´ ď‚łď€ n2 ď‚łď€ 0, qi ď‚łď€ m >ď€ 0, qi´ ď‚ł 0, qi´´ ď‚ł 0, (i = 1, ‌, r; i´ = 1, ‌, r´; i´´ = 1, ‌, r´´; k = 1, 2) also all the A’s, ď Ąâ€™s, B’s, ď ˘â€™s, ď §â€™s, ď ¤â€™s, E’s and F’s are assumed to be positive quantities for standardization purpose; the definition of I-function of two variables given above will however, have a meaning even if some of these quantities are zero. The contour L 1 is in the ď ¸ď€plane and runs from – ď ˇď‚Ľ to + ď ˇď‚Ľ, with loops, if necessary, to ensure that the poles of ď ‡ď€¨djď€ď ¤jď ¸) (j = 1, ..........., m1) lie to the right, and the poles of ď ‡ď€ ď€¨ď€ąď€ ď€ď€ cj ď€Ťď€ ď §jď ¸) (j = 1, ..., n1), ď ‡ď€ ď€¨ď€ ď€ąď€ ď€ď€ aj + ď Ąjď ¸ď€ + Ajď ¨) (j = 1, ..., n) to the left of the contour. The contour L2 is in the ď ¨ď€plane and runs from – ď ˇď‚Ľ to + ď ˇď‚Ľ, with loops, if necessary, to ensure that the poles of ď ‡ď€ ď€¨fj ď€ Fjď ¨) (j=1,....., n2) lie to the right, and the poles of ď ‡ď€ ď€¨ď€ąď€ ď€ď€ ej  Ejď ¨) (j = 1, ..., m2), ď ‡ď€ ď€¨ď€ ď€ąď€ ď€ď€ aj + ď Ąjď ¸ď€ + Ajď ¨) (j = 1, ..., n) to the left of the contour. Also
đ?‘ˆ= đ?‘‰=−
�′ =
pi j=1 Îąji
+
p′ i γ j=1 ji ′
�′ =
pi j=1 A ji
+
p ′′ i E j=1 ji ′′
pi j=n+1 Îąji
−
pi j=n+1 A ji
qi j=m+1 βji
−
−
m1 j=1 δj
+
qi j=m+1 Bji
qi j=1 βji
−
−
qi j=1 Bji
−
m2 j=1 Fj
q′ i δ j=1 ji ′
− −
q ′′ i Fδji ′ j=1
q′ i δ j=m 1 +1 ji ′
−
< 0,
+
q â&#x20AC;˛â&#x20AC;˛ i F j=m 21 +1 ji â&#x20AC;˛â&#x20AC;˛
< 0, n1 j=1 Îłj
+
â&#x2C6;&#x2019;
n2 j=1 Ej
pâ&#x20AC;˛ i Îł j=n 1 +1 ji â&#x20AC;˛
â&#x2C6;&#x2019;
> 0,
p â&#x20AC;˛â&#x20AC;˛ i E j=n 2 +1 ji â&#x20AC;˛â&#x20AC;˛
(2) > 0,
(3)
and |arg x| < ½ Uď °, |arg y| < ½ Vď °ď&#x20AC;Žď&#x20AC;
DOI: 10.9790/5736-1002012729
www.iosrjournals.org
27 |Page
Partial Derivatives Involving Generalized Iâ&#x20AC;&#x201C;Function Of Two Variables II. Result Required The following result are required in our present investigation: From Rainville [2]: đ?&#x2018;§Î&#x201C; đ?&#x2018;§ = Î&#x201C;(đ?&#x2018;§ + 1).
(4)
III. Main Result In this paper we will establish the following partial derivatives: đ?&#x153;&#x2022;
m,n:m ,n 1 :m 2 ,n 2 [x ] ,q :r â&#x20AC;˛ :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r â&#x20AC;˛â&#x20AC;˛ y i i iâ&#x20AC;˛ iâ&#x20AC;˛ i i
Ip ,q :r:p1
đ?&#x153;&#x2022;đ?&#x2018;Ľ
[(a j :Îąj ,A j )1,n ],[(a ji :Îąji ,A ji )n +1,p ] m,n:m ,n 1 :m 2 ,n 2 x i â&#x20AC;˛ :p ,q :r â&#x20AC;˛â&#x20AC;˛ [y |[(b :β ,B ) ,q :r j j j 1,n ],[(b ji :βji ,B ji )1,q i ] â&#x20AC;˛ â&#x20AC;˛ â&#x20AC;˛â&#x20AC;˛ â&#x20AC;˛â&#x20AC;˛ i i
= x â&#x2C6;&#x2019;1 Ip ,q :r:p1
i
i
i
i
: 0,1 ,[(c j ;Îłj )1,n 1 ],[(c â&#x20AC;˛ ;Îł â&#x20AC;˛ )n 1 +1,p â&#x20AC;˛ ];[(e j ;E j )1,n 2 ],[(e â&#x20AC;˛â&#x20AC;˛ ;E â&#x20AC;˛â&#x20AC;˛ )n 2 +1,p â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji i i ], :[(d j ;δj )1,m 1 ],[(d â&#x20AC;˛ ;δγ â&#x20AC;˛ )m 1 +1,q â&#x20AC;˛ ],(1,1);[(f j ;F j )1,m 2 ],[(f â&#x20AC;˛â&#x20AC;˛ ;F â&#x20AC;˛â&#x20AC;˛ )m 2 +1,q â&#x20AC;˛â&#x20AC;˛ ] ji
ji
ji
i
ji
(5)
i
where | arg x | < ½ Uď °, | arg y | < ½ Vď °ď&#x20AC;Źď&#x20AC; where U and V are given in (2) and (3) respectively. đ?&#x153;&#x2022;
m,n:m ,n 1 :m 2 ,n 2 [x ] ,q :r â&#x20AC;˛ :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r â&#x20AC;˛â&#x20AC;˛ y i i iâ&#x20AC;˛ iâ&#x20AC;˛ i i
Ip ,q :r:p1
đ?&#x153;&#x2022;đ?&#x2018;Ś
m,n:m 1 ,n 1 :m 2 ,n 2 x [(a j :Îąj ,A j )1,n ],[(a ji :Îąji ,A ji )n +1,p i ] â&#x20AC;˛ :p ,q :r â&#x20AC;˛â&#x20AC;˛ [y |[(b :β ,B ) :r:p ,q :r j j j 1,n ],[(b ji :βji ,B ji )1,q i ] i i iâ&#x20AC;˛ iâ&#x20AC;˛ i â&#x20AC;˛â&#x20AC;˛ i â&#x20AC;˛â&#x20AC;˛ :[(c j ;Îłj )1,n 1 ],[(c â&#x20AC;˛ ;Îł â&#x20AC;˛ )n 1 +1,p â&#x20AC;˛ ]; 0,1 ,[(e j ;E j )1,n 2 ],[(e â&#x20AC;˛â&#x20AC;˛ ;E â&#x20AC;˛â&#x20AC;˛ )n 2 +1,p â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji
= y â&#x2C6;&#x2019;1 Ip ,q
i
i
],
(6)
:[(d j ;δj )1,m 1 ],[(d â&#x20AC;˛ ;δγ â&#x20AC;˛ )m 1 +1,q â&#x20AC;˛ ];[(f j ;F j )1,m 2 ],[(f â&#x20AC;˛â&#x20AC;˛ ;F â&#x20AC;˛â&#x20AC;˛ )m 2 +1,q â&#x20AC;˛â&#x20AC;˛ ],(1,1) ji ji ji ji i
i
where | arg x | < ½ Uď °, | arg y | < ½ Vď °ď&#x20AC;Źď&#x20AC; where U and V are given in (2) and (3) respectively. đ?&#x153;&#x2022;2 đ?&#x153;&#x2022;đ?&#x2018;Ľđ?&#x153;&#x2022;đ?&#x2018;Ś
m,n:m 1 ,n 1 :m 2 ,n 2 x â&#x20AC;˛ â&#x20AC;˛â&#x20AC;˛ [y ] i i :r:p â&#x20AC;˛ ,q â&#x20AC;˛ :r :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r
Ip ,q
i
i
i
i
[(a j :Îąj ,A j )1,n ],[(a ji :Îąji ,A ji )n +1,p i ] m,n:m ,n 1 :m 2 ,n 2 [x | ,q :r â&#x20AC;˛ :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r â&#x20AC;˛â&#x20AC;˛ y [(b j :βj ,B j )1,n ],[(b ji :βji ,B ji )1,q i ] i i iâ&#x20AC;˛ iâ&#x20AC;˛ i i : 0,1 ,[(c j ;Îłj )1,n 1 ],[(c â&#x20AC;˛ ;Îł â&#x20AC;˛ )n 1 +1,p â&#x20AC;˛ ]; 0,1 ,[(e j ;E j )1,n 2 ],[(e â&#x20AC;˛â&#x20AC;˛ ;E â&#x20AC;˛â&#x20AC;˛ )n 2 +1,p â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji
= (xy)â&#x2C6;&#x2019;1 Ip ,q :r:p1
i
i
],
:[(d j ;δj )1,m 1 ],[(d â&#x20AC;˛ ;δγ â&#x20AC;˛ )m 1 +1,q â&#x20AC;˛ ],(1,1);[(f j ;F j )1,m 2 ],[(f â&#x20AC;˛â&#x20AC;˛ ;F â&#x20AC;˛â&#x20AC;˛ )m 2 +1,q â&#x20AC;˛â&#x20AC;˛ ],(1,1) ji ji ji ji i
(7)
i
where | arg x | < ½ Uď °, | arg y | < ½ Vď °ď&#x20AC;Źď&#x20AC; where U and V are given in (2) and (3) respectively. Proof: To establish (5), we use for the generalized I-function of two variables Mellin-Barnes types of contour integral as given in (1), on the left-hand side of (5), change the order of integration and derivative (which is justified under the conditions given with (5)), we then obtain Left-hand side of (5) =
â&#x2C6;&#x2019;1 4Ď&#x20AC;2
= =
Ď&#x2022;
L1 L2 1 â&#x2C6;&#x2019;1 4Ď&#x20AC;2 L 1 L 2 â&#x2C6;&#x2019;1 4Ď&#x20AC;2
L1 L2
Ξ, Ρ θ2 Ξ θ3 Ρ
đ?&#x153;&#x2022; đ?&#x153;&#x2022;đ?&#x2018;Ľ
x Ξ y Ρ dΞdΡ
Ď&#x2022;1 Ξ, Ρ θ2 Ξ θ3 Ρ Ξx Ξâ&#x2C6;&#x2019;1 y Ρ dΞdΡ Ď&#x2022;1 Ξ, Ρ θ2 Ξ θ3 Ρ
ΞÎ&#x201C;(Ξ) Ξâ&#x2C6;&#x2019;1 x Î&#x201C;(Ξ)
y Ρ dΞdΡ
Now using the result (4) and interpreting the resulting contour integral as the generalized I-function of two variables, we once get the right-hand side of (5). Proceeding on the similar way, the results (6) and (7) can be obtained.
IV. Special Cases On choosing m = 0 main results, we get following partial derivatives in terms of I-function of two variables: đ?&#x153;&#x2022; đ?&#x153;&#x2022;đ?&#x2018;Ľ
0,n:m ,n :m 2 ,n 2 x â&#x20AC;˛ â&#x20AC;˛â&#x20AC;˛ [y ] â&#x20AC;˛ â&#x20AC;˛ :r :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r i i
1 1 Ip ,q :r:p ,q i
i
i
i
[(a j :Îąj ,A j )1,n ],[(a ji :Îąji ,A ji )n +1,p i ] 0,n:m ,n :m 2 ,n 2 [x | :r â&#x20AC;˛ :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r â&#x20AC;˛â&#x20AC;˛ y [(b j :βj ,B j )1,n ],[(b ji :βji ,B ji )1,q i ] i i iâ&#x20AC;˛ iâ&#x20AC;˛ i i
1 1 = x â&#x2C6;&#x2019;1 Ip ,q :r:p ,q
: 0,1 ,[(c j ;Îłj )1,n 1 ],[(c â&#x20AC;˛ ;Îł â&#x20AC;˛ )n 1 +1,p â&#x20AC;˛ ];[(e j ;E j )1,n 2 ],[(e â&#x20AC;˛â&#x20AC;˛ ;E â&#x20AC;˛â&#x20AC;˛ )n 2 +1,p â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji i i :[(d j ;δj )1,m 1 ],[(d â&#x20AC;˛ ;δγ â&#x20AC;˛ )m 1 +1,q â&#x20AC;˛ ],(1,1);[(f j ;F j )1,m 2 ],[(f â&#x20AC;˛â&#x20AC;˛ ;F â&#x20AC;˛â&#x20AC;˛ )m 2 +1,q â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji i
DOI: 10.9790/5736-1002012729
];
(8)
i
www.iosrjournals.org
28 |Page
Partial Derivatives Involving Generalized Iâ&#x20AC;&#x201C;Function Of Two Variables đ?&#x153;&#x2022;
0,n:m ,n :m 2 ,n 2 x â&#x20AC;˛ â&#x20AC;˛â&#x20AC;˛ [y ] â&#x20AC;˛ â&#x20AC;˛ :r :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r i i
1 1 Ip ,q :r:p ,q
đ?&#x153;&#x2022;đ?&#x2018;Ś
i
=
i
i
i
[(a j :Îąj ,A j )1,n ],[(a ji :Îąji ,A ji )n +1,p ] 0,n:m 1 ,n 1 :m 2 ,n 2 i y â&#x2C6;&#x2019;1 Ip ,q :r:p [x | ,q â&#x20AC;˛ :r â&#x20AC;˛ :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r â&#x20AC;˛â&#x20AC;˛ y [(b j :βj ,B j )1,n ],[(b ji :βji ,B ji )1,q i ] â&#x20AC;˛ i i i i i i :[(c j ;Îłj )1,n 1 ],[(c â&#x20AC;˛ ;Îł â&#x20AC;˛ )n 1 +1,p â&#x20AC;˛ ]; 0,1 ,[(e j ;E j )1,n 2 ],[(e â&#x20AC;˛â&#x20AC;˛ ;E â&#x20AC;˛â&#x20AC;˛ )n 2 +1,p â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji i
i
];
:[(d j ;δj )1,m 1 ],[(d â&#x20AC;˛ ;δγ â&#x20AC;˛ )m 1 +1,q â&#x20AC;˛ ];[(f j ;F j )1,m 2 ],[(f â&#x20AC;˛â&#x20AC;˛ ;F â&#x20AC;˛â&#x20AC;˛ )m 2 +1,q â&#x20AC;˛â&#x20AC;˛ ],(1,1) ji ji ji ji i i đ?&#x153;&#x2022;2 đ?&#x153;&#x2022;đ?&#x2018;Ľđ?&#x153;&#x2022;đ?&#x2018;Ś
(9)
0,n:m 1 ,n 1 :m 2 ,n 2 x â&#x20AC;˛ â&#x20AC;˛â&#x20AC;˛ [y ] i i :r:p i â&#x20AC;˛ ,q i â&#x20AC;˛ :r :p i â&#x20AC;˛â&#x20AC;˛ ,q i â&#x20AC;˛â&#x20AC;˛ :r
Ip ,q
[(a j :Îąj ,A j )1,n ],[(a ji :Îąji ,A ji )n +1,p i ] 0,n:m ,n :m 2 ,n 2 [x | :r â&#x20AC;˛ :p â&#x20AC;˛â&#x20AC;˛ ,q â&#x20AC;˛â&#x20AC;˛ :r â&#x20AC;˛â&#x20AC;˛ y [(b j :βj ,B j )1,n ],[(b ji :βji ,B ji )1,q i ] â&#x20AC;˛ â&#x20AC;˛ i i i i i i : 0,1 ,[(c j ;Îłj )1,n 1 ],[(c â&#x20AC;˛ ;Îł â&#x20AC;˛ )n 1 +1,p â&#x20AC;˛ ]; 0,1 ,[(e j ;E j )1,n 2 ],[(e â&#x20AC;˛â&#x20AC;˛ ;E â&#x20AC;˛â&#x20AC;˛ )n 2 +1,p â&#x20AC;˛â&#x20AC;˛ ] ji ji ji ji i i ], :[(d j ;δj )1,m 1 ],[(d â&#x20AC;˛ ;δγ â&#x20AC;˛ )m 1 +1,q â&#x20AC;˛ ],(1,1);[(f j ;F j )1,m 2 ],[(f â&#x20AC;˛â&#x20AC;˛ ;F â&#x20AC;˛â&#x20AC;˛ )m 2 +1,q â&#x20AC;˛â&#x20AC;˛ ],(1,1)
1 1 = (xy)â&#x2C6;&#x2019;1 Ip ,q :r:p ,q
ji
ji
ji
i
ji
(10)
i
where | arg x | < ½ U'ď °, | arg y | < ½ V'ď °ď&#x20AC;Źď&#x20AC; where U' and V' are given as follows respectively: qâ&#x20AC;˛ pâ&#x20AC;˛ pi qi m n1 i i đ?&#x2018;&#x2C6; â&#x20AC;˛ = j=n+1 Îąji â&#x2C6;&#x2019; j=1 βji + j=11 δj â&#x2C6;&#x2019; j=m δ + j=1 Îłj â&#x2C6;&#x2019; j=n Îł > 0, +1 ji â&#x20AC;˛ +1 ji â&#x20AC;˛ 1
đ?&#x2018;&#x2030;â&#x20AC;˛ = â&#x2C6;&#x2019;
pi j=n+1 A ji
â&#x2C6;&#x2019;
qi j=1 Bji
â&#x2C6;&#x2019;
m2 j=1 Fj
â&#x2C6;&#x2019;
1
q â&#x20AC;˛â&#x20AC;˛ i F j=m 21 +1 ji â&#x20AC;˛â&#x20AC;˛
+
n2 j=1 Ej
â&#x2C6;&#x2019;
p â&#x20AC;˛â&#x20AC;˛ i E j=n 2 +1 ji â&#x20AC;˛â&#x20AC;˛
> 0,
References [1]. [2].
Goyal, Anil and Agrawal,R.D. Integral involving the product of I-function of two variables, Journal of M.A.C.T. Vol. 28 P 147155(1995). Rainville, E. D.: Special Functions, Macmillan, NewYork, 1960.
DOI: 10.9790/5736-1002012729
www.iosrjournals.org
29 |Page